• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stable higher derivative models withconstraints by Hamiltonian analysis

    2014-03-20 06:55:54ZHAIXianghuaAOXichen

    ZHAI Xianghua, AO Xichen

    (Shanghai United Center for Astrophysics (SUCA), Shanghai Normal University, Shanghai 200234, China)

    1 Introduction

    Recently,Chen et al.[1]proved that the Ostrogradski instability can be removed by the addition of constraints if the original theory′s phase space is reduced.Based on their study,we find the sufficient and necessary condition to establish a stable higher derivative models with constraints,which would help us to find a reasonable field theory with higher derivatives.There has been a reviviscence of interest in higher derivative theories,especially within attempts to modify Einstein′s gravity theory[2-3].Modified gravity theories can predict observed cosmic phenomena without the need for dark energy[4-5]and maybe even dark matter[6-7].The string and brane theories both show that the higher derivative terms could have interesting cosmological implications in high energy realm[8].The higher derviative terms may be interpreted as the quantum corrections of the matter fields[9].The flat spacetime Galileon is a scalar field theory whose Lagrangian involves the higher derivative terms[10].It seems that we should study higher derivative theory if we try to explain some current riddles of physics with deviation from Einstein′s general relativity.However,Ostrogradski[11]proved in the middle of the 19th century that there exists a linear instability in any nondegenerate theory whose fundamental dynamical variable is higher than 2nd order in time derivative.In various modified gravity models,the higher order gravity theories employing terms such asRμνRμν,RμνρδRμνρδorCμνρδCμνρδgenerally suffer the sickness of Ostrogradski instability.It is often possible to accommodate higher derivatives in the Lagrangian while retaining 2nd order field equations.The usual practices are that the original Lagrangian is added by a judicious term including first or higher derivatives,which is basic ingredient for the modified gravity.So far,one does not know if there is a universal Dirac′s method[12]of Hamiltonian analysis to curve Ostragradski′s instability by the addition of constraints.

    (1)

    and the canonical phase space should have 2N coordinates.Following Ostrogradski′s choices,the canonical coordinates are

    Qi≡q(i-1),

    (2)

    Nondegeneracy means that there exists a functiona(Q1, …,QN,PN),which can be expressed in terms of canonical coordinates by Eq.(3)

    (3)

    And the Hamiltonian is

    (4)

    It is easy to find that the Hamiltonian is linear inP1,…,PN-1,so it is not bounded from below (or above).It will become problematic when the interactions with other degrees of freedom are introduced,whose Hamiltonians are bounded from below (or above)[5].

    Imposing constraints is a desirable way out to cure Ostrogradski instability for higher derivative theories[1],which makes the Hamiltonian bounded.In other words,the Ostrogradski instability can be removed by the addition of constraints,which reduce the dimensionality of the phase space of original system.One can introduce auxiliary variables to realize the reduction.In fact, the total phase space is enlarged after introducing auxiliary variables,but the dimensionality of the reduced phase space keeps the same or even gets smaller,because trajectories are constrained.It has been proven that the addition of Lagrange multipliers can not reduce the original phase space,so the constraints must contain second or higher derivative terms of auxiliary variables.

    The Pais-Uhlenbeck (PU) oscillator[13]is a fascinating toy model for the investigation of higher derivative theories[14-18].It is a quantum mechanical analog to a field theory containing both the second and the fourth order derivative terms.On the classical level, the simplest interaction is an external dissipative force for a PU oscillator[15].On the quantum level,Bender and Mannheim showed that PT-symmetric Hamiltonians are ghost-free up to fourth order[16].A stable and unitary quantum system of the PU oscillator is discussed in Refs.[14].

    In this paper,we find the sufficient and necessary condition to establish a stable linear system with constraints,in which the Lagrangian involved with 2nd time derivatives.We also move on and generalize the discussions of linear system to a second time derivative system with arbitrary potentialV(q).We present a class of exactly solvable higher derivative models with and without constraints.We show explicitly that the Ostrogradski instability can be removed by imposing constraints in this model.In the case without constraints,the exact solution of classical dynamics includes four quasi-normal modes (QNMs),among which two modes increase exponentially.That indicates an exponential instability of the system.While in the case with constraints,the two divergent modes are eliminated and the good ones are retained.So the exact solution includes only two stable QNMs.All these discussions and conclusions would pave the way to establish a reasonable field theory with higher order derivative.

    This paper is organized as follows.In section 2 we investigate the PU oscillator with an external dissipative force to illustrate the instability of a higher derivative system.In section 3,using Dirac′s Hamlitonian method,we obtain the sufficient and necessary condition to establish a stable linear system with constraints,in which the Lagrangina invloved with 2nd time derivative.We also discuss the generalized system with an arbitray potential term.In section 4,we reexamine the PU model with constraints suggested by Chen et al.[1],and find that model is still not stable within some range of the parametersω1andω2,although it exorcises Ostrogradski instability.In section 5,using the sufficient and necessary condition obtained in Sec.3,we find a stable PU model with constraints for allω1andω2.And this model maintains the characteristics of the PU oscillator.In the last section,we summarize all the investigations,and discuss what we can learn from them.

    2 A Pais-Uhlenbeck oscillator with an external dissipative interaction

    (5)

    whereω1andω2are positive constants,and the Euler-Lagrange equation is

    (6)

    The general solution of Eq.(6) has the format,

    q(t)=a1e-iΩ1t+a2e-iΩ2t+a3e-iΩ3t+a4e-iΩ4t,

    (7)

    whereai(i=1,…,4) are integral constants,and

    (8)

    (9)

    (10)

    (11)

    and

    (12)

    (13)

    According to Eq.(2),the canonical coordinates are

    (14)

    The Hamiltonian is obtained by Legendre transforming

    (15)

    whose linear dependence onP1means the unstableness of the system,which is consistent with the result of the discussion of QNMs for solutions(7).

    3 Higher derivative linear system with constraints and its generalization

    The Lagrangian contains the whole information about the system dynamics for the fundamental physics,in which possible constraints of dynamical variables can be included.The existence of constraints means that the total phase space is reduced to a submanifold in physics.In order to amend the Ostrogradski instability,the dimensionality of original system′s phase space must be reduced by imposing constraints.Constraints can be classified into two classes.The first class constraints are those associated with gauge freedoms in the theory,and the second class constraints are physical,which means the solutions of motion equations are different with or without constraints.In this paper,we can check all the constraints are connected with second class.

    (16)

    Therefore,the general second time derivative Lagrangian is given by

    (17)

    Furthermore,the most general Lagrangian of second time derivative linear system with constraints can be written as

    (18)

    whereα,β,a,b,candeare real parameters.Following Dirac′s analysis of constraints systems[18]and Ostrogradski′s choice[17],we define canonical variables as

    (19)

    (20)

    (21)

    (22)

    Φ2:{Φ1,HT}=bQ1+cQ2+eP2+(2a-e2)Q3~ 0.

    (23)

    If the parameters 2a≠e2,Φ1andΦ2are both second class constraints andQ3andP3are functions of other canonical variables,

    Q3~(2a-e2)-1(bQ1+cQ2+eP2),P3=0.

    (24)

    That is to say,further consistency relations only give rise to the form of the arbitrary functionu1,and there′s no further constraints.The source of Ostrogradski instability is the vexatious linear termP1Q2.To exorcise this instability we have to find a constraint whereQ2is some function ofP1.Therefore,we have

    2a=e2

    (25)

    between the parametersaande,if we want to exorcise Ostrogradski instability.

    In the 2a=e2case,repeating the procedures above,one can find the further consistency relations

    Φ3: {Φ2,HT}=(b+2αe)Q2-eP1+cP2~0,

    (26)

    Φ4: {Φ3,HT}=(c2-2αe2-2be)Q3-2eβQ1+

    2αcQ2-cP1+(b+2αe)P2~0.

    (27)

    It is easy to check all the constraints are second class constraints.By using these constraints,the reduced Hamiltonian can be written as

    (28)

    Obviously,the effective dimensionality of phase space is reduced from four (Q1,Q2,P1,P2) to two (Q1,P1),and the Ostrogradski instability is exorcised.Furthermore,the reduced Hamiltonian will be positive or negative definite when suitable relations are satisfied among the parametersα,β,b,cande.

    From the discussions above,we obtain Theorem 1 stated as follows,

    Theorem1 The most general Lagrangian (18) of second time derivative linear system with constraints is stable and nontrivial iff 2a=e2,e≠0 and

    (29)

    Also,we can move on and generalize the discussions of the system Eq.(18) to a second time derivative system with arbitrary potentials,whose Lagrangian is as follows,

    (30)

    (31)

    The relationship betweenQ2andP1is

    (32)

    andQ2can be inverted as a function ofQ1andP1for a fixedc(Q1,Q2) in Eq.(31).So,the dimensionality of phase space can be reduced to two (Q1,P1) from four (Q1,P1,Q2,P2).From Eq.(31) and (32),we obtain Theorem 2,stated as follows,

    Theorem2 For a second time derivative dynamical system with constraints,Eq.(30),

    (i) By choosing some appropriate functionc(Q1,Q2),one can always change the original system into a stable one,and the dimensionality of the phase space is reduced to two (Q1,P1) from four (Q1,P1,Q2,P2) ,but the characteristics of the constrained system might change essentially.

    4 A PU model with constraints: the stability is dependent on parameters ω1 and ω2

    We reexamine a PU model with constraints discussed by Chen et al.in Ref.[1],whose Lagrangian is

    (33)

    Here,we point out that the model is not stable within some range of the parametersω1andω2,although it can exorcise Ostrogradski′s ghost from the system of the PU oscillator.Furthermore,we show the exact solution after introducing an external dissipative force.The canonical variables are defined by

    (34)

    (35)

    Q3≡λ?P3≡0,

    (36)

    and the total Hamiltonian is

    (37)

    whereΦ1is primary constraint andΦ1:P3=0.The secondary constraints are

    (38)

    (39)

    (40)

    Using these constraints,we obtain the correct expression of the reduced Hamiltonian,

    (41)

    (42)

    whereθ(x) is the Heaviside function guaranteeing the positivity of the friction coefficient for allω1,ω2>0.From the Lagrangian (33) and (42),the equations of motion are

    (43)

    and

    (44)

    From Eqs.(33) and (42),Eqs.(43) and (44) are reduced to

    (45)

    and

    (46)

    q(t)=μ1e?Ω1 t+μ2e?Ω2t,

    (47)

    and

    (48)

    (49)

    (50)

    (51)

    5 A PU model with constraints:the stability is independent on parameters ω1 and ω2

    According to the sufficient and necessary condition in Theorem 1,we consider the Lagrangian

    (52)

    where the choice of parameters satisfies Eq.(29),so this system with constraints is bound to a stable one.The canonical variables are defined by

    (53)

    (54)

    Q3≡λ?P3≡0,

    (55)

    and the total Hamiltonian is

    (56)

    The primary constraintsΦ1and secondary constraintsΦ2,Φ3andΦ4are

    Φ1:P3=0,

    (57)

    (58)

    (59)

    (60)

    By using the constraints (57)-(60),the reduced Hamiltonian can be written as

    (61)

    which is negative definite for all values ofω1>0 andω2>0 (See Fig.1).The reduced system is not only free from Ostrogradski′s ghost,but also stable.

    (62)

    and

    (63)

    By some explicit and lengthy calculation,we find the general solutions of Eqs.(62) and (63) are

    (64)

    and

    (65)

    whereAandδare integral constants,and

    (66)

    and

    (67)

    Here,

    (68)

    and

    (69)

    6 Conclusion and discussion

    As is known to all,there exists linear instabilities (Ostrogradski instability) in any nondegenerate theory whose fundamental dynamical variable is higher than 2nd order in time derivative.But these instabilities can be removed by imposing constraints which reduce the dimensionality of original system′s phase space.In this paper,we have investigated the most general system of second time derivative linear system with constraints,and showed the sufficient and necessary condition in Theorem 1.Furthermore,we also generalized the investigations of linear system to a higher derivative system with an arbitrary potential termV(q).

    Lesson 1: In order to obtain a stable system,we have to choose the Lagrangian of the auxiliary field seriously.In the restricted case of the linear system,Theorem 1 gives an explicit answer,but we should explore further for more general cases.Theorem 2 is just a preliminary study of nonlinear cases.

    Lesson 2: The solutions of motion equations are different between the two models with and without second class constraints.One significant reason for the revival of interest in higher derivative theories is related to modified gravity.A reasonable modified gravity model with nondegenerate higher derivatives ought to be free from Ostrogradski instability brought by the higher derivatives,maintain the virtue of the general relativity,and also be competitive in solving the problems such as the accelerating expansion of the universe.When we study modified gravity with nondegnerate higher derivatives,the models are sure to meet these requirements.

    Lesson 3: The consistency relation,which introduces a complete set of reasonable constraints,is the key point to remove the factor causing instability of the system.For example,in a linear case,good constraints could eliminate the divergent QNMs,but retain the stable ones.

    Finally,for general nonlinear higher derivative theories with constraints,we have found a class of system with the following Lagrangian

    (70)

    which is free from Ostrogradski′s ghost.We will investigate the stability conditions of this system in the forthcoming work.In any case,the higher derivative theory mentioned above is only a class of toy models for the fundamental physics.It seems that we have to go beyond simple models,if we attempt to explain some current riddles of physics with a deviation from general relativity.However,our experience from the higher derivative theory discussed above would help us to find a reasonable field theory with higher derivatives.

    :

    [1] CHEN T J,FASIELLO M,LIM E A,et al.Higher derivative theories with constraints:Exorcising Ostrogradski′s Ghost[J].J Cosmol Astropart Phys,2013(2):042,1-17.

    [2] SOTIRIOU T P,FARAONI V.f(R) theory of gravity[J].Rev Mod Phys,2010,82:451-497.

    [3] CLIFTON T,FERREIRA P G,PADILLA A,SKORDIS C.Modified gravity and cosmology[J].Phys Rept,2012,513:1-189.

    [4] BERTONE G,HOOPER D,SILK J.Particle dark matter:evidence,candidates and constraints[J].Phys Rept,2005,405:279-390.

    [5] WOODARD R P.Avoiding dark energy with 1/Rmodifications of gravity[C]//PAPANTONOPOULOS L.The Insisible Universe:Dark Matter and Darak Energy,Lect Notes in Phys,Vol 720,Berlin Heidelberg:Springer,2007.

    [6] ZHANG H S,LI X Z.MOND cosmology from entropic force[J].Phys Lett B,2012,715:15-18.

    [7] CHARMOUSIS C,Goutéraux B,Kiritsis E.Higher-derivative scalar-vector-tensor theories:black holes,Galileons,singularity cloaking and holography[J].J High Energy Phys,2012(9):011,1-44.

    [8] ZHANG H S,GUO Z K,CHEN C Y,et al.On asymmetric brane creation[J].J High Energy Phys,2012(1):019,1-19.

    [9] CHAPLINE G F,MANTON N S.Unification of Yang-Mills theory and supergravity in ten dimensions[J].Phys Lett B,1983,120:105-109.

    [10] NICOLIS A,RATTAZZI R,TRINCHERINI E.Galileon as a local modification of gravity[J].Phys Rev D,2009,79:064036.

    [11] OSTROGRADSKI M.Mémoires sur les équations différentielles relatives au problème des isopérimètres[J].Mem Acad St Peterbourg,1850,VI:385-517.

    [12] DIRAC P A M.Lectures on Quantum Mechanics[M].New York:Yeshiva University,1964.

    [13] PAIS A,UHLENBECK G E.On field theories with non-localized action[J].Phys Rev,1950,79:145-165.

    [14] SMILGA A.Ghost-free higher-derivative theory[J].Phys Lett B,2006,632:433-438.

    [15] NESTERENKO V V.Instability of classical dynamics in theories with higher derivatives[J].Phys Rev D,2007,75:087703.

    [16] BENDER C M,MANNHEIM P D.No-Ghost theorem for the Fourth-Order derivative Pais-Uhlenbeck oscillator model[J].Phys Rev Lett,2008,100:110402.

    [17] SMILGA A.Comments on the dynamics of the Pais-Uhlenbeck oscillator[J].SIGMA,2009,5:1-13,17.

    [18] ILHAN I B,KOVNER A.Some comments on ghosts and unitarity:The Pais-Uhlenbeck oscillator revisited[J].Phys Rev D,2013,88:044045.

    国产成人欧美在线观看 | 国产日韩欧美视频二区| 丰满人妻熟妇乱又伦精品不卡| 最新在线观看一区二区三区| 狠狠狠狠99中文字幕| 免费观看av网站的网址| 在线天堂中文资源库| 国产91精品成人一区二区三区 | 欧美精品一区二区免费开放| a级毛片在线看网站| 亚洲av欧美aⅴ国产| 黄频高清免费视频| 午夜福利免费观看在线| 国产三级黄色录像| 黄片小视频在线播放| 久久久久久免费高清国产稀缺| 免费一级毛片在线播放高清视频 | 制服诱惑二区| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 久久久国产精品麻豆| 成年动漫av网址| 国产精品久久久久久精品电影小说| 成人永久免费在线观看视频 | 12—13女人毛片做爰片一| 亚洲专区字幕在线| 久久精品国产综合久久久| 日日爽夜夜爽网站| 99精品在免费线老司机午夜| 欧美中文综合在线视频| 精品国产乱码久久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆国产av国片精品| 欧美变态另类bdsm刘玥| 中文亚洲av片在线观看爽 | 久久久久精品国产欧美久久久| 9色porny在线观看| 婷婷丁香在线五月| aaaaa片日本免费| 免费观看av网站的网址| 五月开心婷婷网| 精品一品国产午夜福利视频| 国产又色又爽无遮挡免费看| 日韩视频在线欧美| 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密| 女性生殖器流出的白浆| 精品乱码久久久久久99久播| 一进一出好大好爽视频| 黄色视频不卡| 18禁国产床啪视频网站| 久久久欧美国产精品| 99riav亚洲国产免费| 99riav亚洲国产免费| 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 在线av久久热| 51午夜福利影视在线观看| 极品教师在线免费播放| 国产在线免费精品| 久久久久久久精品吃奶| 欧美在线一区亚洲| 国产精品偷伦视频观看了| 亚洲熟女精品中文字幕| 69精品国产乱码久久久| 色综合欧美亚洲国产小说| 制服人妻中文乱码| 色综合欧美亚洲国产小说| 亚洲色图综合在线观看| 亚洲精品久久午夜乱码| 黄色毛片三级朝国网站| 高清欧美精品videossex| 亚洲色图av天堂| 97人妻天天添夜夜摸| 三上悠亚av全集在线观看| 大型黄色视频在线免费观看| avwww免费| avwww免费| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| 麻豆av在线久日| 亚洲伊人久久精品综合| 正在播放国产对白刺激| 91大片在线观看| 真人做人爱边吃奶动态| 国产精品久久久久久精品电影小说| 国产日韩欧美视频二区| 热re99久久精品国产66热6| 波多野结衣av一区二区av| 一区二区日韩欧美中文字幕| 天天添夜夜摸| 亚洲一区二区三区欧美精品| 女人精品久久久久毛片| √禁漫天堂资源中文www| 亚洲午夜理论影院| 亚洲欧美精品综合一区二区三区| 精品国产亚洲在线| 国产淫语在线视频| 精品国产一区二区三区久久久樱花| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看黄色视频的| 亚洲情色 制服丝袜| 黄片播放在线免费| 啦啦啦视频在线资源免费观看| 亚洲中文日韩欧美视频| 99国产精品99久久久久| 国产成人免费无遮挡视频| 国产精品熟女久久久久浪| 黄色成人免费大全| 丝袜喷水一区| 蜜桃在线观看..| 欧美老熟妇乱子伦牲交| 国产在线视频一区二区| 纵有疾风起免费观看全集完整版| 日本一区二区免费在线视频| 一级毛片电影观看| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一出视频| 欧美日韩精品网址| avwww免费| 在线看a的网站| 日韩大码丰满熟妇| 国产激情久久老熟女| 免费一级毛片在线播放高清视频 | 亚洲精品成人av观看孕妇| 在线观看www视频免费| 18禁观看日本| 欧美av亚洲av综合av国产av| 性高湖久久久久久久久免费观看| 久久免费观看电影| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 天堂8中文在线网| 在线 av 中文字幕| 丰满饥渴人妻一区二区三| 中文字幕制服av| 国产精品影院久久| 国产高清激情床上av| 久久中文看片网| 欧美激情极品国产一区二区三区| 18禁国产床啪视频网站| 日韩精品免费视频一区二区三区| 80岁老熟妇乱子伦牲交| av有码第一页| 国产精品.久久久| 一个人免费在线观看的高清视频| 一区二区三区精品91| 狂野欧美激情性xxxx| 最近最新中文字幕大全电影3 | 亚洲精品在线观看二区| 欧美激情 高清一区二区三区| 免费观看人在逋| 三级毛片av免费| 久久久精品国产亚洲av高清涩受| 亚洲成a人片在线一区二区| 69精品国产乱码久久久| 99久久精品国产亚洲精品| 三级毛片av免费| 精品午夜福利视频在线观看一区 | 欧美成人午夜精品| 欧美成人午夜精品| 十八禁网站网址无遮挡| 视频区欧美日本亚洲| 成人亚洲精品一区在线观看| 亚洲av国产av综合av卡| 国产成人欧美在线观看 | 99九九在线精品视频| 婷婷成人精品国产| 亚洲精品一二三| 久久免费观看电影| 欧美日韩亚洲国产一区二区在线观看 | 欧美黑人精品巨大| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 在线观看舔阴道视频| a级毛片黄视频| 欧美 日韩 精品 国产| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| 热99久久久久精品小说推荐| 久久中文字幕人妻熟女| 国产精品秋霞免费鲁丝片| 男女高潮啪啪啪动态图| 国产精品一区二区精品视频观看| 韩国精品一区二区三区| 国产日韩欧美在线精品| 老汉色av国产亚洲站长工具| 欧美乱妇无乱码| 成人国产av品久久久| 色老头精品视频在线观看| 成人国产一区最新在线观看| 巨乳人妻的诱惑在线观看| 国产男女超爽视频在线观看| 69精品国产乱码久久久| 性少妇av在线| √禁漫天堂资源中文www| 超碰成人久久| 美女视频免费永久观看网站| 久久精品aⅴ一区二区三区四区| 久久中文看片网| 高清黄色对白视频在线免费看| 中文字幕人妻熟女乱码| 国产一区二区 视频在线| 中文字幕精品免费在线观看视频| 亚洲三区欧美一区| 久热这里只有精品99| 黄片大片在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av片天天在线观看| 日韩中文字幕欧美一区二区| avwww免费| 亚洲av欧美aⅴ国产| 操美女的视频在线观看| 中文字幕最新亚洲高清| 日韩免费高清中文字幕av| 国产精品影院久久| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 757午夜福利合集在线观看| 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 成年人黄色毛片网站| www.精华液| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 另类亚洲欧美激情| 久久人妻熟女aⅴ| 亚洲人成伊人成综合网2020| 久久午夜综合久久蜜桃| www日本在线高清视频| 日韩欧美一区二区三区在线观看 | 亚洲精品一二三| 久久人妻福利社区极品人妻图片| 18在线观看网站| 高清在线国产一区| 老熟妇乱子伦视频在线观看| 伊人久久大香线蕉亚洲五| 午夜福利,免费看| 国产欧美日韩一区二区精品| 黄色a级毛片大全视频| 在线十欧美十亚洲十日本专区| 在线观看免费视频网站a站| 久久久久久久久久久久大奶| 一级片'在线观看视频| 色婷婷久久久亚洲欧美| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕一级| aaaaa片日本免费| 看免费av毛片| 国产一区二区三区视频了| 国产不卡av网站在线观看| 最近最新免费中文字幕在线| 欧美精品av麻豆av| 一级黄色大片毛片| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人| 国产高清videossex| 色播在线永久视频| 大型黄色视频在线免费观看| 免费观看人在逋| 免费av中文字幕在线| 下体分泌物呈黄色| 日本欧美视频一区| 精品免费久久久久久久清纯 | 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 欧美成人免费av一区二区三区 | 日本欧美视频一区| 黄色片一级片一级黄色片| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 一本综合久久免费| 亚洲av电影在线进入| 色视频在线一区二区三区| 日韩欧美一区视频在线观看| 成人av一区二区三区在线看| 视频在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 欧美在线黄色| 大码成人一级视频| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 老熟妇乱子伦视频在线观看| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 纵有疾风起免费观看全集完整版| 欧美激情久久久久久爽电影 | 亚洲精品成人av观看孕妇| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 在线天堂中文资源库| 91大片在线观看| 久久亚洲精品不卡| 免费久久久久久久精品成人欧美视频| 午夜福利欧美成人| 久久久国产一区二区| 十八禁高潮呻吟视频| 精品熟女少妇八av免费久了| 久久婷婷成人综合色麻豆| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 久久国产精品影院| 丝袜人妻中文字幕| 国产日韩欧美视频二区| 美女cb高潮喷水在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 国产乱人伦免费视频| 亚洲七黄色美女视频| 欧美乱码精品一区二区三区| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 嫩草影院精品99| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| av黄色大香蕉| 宅男免费午夜| xxx96com| 国产成年人精品一区二区| 一本精品99久久精品77| 丰满人妻一区二区三区视频av | 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 99久久成人亚洲精品观看| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 亚洲国产看品久久| 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| www国产在线视频色| 午夜影院日韩av| 国产视频内射| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲av一区麻豆| 亚洲真实伦在线观看| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| 嫩草影视91久久| 国产麻豆成人av免费视频| 久久久久久九九精品二区国产| 午夜精品在线福利| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐动态| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 日本与韩国留学比较| aaaaa片日本免费| 午夜免费成人在线视频| 国产97色在线日韩免费| 精华霜和精华液先用哪个| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 色av中文字幕| 国内揄拍国产精品人妻在线| 亚洲欧洲精品一区二区精品久久久| 国产伦精品一区二区三区视频9 | 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 色综合婷婷激情| or卡值多少钱| 欧美绝顶高潮抽搐喷水| 狠狠狠狠99中文字幕| 久久久久国产精品人妻aⅴ院| 搡老妇女老女人老熟妇| 老司机在亚洲福利影院| 俺也久久电影网| 久久精品91蜜桃| tocl精华| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 国产精品av视频在线免费观看| 一本一本综合久久| 夜夜躁狠狠躁天天躁| av天堂在线播放| 日韩欧美免费精品| 国产又黄又爽又无遮挡在线| 久久精品人妻少妇| 亚洲精华国产精华精| 亚洲av成人一区二区三| 色综合亚洲欧美另类图片| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| 夜夜躁狠狠躁天天躁| 九色成人免费人妻av| 真人做人爱边吃奶动态| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 俺也久久电影网| 国产极品精品免费视频能看的| 91在线精品国自产拍蜜月 | 首页视频小说图片口味搜索| 在线观看66精品国产| 久久久久久久午夜电影| 国产av一区在线观看免费| 久久国产乱子伦精品免费另类| 99在线视频只有这里精品首页| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 亚洲中文av在线| 又爽又黄无遮挡网站| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 夜夜躁狠狠躁天天躁| 日韩欧美一区二区三区在线观看| 亚洲人成电影免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品av视频在线免费观看| 99精品久久久久人妻精品| 天天一区二区日本电影三级| 亚洲九九香蕉| 一区二区三区国产精品乱码| 欧美日韩乱码在线| av福利片在线观看| 美女cb高潮喷水在线观看 | 亚洲熟妇中文字幕五十中出| 成年女人毛片免费观看观看9| av福利片在线观看| 噜噜噜噜噜久久久久久91| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av| 欧美日韩福利视频一区二区| 国产精品久久久久久久电影 | 午夜免费激情av| 国产乱人伦免费视频| 日日干狠狠操夜夜爽| 中文字幕av在线有码专区| 国产精品av久久久久免费| 免费看光身美女| 午夜福利在线观看吧| 欧美日韩黄片免| bbb黄色大片| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 久久久久久久久久黄片| 亚洲国产欧美网| 国产午夜精品久久久久久| 国产精品 欧美亚洲| av天堂在线播放| 久久性视频一级片| 成年版毛片免费区| 欧美一区二区国产精品久久精品| 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 亚洲真实伦在线观看| 无人区码免费观看不卡| 999精品在线视频| 桃红色精品国产亚洲av| 麻豆久久精品国产亚洲av| aaaaa片日本免费| 一a级毛片在线观看| 黑人欧美特级aaaaaa片| 成在线人永久免费视频| 免费av不卡在线播放| 麻豆成人午夜福利视频| 亚洲乱码一区二区免费版| www.精华液| 亚洲熟妇中文字幕五十中出| 国产亚洲精品一区二区www| 国产精品 国内视频| 我的老师免费观看完整版| 色视频www国产| 99久久精品热视频| 看片在线看免费视频| 制服丝袜大香蕉在线| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产成人免费| 免费看a级黄色片| 久久伊人香网站| 亚洲精品美女久久久久99蜜臀| 国产熟女xx| 精品久久久久久久末码| 伊人久久大香线蕉亚洲五| 色综合欧美亚洲国产小说| 色吧在线观看| 国产熟女xx| 亚洲精品久久国产高清桃花| 精品电影一区二区在线| 99热这里只有精品一区 | 国内久久婷婷六月综合欲色啪| 免费高清视频大片| 人人妻人人看人人澡| 男女之事视频高清在线观看| 午夜两性在线视频| 国产精品久久久久久久电影 | 亚洲欧洲精品一区二区精品久久久| 国产午夜福利久久久久久| 国产精品女同一区二区软件 | 麻豆成人午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 最近最新中文字幕大全电影3| 国内少妇人妻偷人精品xxx网站 | 成人欧美大片| 久久精品91蜜桃| 18美女黄网站色大片免费观看| 国产精品国产高清国产av| 亚洲18禁久久av| 国产69精品久久久久777片 | av在线天堂中文字幕| 老司机福利观看| 村上凉子中文字幕在线| 这个男人来自地球电影免费观看| 欧美中文综合在线视频| 成人三级黄色视频| 欧美黄色淫秽网站| 免费在线观看视频国产中文字幕亚洲| 国产午夜精品久久久久久| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 日韩欧美精品v在线| 在线看三级毛片| 99久久久亚洲精品蜜臀av| or卡值多少钱| 亚洲精品乱码久久久v下载方式 | 婷婷精品国产亚洲av在线| 亚洲国产色片| 国产亚洲精品久久久久久毛片| 999精品在线视频| 久久九九热精品免费| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| 国产三级中文精品| 这个男人来自地球电影免费观看| 久久国产精品影院| 我要搜黄色片| 级片在线观看| 日韩欧美精品v在线| 国产69精品久久久久777片 | 91麻豆精品激情在线观看国产| 欧美中文综合在线视频| 国产高清激情床上av| 亚洲国产色片| 亚洲 国产 在线| 丝袜人妻中文字幕| 日韩成人在线观看一区二区三区| x7x7x7水蜜桃| 香蕉久久夜色| 免费大片18禁| 真实男女啪啪啪动态图| 91麻豆精品激情在线观看国产| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 久久久色成人| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区91| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区| 床上黄色一级片| 99久久99久久久精品蜜桃| 国产精品av视频在线免费观看| 亚洲国产精品久久男人天堂| 一区福利在线观看| 黄片大片在线免费观看| 黄色 视频免费看| 国产精华一区二区三区| 久久久久久人人人人人| 亚洲,欧美精品.| 午夜精品一区二区三区免费看| www日本黄色视频网| 久久久久九九精品影院| av天堂中文字幕网| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| 午夜亚洲福利在线播放| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 免费av毛片视频| 国产成人av激情在线播放| 国内少妇人妻偷人精品xxx网站 | 我的老师免费观看完整版| 男女床上黄色一级片免费看| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 真人做人爱边吃奶动态| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx| 国产伦精品一区二区三区视频9 | 国产毛片a区久久久久| 日韩高清综合在线| 1000部很黄的大片| 成人性生交大片免费视频hd| 成年女人看的毛片在线观看| 三级毛片av免费| 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区|