• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stage-structured models for interactingwild and sterile mosquitoes

    2014-03-20 08:26:02JiaLi

    Jia Li

    (Department of Mathematical Sciences, University of Alabama in Huntsville,Huntsville, AL 35899, U.S.A)

    1 Introduction

    Malaria and other mosquito-borne diseases are a considerable public health concern worldwide.These diseases are transmitted between humans by blood-feeding mosquitoes.No vaccines are available and an effective way to prevent these mosquito-borne diseases is to control mosquitoes.Among the mosquitoes control measures,the sterile insect technique (SIT) has been applied to reducing or eradicating the wild mosquitoes.SIT is a method of biological control in which the natural reproductive process of mosquitoes is disrupted.Utilizing radical or other chemical or physical methods,male mosquitoes are genetically modified to be sterile which are incapable of producing offspring despite being sexually active.These sterile mosquitoes are then released into the environment to mate with wild mosquitoes that are present in the environment.A wild female that mates with a sterile male will either not reproduce,or produce eggs but the eggs will not hatch.Repeated releases of sterile mosquitoes or releasing a significantly large number of sterile mosquitoes may eventually wipe out or control a wild mosquito population[1-3].

    While SIT brings an effective weapons to fight vector-borne diseases,and has shown promising in laboratory research,the assessment of the impact of releasing sterile mosquitoes on the wild mosquitoes controlling remains a challenging task.

    Mathematical models have proven useful in getting insights to such challenging questions in population dynamics and epidemiology.There are mathematical models in the literature formulated to study the interactive dynamics of mosquito populations or the control of mosquitoes[4-10].In particular,models incorporate different strategies in releasing sterile mosquitoes have been formulated and the studied in [11,12].However,the mosquito population has been assumed to be homogeneous without distinguishing the metamorphic stages of mosquitoes.

    Mosquitoes undergo complete metamorphosis going through four distinct stages of development during a lifetime: egg,pupa,larva,and adult[13].While interspecific competition and predation are rather rare events and could be discounted as major causes of larval mortality,intraspecific competition could represent a major density dependent source for the population dynamics,and hence the effect of crowding could be an important factor in the population dynamics of mosquitoes[14-16].Hence,to have a better understanding of the impact of the releases of sterile mosquitoes,the metamorphosis stage structure needs to be included[17].Nevertheless,to keep our mathematical modeling as simple as possible,due to the fact that the first three stages in a mosquito′s life cycle are aquatic,we follow a line similar to the stage-structured models for transgenic mosquitoes in [18-20] where the three aquatic metamorphic stages are combined as one group,we group the three aquatic stages of mosquitoes into one class,called larvae,and divide the mosquito population into only two classes.We still simplify our models such that no male and female individuals are distinguished,and assume that the mosquito populations follow the nonlinearity of Ricker-type[21].We first give general modeling descriptions in Section 2.We then formulate a model,similar to that in [4,5,11,12],where the number of releases of sterile mosquitoes is constant in Section 3.Complete mathematical analysis for the model dynamics is given.We then formulate a model for the case where the number of sterile mosquito releases is proportional to the wild mosquito population size in Section 4.Mathematical analysis and numerical examples are provided to demonstrate the complexity of the model dynamics.To provide a different releasing strategy,we assume,in Section 5,that releases are of Holling-II type such that the number of sterile mosquitoes is proportional to the wild mosquito population size when the wild mosquito population size is small but is saturated and approaches a constant as the wild mosquito population size is sufficiently large.We also provide complete mathematical analysis for the model dynamics.We finally provide brief discussions on our findings,particularly the impact of the three different strategies on the mosquito control measures in Section 6.

    2 The model basis

    We letxnandynbe the numbers of the larvae and adults of wild mosquitoes at generationn,respectively.In the absence of the interaction between the wild and sterile mosquitoes,we assume that the dynamics of the wild mosquito population are described by the following system:

    Since the intraspecific competition mainly takes place within the aquatic stages of mosquitoes,we assume that the density-dependent larvae mortality rate and the emergence rate to adults are both functions of the larvae size only.We further assume the Ricker-type nonlinearity for the survival functions.Then the dynamics are governed by the following system:

    xn+1=ayne-d-k1xn,

    yn+1=βxne-d-k2xn,

    wheredi>0,i=1,2 are the density-independent death rates,ki>0,i=1,2,are the constants describing the carrying capacities of different larvae stages.For convenience,by further merginge-diintoaandβ,respectively,and keeping the same notationsaandβ,we have the basic system for the stage-structured model

    xn+1=ayne-k1 xn,

    yn+1=βxne-k2xn.

    (1)

    The origin (0,0) is a trivial fixed point of system (1).Define the intrinsic grow rate of the stage-structured mosquito populationr0:=aβ.The trivial fixed point is locally asymptotically stable ifr0<1 and is unstable ifr0>1.

    (2)

    (3)

    and is unstable if

    (4)

    We summarize these basic results as follows.

    Now suppose sterile mosquitoes are released into the field of wild mosquitoes and we letBnbe the number of sterile mosquitoes released at generationn.Since sterile mosquitoes do not reproduce,their population size at generationn+1 has no input from their size atn.HenceBnonly depends on the size of the releases of the sterile mosquitoes.After the sterile mosquitoes are released,the mating interaction between the wild and sterile mosquitoes takes place.Following the line of the homogeneous population models in [22,23],we assume harmonic means for matings such that the per capita birth rate is given by

    whereC(Nn) is the number of matings per mosquitoes withNn=yn+Bn,the total adult mosquito population size,andais the number of wild larvae produced per wild mosquito.The interactive dynamics of wild and sterile mosquitoes are then described by the following system:

    yn+1=βxne-k2xn.

    (5)

    3 Constant releases

    We first consider the case whereBn:=bis a constant which means sterile mosquitoes are constantly released for each generation,and assume that the number of matingsC(Nn) is a constant and is merged into the birth rateawith the same notation for convenience.Then system (5) becomes

    yn+1=βxne-k2xn.

    (6)

    Clearly,the origin (0,0) is a fixed point and is always locally asymptotically stable.Let (x,y) be a positive fixed point.Then it satisfies the following equations

    y=βxe-k2x,

    which leads to

    and then

    b=aβxe-(k1+2k2) x-βxe-k2x=βxe-(k1+2k2)x(r0-e(k1+k2)x) :=βH(x),

    FunctionH(x)>0,forx>0,only ifr0>1.Hence ifr0≤1,there exists no positive fixed point.

    We assumer0>1,and only considerx∈Ωwhere setΩis defined by

    (7)

    We further assume condition in (3) is satisfied such that the wild mosquitoes maintain a locally steady state before sterile mosquitoes are released.

    From

    H′(x)=e-(k1+2k2) x(r0(1-(k1+2k2)x)-e(k1+k2)x(1-k2x)),

    we define lineL(x):=r0(1-(k1+2k2)x) and functionF(x) :=e(k1+k2)x(1-k2x).ThenH′(x)=0 forx≥0 if and only ifL(x)=F(x) forx≥0.

    Since

    (8)

    and

    F″(x)=(k1+k2)(k1-k2-(k1+k2)k2x),

    Then ifx>1/k2,

    which implies

    (k1+k2)x>lnr0,

    and hencex?Ω.

    We next investigate the stability of the positive fixed points.The Jacobian at a positive fixed point has the form of

    Since

    a positive fixed point (x,y) is locally asymptotically stable if

    or

    (9)

    Supposek1

    k1x<1

    (10)

    Then a positive fixed point is locally asymptotically stable if the right inequality in (9) holds,that is

    (k2x-1)b<(2-k2x)(b+y),

    or

    (11)

    provided 1

    On the other hand,ifk2x<1,the right equality in (9) is satisfied.Then a positive fixed point is locally asymptotically stable if the left inequality in (9) holds,that is

    or

    (12)

    Substitutingy=βxe-k2xinto (11) and (12),respectively,we have the results as follows.

    H(x) :=xe-(k1+2k2)x(r0-e(k1+k2)x).

    (13)

    or

    (14)

    We give the following example to demonstrate the results in Theorem 2.

    Example1Choose the following parameters

    a=2.25,β=0.8,k1=0.2,k2=0.3.

    (15)

    4 Releases proportional to the wild mosquito population size

    To have a more optimal and economically effective strategy for releasing sterile mosquitoes in an area where the population size of wild mosquitoes is relatively small,instead of releasing sterile mosquitoes constantly,we may consider to keep closely sampling or surveillance of the wild mosquitoes and let the releases be proportional to the population size of the wild mosquitoes such that the number of releases isB(·)=bywherebis a constant.

    We assume that there is no mating difficulty even as the mosquito population size is low.Then the model dynamics are described by the following system:

    yn+1=βxne-k2xn.

    (16)

    The system becomes,mathematically,the same system as (1).Define the sterile mosquito release threshold asbc:=aβ-1.The trivial fixed point (0,0) locally asymptotically stable ifb>bcand is unstable ifbbcand a unique positive fixed pointE*:=(x*>0,y*>0) with

    (17)

    ifb

    Define the stability threshold for the positive fixed point as

    (18)

    If there exists a unique fixed pointE*,then it is locally asymptotically stable ifb>bs,and is unstable ifb

    Theorem3The trivial fixed point (0,0) for system (16) is locally asymptotically stable ifb>bcand is unstable ifbbcand a unique positive fixed pointE*=(x*,y*),given in (17),ifbbs,and is unstable ifb

    Notice that the stability condition is resulted fromr0/(1+b)

    Example2We use,in this example,the following parameters

    a=40,β=0.8,k1=0.2,k2=0.3,

    (19)

    and the dynamical features are presented in Figure 2.Sincer0=32>e2(k1+k2)/k2=28.03,the positive fixed point in the absence of releases of sterile mosquitoes is unstable.After the releases of sterile mosquitoes,the threshold value of releases isbc=aβ-1=31 and the the stability threshold isbs=0.1416.Whenb=0.13bs,the positive fixed pointE*= (6.1205,0.6979) is locally asymptotically stable as shown in the upper right figure.Withbincreased tob=10,there is a stable positive fixed pointE*= (2.1359,0.2298) which has smaller magnitudesxandycompared to those forb=0.13 andb=1 as shown in the lower left figure.Ifb=32>bc, there exists no positive fixed point,and the origin is asymptotically stable as shown in the lower left figure.

    Figure 2 The parameters are given in (19).The two threshold values arebc=31 andbs=0.1416.Whenb=0.13,there exists a unique positive fixed point,which is unstable as shown in the upper left figure.Forbsbc,there exists no positive fixed point,and the origin is asymptotically stable as shown in the lower left figure.

    5 Proportional releases with saturation

    (20)

    We define an initial sterile mosquitoes release thresholdb0:=aβ-1=r0-1 such that the origin (0,0) is locally asymptotically stable ifb>b0and is unstable ifb

    A positive fixed point (x,y) satisfies

    b+1+y=aβ(1+y) e-(k1+k2)x,

    that is,

    b=(1+βxe-k2x)(r0e-(k1+k2)x-1).

    (21)

    Then we only considerx∈Ω,withΩgiven in (7).

    Define

    Then

    and

    and

    that ifb

    Forb>b0,notice thatf2is independent ofband that asbincreases,the graph of the curve off1(x) moves up.Then there exists a threshold value of releasesbc>b0such that ifb>bc,b=bc,orb0

    (1+βxe-k2x)r0(k1+k2) e-k1 x=β(1-k2x)(r0e-(k1+k2)x-1),

    that is

    (22)

    Notice that the left right hand side of (22) is an increasing function ofx,forx<1/k2,and the right hand side of (22) is a decreasing function ofx,respectively.Hence there exists a unique solutionxc∈[0,1/k2] for (22).Substitutingxcinto (21) then gives the threshold value of releasesbc.

    We then investigate the stability of the positive fixed points.The Jacobian at a positive fixed pointE=(x,y) has the form of

    ThenEis locally asymptotically stable if

    that is,

    or

    (k1-k2)x(1+y)2<((k2-k1)x(1+y)-(1-k2x)y)b.

    (23)

    Thus,it is easy to see thatEis unstable ifk2

    Supposek1

    b(k1-k2+(1-(2k2-k1)x)βe-k2x)<(k2-k1)(1+βxe-k2x),

    (24)

    or

    (25)

    if the denominate is positive,wherexis the component of the positive fixed pointE.ThenEis locally asymptotically ifbs>b,and is unstable ifbs

    We summarize our results as follows.

    Theorem4Supposek1b0and is unstable ifbb0,we define the releases threshold value of sterile mosquitoes as

    bc=(1+βxce-k2 xc)(r0e-(k1+k2) xc-1),

    wherexcis the unique solution of equation (22).Then there exist no,one,or two positive fixed points to system (20),ifb>bc,b=bc,orb0b,wherebsis given in (25),and is unstable ifbs(x*)

    We give an example to demonstrate the existence and stability results for model system (20) as follows.

    Example3Choosing the following parameters

    a=2.25,β=0.8,k1=0.02,k2=0.03,

    6 Concluding remarks

    We introduced the metamorphic stage structure of mosquitoes into dynamical models for the interactive wild and sterile mosquitoes to study the impact of the releases of sterile mosquitoes in this paper.We simplify the models by combing the three aquatic metamorphic stages into one group,called larvae,and assume that the density-dependence,due to intraspecific competition,is only on the larvae.We considered three different strategies for the releases in model systems (6),(16),and (20),respectively.We determined the threshold value of the releases,bc,and the stability threshold value for positive fixed points,bs,for each of the model systems.Ifb>bc,there exists no positive fixed point for all of the three model systems,in which case the wild mosquito population will be wiped out if the origin is stable,or oscillates.Ifbbs.When the positive fixed point is unstable,a period-doubling bifurcation occurs.

    While the biological outcomes from the model systems in this paper are similar to those in [12],particularly as the density-dependence is assumed to be only based on the larvae,as the stage structure is included in the three model systems,the mathematical analysis becomes more challenging.We have managed to obtain fundamental results from our model systems,but some of the mathematical analysis is not complete.Further research is planned in the near future.

    :

    [1] L.Alphey,M.Benedict,R.Bellini,G.G.Clark,D.A.Dame,M.W.Service,S.L.Dobson.Sterile-insect methods for control of mosquito-borne diseases: An analysis[J].Vector-Borne and Zoonotic Diseases,2010,10:295-311.

    [2] A.C.Bartlett,R.T.Staten.Sterile Insect Release Method and other Genetic Control Strategies [M/OL] Radcliffe′s IPM World Textbook,1996,http://ipmworld.umn.edu/chapters/bartlett.htm.

    [3] Wikipedia.Sterile insect technique[J/OL] 2014,http://en.wikipedia.org/wiki/Sterile_insect_technique.

    [4] H.J.Barclay.The sterile insect release method for species with two-stage life cycles [M].Researches on Population Ecology,1980,21:165-180.

    [5] H.J.Barclay.Pest population stability under sterile releases [J].Res.Popul.Ecol.,1982,24:405-416.

    [6] H.J.Barclay.Modeling incomplete sterility in a sterile release program:interactions with other factors [J].Popul Ecol,2001,43:197-206.

    [7] H.J.Barclay.Mathematical models for the use of sterile insects [C]//Sterile Insect Technique.Principles and Practice in Area-Wide Integrated Pest Management,(V.A.Dyck,J.Hendrichs,and A.S.Robinson,Eds.),Heidelberg,Springer,2005:147-174.

    [8] H.J.Barclay,M.Mackuer.The sterile insect release method for pest control:a density dependent model [J].Environ.Entomol.,1980,9:810-817.

    [9] K.R.Fister,M.L.McCarthy,S.F.Oppenheimer,Craig Collins.Optimal control of insects through sterile insect release and habitat modification [J].Math.Biosci.,2013,244:201-212.

    [10] J.C.Floresa.A mathematical model for wild and sterile species in competition: immigration [J].Physica A,2003,328:214-224.

    [11] Liming Cai,Shangbing Ai,Jia Li.Dynamics of mosquitoes populations with different strategies of releasing sterile mosquitoes,(preprint).

    [12] Jia Li,Zhiling Yuan.Modeling of releasing sterile mosquitoes with different strategies,(preprint).

    [13] N.Becker.Mosquitoes and Their Control [M].New York:Kluwer Academic/Plenum,2003.

    [14] C.Dye.Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference [J].Ecological Entomology,1982,7:39-46.

    [15] R.M.Gleiser,J.Urrutia,D.E.Gorla.Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions [J].Entomologia Experimentalis et Applicata,2000,95:135-140.

    [16] M.Otero,H.G.Solari,N.Schweigmann.A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate [J].Bull.Math.Biol.,2006,68:1945-1974.

    [17] Junliang Lu,Jia Li.Dynamics of stage-structured discrete mosquito population models [J].J.Appl.Anal.Compt.,2011,1:53-67.

    [18] Jia Li.Simple stage-structured models for wild and transgenic mosquito populations [J].J.Diff.Eqns.Appl.,2009,17:327-347.

    [19] Jia Li.Malaria model with stage-structured mosquitoes [J].Math.Biol.Eng.,2011,8:753-768.

    [20] Jia Li.Discrete-time models with mosquitoes carrying genetically-modified bacteria [J].Math.Biosci.,2012,240:35-44.

    [21] W.E.Ricker.Stock and recruitment [J].Journal of the Fisheries Research Board of Canada,1954,11:559-623.

    [22] Jia Li.Simple mathematical models for interacting wild and transgenic mosquito populations [J].Math.Biosci.,2004,189:39-59.

    [23] Jia Li. Modeling of mosquitoes with dominant or recessive transgenes and Allee effects [J].Math.Biosci.Eng.,2010,7:101-123.

    亚洲国产欧美日韩在线播放| 无限看片的www在线观看| 成年女人毛片免费观看观看9 | 女人爽到高潮嗷嗷叫在线视频| √禁漫天堂资源中文www| 国产成人影院久久av| 叶爱在线成人免费视频播放| 18禁国产床啪视频网站| 国产一区有黄有色的免费视频| 18禁观看日本| 另类精品久久| 男人爽女人下面视频在线观看| 久久久久网色| 久久精品久久精品一区二区三区| 男女边吃奶边做爰视频| 女人精品久久久久毛片| 亚洲熟女精品中文字幕| 婷婷色麻豆天堂久久| 美女大奶头黄色视频| 天天添夜夜摸| 成人午夜精彩视频在线观看| 丁香六月天网| 精品亚洲乱码少妇综合久久| 伊人久久大香线蕉亚洲五| 久久精品久久久久久久性| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 一个人免费看片子| 丁香六月天网| 国产精品久久久av美女十八| 国产深夜福利视频在线观看| 妹子高潮喷水视频| 欧美成人午夜精品| 老司机在亚洲福利影院| 超碰成人久久| 热re99久久国产66热| 久久 成人 亚洲| 国产成人精品久久二区二区免费| 亚洲 欧美一区二区三区| 精品一区在线观看国产| 午夜激情久久久久久久| 成人三级做爰电影| 成年女人毛片免费观看观看9 | 久久鲁丝午夜福利片| av视频免费观看在线观看| 国产主播在线观看一区二区 | 99热网站在线观看| 精品国产一区二区久久| 欧美日韩福利视频一区二区| 精品熟女少妇八av免费久了| 又大又黄又爽视频免费| 99精品久久久久人妻精品| 又大又黄又爽视频免费| 日本vs欧美在线观看视频| 最黄视频免费看| 99热国产这里只有精品6| 久久性视频一级片| 国产精品国产三级专区第一集| 久久天躁狠狠躁夜夜2o2o | 国产成人a∨麻豆精品| 精品卡一卡二卡四卡免费| 99久久综合免费| 久久精品国产综合久久久| 精品卡一卡二卡四卡免费| 午夜日韩欧美国产| 99国产精品99久久久久| 在线观看免费高清a一片| 真人做人爱边吃奶动态| av在线播放精品| 免费在线观看日本一区| 在线观看免费高清a一片| 精品久久久精品久久久| 亚洲欧美一区二区三区久久| 99九九在线精品视频| 天天躁日日躁夜夜躁夜夜| 2021少妇久久久久久久久久久| 丰满少妇做爰视频| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 婷婷色综合www| 色播在线永久视频| 大片免费播放器 马上看| av国产久精品久网站免费入址| 9191精品国产免费久久| 欧美乱码精品一区二区三区| 大片免费播放器 马上看| 精品高清国产在线一区| 久久国产亚洲av麻豆专区| 精品高清国产在线一区| 亚洲国产欧美网| 一级毛片我不卡| 老司机影院成人| 中文字幕精品免费在线观看视频| 免费日韩欧美在线观看| 99国产精品一区二区三区| 国产片特级美女逼逼视频| 成年人午夜在线观看视频| 久热爱精品视频在线9| 一级黄片播放器| 韩国精品一区二区三区| 亚洲国产看品久久| 热99久久久久精品小说推荐| 久久精品熟女亚洲av麻豆精品| 午夜免费观看性视频| 国产精品久久久人人做人人爽| 国产一卡二卡三卡精品| 色94色欧美一区二区| 久久人妻福利社区极品人妻图片 | 午夜老司机福利片| 亚洲成国产人片在线观看| 国产男人的电影天堂91| 国产男人的电影天堂91| www.精华液| 中文字幕精品免费在线观看视频| 妹子高潮喷水视频| 天天躁夜夜躁狠狠躁躁| 婷婷成人精品国产| 国产亚洲av片在线观看秒播厂| 午夜影院在线不卡| 在线观看人妻少妇| 国产精品麻豆人妻色哟哟久久| 男女无遮挡免费网站观看| 久9热在线精品视频| 国产一区二区三区av在线| 日韩伦理黄色片| av又黄又爽大尺度在线免费看| xxx大片免费视频| 首页视频小说图片口味搜索 | 成年av动漫网址| 精品亚洲成国产av| 国产xxxxx性猛交| 国产日韩欧美在线精品| 亚洲第一青青草原| 国产精品一区二区在线观看99| 色94色欧美一区二区| 免费观看人在逋| 欧美精品人与动牲交sv欧美| 成人手机av| 日本一区二区免费在线视频| 午夜老司机福利片| 啦啦啦在线观看免费高清www| 亚洲精品国产色婷婷电影| 亚洲情色 制服丝袜| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 亚洲精品中文字幕在线视频| 国产精品久久久久久精品古装| 自线自在国产av| 久久久国产欧美日韩av| 精品一区二区三卡| 1024香蕉在线观看| 午夜福利,免费看| 午夜福利在线免费观看网站| 成年美女黄网站色视频大全免费| 1024视频免费在线观看| 后天国语完整版免费观看| 又大又黄又爽视频免费| 精品欧美一区二区三区在线| 国产日韩一区二区三区精品不卡| 久久久久久久精品精品| 男男h啪啪无遮挡| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 999久久久国产精品视频| 欧美精品高潮呻吟av久久| 国产91精品成人一区二区三区 | 在线观看免费高清a一片| 午夜福利影视在线免费观看| 亚洲欧美中文字幕日韩二区| 国产精品一二三区在线看| 亚洲图色成人| 精品亚洲成a人片在线观看| 午夜福利乱码中文字幕| 另类亚洲欧美激情| 欧美日本中文国产一区发布| 国产精品一区二区在线观看99| 在线看a的网站| 99香蕉大伊视频| av又黄又爽大尺度在线免费看| 欧美精品av麻豆av| 少妇猛男粗大的猛烈进出视频| 午夜激情av网站| 欧美 日韩 精品 国产| 亚洲少妇的诱惑av| av欧美777| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 国产亚洲欧美精品永久| 啦啦啦在线免费观看视频4| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月色婷婷综合| 丝瓜视频免费看黄片| 美女午夜性视频免费| 亚洲伊人色综图| av视频免费观看在线观看| 嫩草影视91久久| 无遮挡黄片免费观看| 亚洲,欧美,日韩| 美女脱内裤让男人舔精品视频| 最新的欧美精品一区二区| 国产97色在线日韩免费| 制服人妻中文乱码| av国产精品久久久久影院| 久久精品亚洲熟妇少妇任你| 老汉色∧v一级毛片| 美女中出高潮动态图| 午夜福利,免费看| 99国产精品一区二区蜜桃av | 男的添女的下面高潮视频| 婷婷色麻豆天堂久久| 18禁黄网站禁片午夜丰满| 国产精品 欧美亚洲| 午夜日韩欧美国产| 国产精品国产三级国产专区5o| 成年av动漫网址| kizo精华| 免费高清在线观看日韩| 最新的欧美精品一区二区| 女人精品久久久久毛片| 精品一区二区三区av网在线观看 | 新久久久久国产一级毛片| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久男人| 免费少妇av软件| kizo精华| 亚洲一码二码三码区别大吗| 18禁黄网站禁片午夜丰满| 中文字幕最新亚洲高清| 日韩免费高清中文字幕av| 亚洲av综合色区一区| 午夜免费观看性视频| 免费高清在线观看日韩| 国产黄频视频在线观看| 久久久国产一区二区| 91精品国产国语对白视频| 亚洲欧美激情在线| 国产在线观看jvid| 19禁男女啪啪无遮挡网站| 亚洲九九香蕉| 国产一区二区三区av在线| 十分钟在线观看高清视频www| 男女国产视频网站| 国产精品免费视频内射| 日本欧美视频一区| 精品久久久久久久毛片微露脸 | 青春草视频在线免费观看| 亚洲av日韩精品久久久久久密 | 亚洲精品国产一区二区精华液| 一级毛片我不卡| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 日韩av在线免费看完整版不卡| 99热网站在线观看| 99九九在线精品视频| 丝瓜视频免费看黄片| www.999成人在线观看| 国产黄色免费在线视频| 欧美中文综合在线视频| www日本在线高清视频| 在线观看人妻少妇| 亚洲av日韩精品久久久久久密 | 大片电影免费在线观看免费| 真人做人爱边吃奶动态| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区在线| 欧美亚洲 丝袜 人妻 在线| 国产片内射在线| 亚洲欧美精品综合一区二区三区| 丁香六月天网| 看十八女毛片水多多多| 成人黄色视频免费在线看| 搡老乐熟女国产| 在线 av 中文字幕| 国产精品久久久av美女十八| 一级毛片黄色毛片免费观看视频| 99热国产这里只有精品6| 国产成人av激情在线播放| 97精品久久久久久久久久精品| 成人午夜精彩视频在线观看| 在线看a的网站| 日本wwww免费看| 国产成人a∨麻豆精品| 免费看av在线观看网站| 午夜福利,免费看| 亚洲五月婷婷丁香| 欧美国产精品一级二级三级| 欧美日韩精品网址| 日韩欧美一区视频在线观看| 亚洲九九香蕉| 99热网站在线观看| 精品国产国语对白av| 成年av动漫网址| 日韩熟女老妇一区二区性免费视频| 国产黄频视频在线观看| 国产人伦9x9x在线观看| 在现免费观看毛片| tube8黄色片| 国产熟女欧美一区二区| 大码成人一级视频| 老司机影院成人| av在线app专区| 精品久久久久久久毛片微露脸 | 色94色欧美一区二区| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 女人被躁到高潮嗷嗷叫费观| 19禁男女啪啪无遮挡网站| 美女主播在线视频| 真人做人爱边吃奶动态| 亚洲精品国产av蜜桃| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美精品济南到| 欧美日韩视频高清一区二区三区二| 亚洲三区欧美一区| 欧美人与善性xxx| 七月丁香在线播放| 婷婷色综合www| 少妇精品久久久久久久| 狠狠婷婷综合久久久久久88av| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 少妇 在线观看| 亚洲成人国产一区在线观看 | 老司机在亚洲福利影院| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 午夜久久久在线观看| 下体分泌物呈黄色| 美女中出高潮动态图| 中国美女看黄片| 黄色a级毛片大全视频| 男人舔女人的私密视频| 久久女婷五月综合色啪小说| 午夜老司机福利片| 亚洲 欧美一区二区三区| www日本在线高清视频| 国产男人的电影天堂91| 1024视频免费在线观看| 亚洲精品一二三| 黄色毛片三级朝国网站| 一区二区三区乱码不卡18| 亚洲成人手机| 日韩制服丝袜自拍偷拍| 五月开心婷婷网| 久久久久久亚洲精品国产蜜桃av| 亚洲自偷自拍图片 自拍| 美女午夜性视频免费| 国产精品 国内视频| 欧美精品av麻豆av| 婷婷成人精品国产| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 午夜福利一区二区在线看| 欧美日韩成人在线一区二区| 日日爽夜夜爽网站| 日本五十路高清| 国产女主播在线喷水免费视频网站| 国产精品 欧美亚洲| 亚洲熟女毛片儿| 五月开心婷婷网| 成人国产av品久久久| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 日韩制服丝袜自拍偷拍| 免费女性裸体啪啪无遮挡网站| 欧美国产精品一级二级三级| 婷婷色av中文字幕| www.av在线官网国产| 久久久久视频综合| 九色亚洲精品在线播放| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 人妻一区二区av| 操出白浆在线播放| 最近手机中文字幕大全| 午夜福利一区二区在线看| 波多野结衣一区麻豆| 天天躁日日躁夜夜躁夜夜| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成网站在线观看播放| 男人操女人黄网站| netflix在线观看网站| 精品视频人人做人人爽| 成人手机av| 99久久综合免费| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 亚洲黑人精品在线| 中文字幕av电影在线播放| videos熟女内射| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 久久免费观看电影| 亚洲精品久久午夜乱码| 男女午夜视频在线观看| 欧美在线一区亚洲| 中文字幕av电影在线播放| 青春草视频在线免费观看| 青草久久国产| 一级毛片我不卡| 欧美激情 高清一区二区三区| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 日韩中文字幕视频在线看片| 国产精品一二三区在线看| 老司机影院毛片| 精品第一国产精品| 亚洲成人免费av在线播放| 国产成人影院久久av| 色播在线永久视频| 女人高潮潮喷娇喘18禁视频| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 少妇被粗大的猛进出69影院| 日本色播在线视频| 不卡av一区二区三区| 亚洲久久久国产精品| 欧美黄色淫秽网站| 天堂俺去俺来也www色官网| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 亚洲av在线观看美女高潮| a级毛片在线看网站| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 欧美黑人欧美精品刺激| 国产成人一区二区在线| 在线精品无人区一区二区三| 久久久久视频综合| 三上悠亚av全集在线观看| 久久免费观看电影| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 久久人人爽人人片av| 亚洲成色77777| 亚洲精品国产色婷婷电影| 人人妻,人人澡人人爽秒播 | 美女扒开内裤让男人捅视频| 中文字幕亚洲精品专区| 精品福利永久在线观看| 丝袜美足系列| 亚洲免费av在线视频| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av | 最近手机中文字幕大全| 少妇被粗大的猛进出69影院| 一区二区av电影网| 性色av一级| 欧美xxⅹ黑人| 啦啦啦在线免费观看视频4| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 你懂的网址亚洲精品在线观看| 一区二区三区四区激情视频| 赤兔流量卡办理| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 成年美女黄网站色视频大全免费| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 国产男女内射视频| 国产在线一区二区三区精| 国产精品一国产av| 一边摸一边抽搐一进一出视频| 久久人妻福利社区极品人妻图片 | 亚洲,欧美,日韩| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 性少妇av在线| 婷婷成人精品国产| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 性色av乱码一区二区三区2| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精| 日韩av免费高清视频| 日韩中文字幕视频在线看片| 国产精品久久久久成人av| 90打野战视频偷拍视频| 人人澡人人妻人| 久久天堂一区二区三区四区| 老汉色∧v一级毛片| 国产成人影院久久av| 九色亚洲精品在线播放| cao死你这个sao货| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸 | 国产精品国产三级专区第一集| 五月天丁香电影| 免费观看av网站的网址| 高清不卡的av网站| 99re6热这里在线精品视频| 国产精品一区二区免费欧美 | 亚洲成人国产一区在线观看 | 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| videos熟女内射| 国产极品粉嫩免费观看在线| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 老司机在亚洲福利影院| 黄频高清免费视频| 真人做人爱边吃奶动态| 亚洲精品美女久久久久99蜜臀 | 欧美97在线视频| 桃花免费在线播放| 久久久国产欧美日韩av| 七月丁香在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| 国产色视频综合| 亚洲中文字幕日韩| 欧美亚洲 丝袜 人妻 在线| 精品少妇一区二区三区视频日本电影| 男的添女的下面高潮视频| 免费在线观看视频国产中文字幕亚洲 | 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 中文字幕色久视频| 国产真人三级小视频在线观看| 成人国语在线视频| 97在线人人人人妻| 一区二区av电影网| www.自偷自拍.com| 亚洲伊人久久精品综合| 亚洲伊人色综图| 精品久久久久久电影网| 99久久人妻综合| 操美女的视频在线观看| 涩涩av久久男人的天堂| e午夜精品久久久久久久| 日本91视频免费播放| 婷婷丁香在线五月| 日韩电影二区| 婷婷丁香在线五月| 日韩电影二区| www.熟女人妻精品国产| 亚洲人成网站在线观看播放| 久久久久精品国产欧美久久久 | 国产亚洲一区二区精品| 超色免费av| 性色av一级| 大香蕉久久成人网| 国产成人欧美| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 在线观看免费午夜福利视频| 久久久久久久国产电影| 亚洲精品自拍成人| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 悠悠久久av| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 久久这里只有精品19| 国产野战对白在线观看| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| 激情五月婷婷亚洲| 国产成人一区二区在线| 啦啦啦中文免费视频观看日本| 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 久久99一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| 国产精品一国产av| 国产爽快片一区二区三区| 久久这里只有精品19| 新久久久久国产一级毛片| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 两个人看的免费小视频| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 国产免费现黄频在线看| 亚洲精品国产av成人精品| a级毛片在线看网站| 精品国产超薄肉色丝袜足j| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品国产精品| 精品欧美一区二区三区在线| 国产av一区二区精品久久| 黑人欧美特级aaaaaa片|