• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local integrable differential systems and their normal forms

    2014-03-20 08:25:36ShiliangWengXiangZhang

    Shiliang Weng, Xiang Zhang

    (Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China)

    1 Introduction

    The study of the integrability of differential systems can be traced back to Newton.The theory of integrability is very useful in the dynamical analysis of differential systems,because lots of physical and mechanical systems do have invariants[1-7].How to recognize and find them is a difficult task.This paper mainly introduces some progress in recent years on local integrability.In section 2 we survey the results on the existence of local first integrals via resonance,and the equivalent characterization on local analytic integrability and the existence of analytic normalization of analytically integrable differential systems to their normal forms.In section 3 we present a new result on the existence of local first integrals for differential systems around nonhyperbolic singularities with a pair of pure imaginary eigenvalues.In section 4 we pose some open problems related to the local integrability of differential systems for further study.

    2 A survey on the local integrability of analytic differential systems

    This section will be separated into two parts.The first one is on the existence and the number of functionally independent local first integrals of analytic differential systems around a singularity.The second one is on the existence of analytic normalization of analytical integrable differential systems around a singularity or a periodic orbit.

    2.1 Number of functionally independent local first integrals

    For the analytic differential system in (n,0)

    (1)

    the existence of first integrals can be used to reduce the dimension of the system.And so it becomes possibly easier to study the dynamics of the system.A functionH(x) is a first integral of system(1) if

    ?it is continuous and is defined in a full Lebesgue measure subset Ω1of Ω,

    ?it is not locally constant on any positive Lebesgue measure subset of Ω1,and

    ?H(x) is constant along each orbit of system(1) in Ω1.

    System(1) isCrcompletely integrable,if it hasn-1 functionally independentCrfirst integrals in Ω with 1≤r≤k,wherek∈∪{∞,ω}.Recall thatCr(Ω) is the set of functions whose all derivatives until orderrare continuous in Ω,and thatkfunctionsH1(x),…,Hk(x) are functionally independent in Ω if their gradients ▽H1,…,▽Hkhave rankkin a full Lebesgue measure subset of Ω.

    A differentiable functionF(x) is a first integral of system(1) if

    〈f(x),?xF(x)〉≡0,x∈(n,0),

    where 〈·,·〉 denotes the inner product of two vectors inn, and ?xF=(?x1F,…,?xnF) is the gradient ofFand ?xiF=?F/?xi.IfF(x) is a first integral of system(1) and it is

    ? an analytic function,thenF(x) is called an analytic first integral of system(1),

    ? a formal series,thenF(x) is called a formal first integral of system(1),

    ? a polynomial,thenF(x) is called a polynomial first integral of system(1),

    ? a rational function,thenF(x) is called a rational first integral of system(1),

    ? a meromorphic function,thenF(x) is called a meromorphic first integral of system(1),

    ? a ratio of two formal series,thenF(x) is called a generalized meromorphic first integral of system(1).

    Denote byA=Df(0) the Jacobian matrix off(x) atx=0.Letλ=(λ1,…,λn) be then-tuple of eigenvalues ofA.We say that the eigenvaluesλsatisfy a+-resonant condition if

    λ,k〉=0, for somek∈(+)n,k≠ 0,

    〈λ,k〉=0, for somek∈n,k≠ 0,

    Poincaré[8]studied the relation between the existence of analytic first integrals and resonance,which can be stated as the following classical result (for a proof,see for instance[9]).

    PoincarétheoremIIf the eigenvaluesλofAdo not satisfy any+-resonant conditions,then system(1) has no analytic first integrals in (n,0).

    In 2003 Li,Llibre and Zhang[10]extended the Poincaré′s result to the case thatλadmit one zero eigenvalue and the others are not+-resonant.

    Theorem1Assume that the eigenvaluesλ=(λ1,…,λn) ofAsatisfy

    The following statements hold.

    (a) Forn>2, system(1) has a formal first integral in a neighborhood ofx=0 if and only if the singularityx=0 is not isolated.Specially,if the singularityx=0 is isolated, system(1) has no analytic first integrals in any neighborhood ofx=0.

    (b) Forn=2,system(1) has an analytic first integral in a neighborhood ofx=0 if and only if the singularityx=0 is not isolated.

    Theorem 1 was further extended to the next result (see[10,Theorem 3]).

    Theorem2Assume that system(1) has 0

    Then any formal first integral of system(1) is a formal series ofH1,…,Hk.

    This last result was extended by Zhang ([11,Theorem 1]) to the next one(see also Kwek,Li and Shi[12,TheoremA],which provided a proof of Theorem 3 with the restriction thatAis diagonalizable).

    Theorem3Assume that the analytic differential system(1) has 0

    Here the functional independence ofH1,…,Hkis in the sense that their gradients at the origin is linearly independent.

    In 2008 Chen,Yi and Zhang[13]provided an upper bound on the number of functionally independent analytic first integrals for quasiperiodic differential systems.Consider the quasiperiodic vector field

    (2)

    with Ω=O(‖x‖),andf=O(‖x‖2) a vector valued analytic function periodic inθof period 2π.Denote by Xθ,xthe vector field associated to system(2),i.e.

    Xθ,x=ω+Ω(θ,x),?θ〉+Ax+f(θ,x), ?x〉.

    A nonconstant functionH(θ,x) is an analytic first integral(or formal first integral) of the vector field Xθ,x,ifHis an analytic function(or a formal series) and is periodic inθof period 2π,and the derivative ofHalong the vector field Xθ,xis identical zero.

    Letλ=(λ1,…,λn) be then-tuple of eigenvalues of the matrixA,and letγbe the rank of the set

    R:={(k,l)|ik,ω〉+l,λ〉=0,k∈m,l∈

    Theorem4The number of functionally independent analytic first integrals of the analytic vector field (2) in a neighborhood of the constat solutionx=0 is less than or equal toγ.

    We note thatγis the minimal upper bound that the vector field (2) can have for functionally independent analytic first integrals.Ifγ=0,Theorem 4 is simply the Poincaré theorem I.

    The above results are on the existence of functionally independent analytic or formal first integrals.Shi[14]in 2007 extended the Poicaré theorem I to nonexistence of rational first integrals.He proved that if system(1) has a rational first integral,then the eigenvaluesλofAsatisfy a-resonant condition.

    The next result,due to Cong,Llibre and Zhang[15],extended the Shi′s result to study the existence of more than one functionally independent rational first integrals.

    Theorem5Assume that the differential system(1) satisfiesf(0)=0 and letλ=(λ1,…,λn) be the eigenvalues ofDf(0).Then the number of functionally independent generalized meromorphic first integrals of system(1) in (n,0) is at most the dimension of the minimal vector subspace ofncontaining the set {k∈n∶k,λ〉=0,k≠ 0}.

    選取CBOE的新興市場ETF波動率指數(shù)作為衡量原油金融屬性的指標(biāo),代碼VXEEM,該指標(biāo)于2011年3月16日開始發(fā)布。VXEEM是采用CBOE的VIX計算方法對跟蹤新興市場ETF的期權(quán)計算出來,反映MSCI新興市場指數(shù)基金的隱含波動率(見圖9)。股市是經(jīng)濟的晴雨表,相較于滯后公布的許多宏觀數(shù)據(jù),股市的波動率直接反映了投資者對于未來宏觀經(jīng)濟的信心。

    Theorem 5 includes all the results mentioned above as special ones.The proof of Theorem 5 is different from the ones mentioned above.In fact the methods for proving other results cannot be adapted to the proof of Theorem 5,which contains some new ideas.

    SketchproofofTheorem5The proof of Theorem 5 needs the equivalent characterization of algebraic independence and functional independence.The functionsF1(x),…,Fk(x)∈(x) the field of rational functions inxare algebraically dependent if there exists a complex polynomialPofkvariables such thatP(F1(x),…,Fk(x))≡0,see for instance [16] and[17,p.152]).

    Lemma6The functionsF1(x),…,Fk(x)∈(x) are algebraically independent if and only if they are functionally independent.

    Next we need the characterization of functionally independent generalized meromorphic first integrals via their lowest order.For an analytic or a polynomial functionF(x) in (n,0),we denote byF0(x) its lowest degree homogeneous term.For a rational or a generalized rational functionF(x)=G(x)/H(x) in (n,0),we denote byF0(x) the rational functionG0(x)/H0(x).Expand the analytic functionsG(x) andH(x) as

    whereGi(x) andHi(x) are homogeneous polynomials of degrees degG0(x)+iand degH0(x)+irespectively,then

    (3)

    whereAi(x) andBi(x) are homogeneous polynomials.We call degAi(x)-degBi(x) the degree ofAi(x)/Bi(x),andG0(x)/H0(x) the lowest degree term ofF(x).We also denote

    d(G)=degG0(x),d(F)=d(G)-d(H)=degG0(x)-degH0(x),

    and calld(F) the lowest degree ofF.

    Lemma7[15]Let

    are functionally independent generalized rational functions,and that

    are functionally independent rational functions.

    Now we characterize rational first integrals of system(1) via their lowest order.A rational monomial is the ratio of two monomials.The rational monomialxk/xlwithk,l∈ (+)nis resonant if 〈λ,k-l〉=0.A rational function is homogeneous if its denominator and numerator are both homogeneous polynomials.A rational homogeneous function is resonant if the ratio of any two elements in the set of all its monomials in both denominator and numerator is a resonant rational monomial.Setf(x)=Ax+g(x) withg(x)=O(x2),and its associated vector field is written

    X=X1+Xh:=〈Ax,?x〉+〈g(x),?x〉.

    Lemma8IfF(x)=G(x)/H(x) is a generalized rational first integral of the vector field X defined by(1),thenF0(x)=G0(x)/H0(x) is a resonant rational homogeneous first integral of the linear vector field X1,where we assume,without loss of generality, thatF0is non-constant.

    We have enough preparation to prove Theorem 5.Let

    be themfunctionally independent generalized rational first integrals of X.By Lemma 7 we can assume that

    2.2 Analytic normalization of analytical integrable differential systems

    The study on the existence of analytic normalizations for analytic integrable vector fields to their normal forms was started from Poincaré[8].

    Consider system(1),letλ=(λ1,…,λn) be then-tuple of eigenvalues of the matrixA.Set

    Rλ:={m=(m1,…,mn)∈

    We call Rλthe resonant set ofλ,and its elements resonant lattices.Denote byrλthe number of-linearly independent vectors in Rλ.Thenrλ≤n-1 provided thatλ≠ 0.

    A formal or analytic differential system

    (4)

    withg(y)=O(|y|2) is a Poincaré normal form of system(1) if system(4) is in normal form,and there is a change of variables tangent to identityy=Ψ(x)=x+higher order terms transforming system(1) to (4).The transformationy=Ψ(x) is called a normalization.If the transformation contains only nonresonant terms,it is called a distinguished normalization.Correspondingly,the normal form is called a distinguished normal form.Recall that a monomialxmejin the transformation is nonresonant if 〈m,λ〉≠ 0.

    The Poincaré normal form theorem showed that any analytic or formal differential system(1) is formally equivalent to its Poincaré normal form.To characterize when a normalization is convergent,it is a difficult problem.One of the Poincaré classical results characterizes the planar analytic nondegenerate center via the existence of analytic normalization.

    PoincarétheoremⅡ[8]A planar analytic differential system(1) has the origin as a nondegenerate center if and only if it is analytically equivalent(via probably complex transformation of variables and time rescaling) to

    (5)

    whereq(u) is an analytic function inustarting from the terms of degree no less than 1.

    By the Poincaré theorem Ⅱ it follows that

    Theorem9Assume that the origin of a planar analytic differential system(1) is nondegenerate.Then the origin is an isochronous center if and only if it is analytically equivalent to

    withcbeing a nonzero constant.

    This last theorem indicates that a degenerate center of a planar analytic differential system cannot be isochronous.

    For planar Hamiltonian systems, Moser[18]obtained a similar result.He showed that a planar real analytic Hamiltonian system having the origin as a hyperbolic saddle can be reduced to system(5) by a real analytic area-preserving transformation of variables.

    Poincaré and Moser′s results on planar analytic differential systems was extended to higher dimensional differential systems by Zhang[19-20].

    Theorem10Assume thatn≥ 2 andλ≠ 0,i.e.Ahas at least one eigenvalues not equal to zero.Then system(1) hasn-1 functionally independent analytic first integrals in (n,0) if and only if the-linearly independent resonant set hasrλ=n-1 elements,and system(1) is analytically equivalent to its distinguished normal form

    (6)

    by a near identity analytic normalization,whereg(y)=o(1) is an analytic function ofymwithm∈Rλand (m1,…,mn)=1.

    Recently this last result was extended to a neighborhood of a periodic orbit,see[21].Consider the analytic differential system

    (7)

    where Ω is an open subset ofnandf(x)∈Cω(Ω).Assume that system(7) has a periodic orbit,sayingΓ,located in the region Ω.We say that system(7) is analytically integrable in a neighborhood ofΓ,if it hasn-1 functionally independent analytic first integrals defined in the neighborhood ofΓ.

    Letx=φ(t) be an expression ofΓwith periodT.Thenφ(t) is analytic on.After the translationX=x-φ(t),system(7) can be written

    (8)

    withA(t) analytic and periodic intof periodT,andg(X,t) analytic inXandtand periodic intof periodT.Furthermore,it follows from the Floquet theory[22]that there is a change of coordinatesX=Q(t)YwithQ(t) invertible,analytic and periodic of periodT,which transforms system(8) into

    (9)

    whereAis a constant matrix (real or complex),andh=O(|Y|2) is analytic in its variables and periodic intof periodT.For convenience we will also use the variablexto replaceYin (9).From[22] the periodic orbit always has the characteristic multiplier 1,and soAhas always the eigenvalue 0.

    For the analytic functionh(x,t) periodic int,expanding it in Taylor series inxand Fourier series intwe have

    ik+〈l,λ〉-λj=0.

    System(9) is in the Poincaré-Dulac normal fom ifh(x,t) contains only resonant pseudomonomials.We note that the Poincaré-Dulac normal form defined here for periodic differential systems is an extended version of the classical one for autonomous differential systems.System(9) is formally equivalent to its Poincaré-Dulac normal form if there exists a near identity transformation

    x=y+Φ(y,t),

    (10)

    withΦ(y,t)=O(|y|2) a formal series inyand periodic int,which sends (9) to the Poincaré-Dulac normal form

    (11)

    IfΦ(y,t) contains only non-resonant pseudomonomials,we say that system(9) is analytically equivalent to its distinguished normal form.A pseudomonomial in a transformationxleiktejis nonresonant ifik+〈l,λ〉≠0.The transformation(10) is called distinguished normalization.We should take care of the difference between the resonances of the pseudomonomials in a vector field and in a transformation.

    The main results in[21] is the following one.

    Theorem11Assume that system(7) is analytic and has a periodic orbit.If system(7) is analytically integrable in a neighborhood of the periodic orbit, then the system is analytically equivalent to its distinguished normal form in a neighborhood of the periodic orbit.

    The proof of Theorem 11 explored the essential properties that the characteristic exponents of periodic orbits of analytically integrable differential system satisfy.

    Corollary12[21]If the analytic differential system(7) hasn-1 functionally independent analytic or formal first integrals around a periodic orbit,then the characteristic exponents of the periodic orbit satisfy

    λ1=υ1i,…,λn-1=υn-1i,λn=υni,υj∈.

    Now we present a sketch proof of Theorem 11.

    AsketchproofofTheorem11The proof follows from a series lemmas.

    The first one is on the existence of formal normal norm.

    Lemma13The analytic periodic differential system(9) is formally equivalent to its distinguished normal form.

    The second one is on first integrals under the transformation.

    Lemma14Assume that system(9) has an analytic or a formal first integralH(x,t) which is periodic intof periodTand that system(11) is the distinguished normal form of system(9) via the transformation(10).The following statements hold.

    The third one is on the nonresonant eigenvalues ofAfor analytically integrable differential system(9).

    Lemma15If system(9) hasn-1 functionally independent analytic or formal first integrals,then there exists anε>0 such that for allik+〈m,λ〉-λi≠0,k∈,have

    |ik+〈m,λ〉-λi|>ε.

    Using these three lemmas and the expressions of normal form systems and of the transformations,by some careful estimations we can get a proof of Theorem 11,see[21] for more details.

    3 First integrals of differential systems near a nonhyperbolic singularity

    In this section we present a new result on equivalent characterization of the existence of first integrals of system(1) near the origin with a pair of pure imaginary eigenvalues.

    Consider system (1),recall thatλare then-tuple of eigenvalues ofA,and that Rλis the resonant set defined in the subsection 2.2.LetL±be the invariant subspaces of the linear vector fieldAxthat correspond to the parts of the spectrum in the closed left and the closed right half planes of,respectively.ThenLc=L+∩L-is the invariant space corresponding to the part of the spectrum lying on the imaginary axis.Let Y be the Poincaré normal form of the vector field X associated to system(1).Since the Lie bracket [X1s,Y]=0,we get thatL±andLcare(formally) invariant for the(formal) vector field Y.

    If dimLc=2 and it is associated to a pair of pure imaginary eigenvalues,then the equation corresponding to the vector field Yc=Y|Lcand expressed in complex coordinates is of the form

    where ±ωiis the spectrum of X1s|Lcandgis the formal complex-valued series of one variable without free term.

    The exceptional set n consists of all differential systems of form(1) for which Reg=0.This definition was first given by Belitskii[23].

    We have the following result.

    Theorem16Assume thatλcontain a pair of pure imaginary eigenvalues,saying ±i,and Rλis one dimensional in.Then system(1) has an analytic or a formal first integral around the origin if and only if system(1) belongs to n.

    ProofLetλ=(i,-i,λ3,…,λn).By the assumption we have that eachλjforj≥ 3 is neither pure imaginary nor zero.From the Poincaré normal form theorem system (1) is transformed into its normal form system

    (12)

    via a near identity transformationx=Φ(u,v,w)=(u,v,z)+φ(u,v,w),where we have used the conjugate complex coordinates instead of the pairs of real ones which correspond to pairs of conjugate eigenvalues,w=uv,z=(z3,…,zn)T,whereTmeans the transpose of a matrix,and

    whereσjforj∈{3,,…,n-1} is either 1 or 0 becauseAis in the Jordan normal form,gj(w,z) is linear inzand allziingjhave the same associated eigenvalues aszj.This last fact is from the definition of resonance.

    (u,v,z)=Φ-1(x)=(Ψ1(x),Ψ2(x),Ψ3(x),…,Ψn).

    Then Ψ1(x)Ψ2(x) is a first integral of system (1).We have completed the proof of the sufficient part and consequently the theorem.

    4 Open questions on local integrability

    In the local theory of integrability there remains lots of unsolved open problems.We list part of them for readers′s further consideration.

    In Theorem 11 we obtained the existence of analytic normalization of analytic integrable differential system near a periodic orbit,but we cannot get the exact expressions.

    Openproblem1What is the simplest normal form of analytic integrable differential system near a periodic orbit?

    In all the previous results there is a basic assumption that the eigenvalues ofAare not all zero.

    Openproblem2If all eigenvalues ofAvanish,what kinds of analytically integrable differential systems are locally analytically equivalent to its normal form?

    Of course,the normal form mentioned in open problem 2 is not in the Poincaré normal form because it is trivial now.How to present a new notion and how to deform the original systems such that we can consider its Poincaré normal norm.

    All the above results are on a single vector field.If we have a set of linearly independent vector fields,how to study their simultaneously normal forms and the convergence of the normalization.Zung[24]studied this problem by a geometric method.His results are summarized in the following theorem.

    i) The vector fieldsX1=X,X2,…,Xmcommute pairwise,i.e.

    [Xi,Xj]=0 ?i,j=1,…,m,

    and they are linearly independent almost everywhere,i.e.

    X1∧…∧Xm≠0.

    ii) The functionsf1,…,fn-mare common first integrals forX1,…,Xn-m,i.e.

    Xi(fj)=0, ?i=1,…,m;j=1,…,n-m,

    and they are functionally independent almost everywhere,i.e.

    df1∧…∧dfn-m≠ 0.

    This theorem was proved by torus action.And it does not present an explicit expression of the normal form.Based on these facts we have the next open problem.

    Openproblem3Are there analytic proofs to Theorem 17? What is the exact expression of the normal form vector field ofXin Theorem 17?

    :

    [1] A. Goriely.Integrability,partial integrability,and nonintegrability for systems of ordinary differential equations[J].J.Math.Phys.,1996,37:1871-1893.

    [2] J. Llibre.Integrability of polynomial differential systems,Handbook of Differential Equations,Ordinary Differential Equations,Eds. A. Caada,P. Drabek and A. Fonda[M].Elsevier,2004:437-533.

    [3] M. J. Prelle,M. F. Singer.Elementary first integrals of differential equations[J].Trans. Amer. Math. Soc.,1983,279:215-229.

    [4] M. F. Singer.Liouvillian first integrals of differential equations[J].Trans. Amer. Math. Soc.,1992,333:673-688.

    [5] H. Yoshida.Necessary condition for the existence of algebraic first integrals.I Kowalevski′s exponents[J].Celestial Mechanics,1983,31:363-379.

    [6] H. Yoshida.Necessary condition for the existence of algebraic first integrals.II:condition for algebraic integrability[J].Celestial Mechanics,1983,31:381-399.

    [7] S. L. Ziglin.Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics I[J].Functional Anal. Appl.,1983,16:181-189.

    [8] H. Poincaré.Sur l′intégration des équations différentielles du premier order et du premier degré Ⅰ and Ⅱ[J].Rendiconti del circolo matematico di Palermo,1891,5:161-191; 1897,11:193-239.

    [9] S. D. Furta.On non-integrability of general systems of differential equations[J].Z. angew Math. Phys.,1996,47:112-131.

    [10] W. Li,J. Llibre,X. Zhang.Local first integrals of differential systems and diffeomorphisms[J].Z. angew Math. Phys.,2003,54:235-255.

    [11] X. Zhang.Local first integrals for systems of differential equations[J].J. Phys. A,2003,36:12243-12253.

    [12] K. H. Kwek,Y. Li,S. Shi.Partial integrability for general nonlinear systems[J].Z. Angew Math. Phys.,2003,54:26-47.

    [13] J. Chen,Y. Yi,X. Zhang.First integrals and normal forms for germs of analytic vector fields[J].J. Differential Equations,2008,245:1167-1184.

    [14] S. Shi.On the nonexistence of rational first integrals for nonlinear systems and semiquasihomogeneous systems[J].J. Math. Anal. Appl.,2007,335:125-134.

    [15] W. Cong,J. Llibre J.,X. Zhang.Generalized rational first integrals of analytic differential systems[J].J. Differential Equations,2011,251:2770-2788.

    [16] A. Baider,R. C. Churchill,D. L. Rod,et al.On the infinitesimal geometry of integrable systems[R].Rhode Island:Fields Institute Communications 7,American Mathematical Society,Providence,1996.

    [17] W. Fulton.Algebraic Curves:An Introduction to Algebraic Geometry[M].London:The Benjamin/Cummings Publishing Com Inc,1978.

    [18] J. Moser.The analytic invariants of an area-preserving mapping near a hyperbolic fixed point[J].Comm. Pure Appl. Math.,1956,9:673-692.

    [19] X. Zhang.Analytic normalization of analytic integrable systems and the embedding Flows[J].Differential Equations,2008,244:1080-1092.

    [20] X. Zhang.Analytic integrable systems:Analytic normalization and embedding flows[J].Differential Equations,2013,254:3000-3022.

    [21] K. S. Wu,X. Zhang.Analytic normalization of analytically integrable differential systems near a periodic orbit[J].Differential Equations,2014,256:3552-3567.

    [22] J. Guckenheimer,P. Holmes.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,2nd Ed[M].New York:Springer-Verlag,2002.

    [23] G. R. Belitskii.Smooth equivalence of germs of vector fields with one zero or a pair of purely imaginary eigenvalues[J].Funct. Anal. Appl.,1986,20(4):253-259.

    [24] N. T. Zung.Convergence versus integrability in Poincaré-Dulac normal form[J].Math. Res. Lett.,2002,9:217-228.

    天堂中文最新版在线下载| 久久久久精品人妻al黑| 日韩,欧美,国产一区二区三区| 亚洲四区av| 国产片特级美女逼逼视频| 一区二区三区乱码不卡18| 亚洲自偷自拍图片 自拍| 欧美国产精品va在线观看不卡| 亚洲四区av| 最近手机中文字幕大全| 下体分泌物呈黄色| 老司机在亚洲福利影院| 青春草国产在线视频| 性色av一级| 最近2019中文字幕mv第一页| 国产精品一二三区在线看| 婷婷色av中文字幕| 伊人久久大香线蕉亚洲五| av在线app专区| 午夜免费男女啪啪视频观看| 伦理电影大哥的女人| 久久久久久久久久久久大奶| 成人国语在线视频| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区| 国产福利在线免费观看视频| av网站在线播放免费| 亚洲四区av| tube8黄色片| 香蕉丝袜av| 国产成人91sexporn| 在线观看免费高清a一片| 在线观看www视频免费| 欧美av亚洲av综合av国产av | 夫妻性生交免费视频一级片| 国产免费现黄频在线看| 天天添夜夜摸| 久久99一区二区三区| 亚洲精品aⅴ在线观看| 成人黄色视频免费在线看| 在线观看三级黄色| 中国国产av一级| 美国免费a级毛片| 国产乱人偷精品视频| 成人免费观看视频高清| 99热网站在线观看| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 亚洲一码二码三码区别大吗| 欧美另类一区| 丰满饥渴人妻一区二区三| 久久天堂一区二区三区四区| 日本色播在线视频| 亚洲国产欧美网| 嫩草影视91久久| 啦啦啦 在线观看视频| 哪个播放器可以免费观看大片| 两个人看的免费小视频| 亚洲美女搞黄在线观看| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 女人高潮潮喷娇喘18禁视频| 欧美激情高清一区二区三区 | 赤兔流量卡办理| 久久久亚洲精品成人影院| 欧美国产精品一级二级三级| 久久久久精品性色| 午夜福利,免费看| 国产精品无大码| 观看美女的网站| 国产精品久久久久久精品古装| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| av国产久精品久网站免费入址| 人人妻,人人澡人人爽秒播 | 久久人妻熟女aⅴ| 亚洲av国产av综合av卡| 日韩伦理黄色片| 黑人欧美特级aaaaaa片| av线在线观看网站| 国产福利在线免费观看视频| 两个人看的免费小视频| 十八禁高潮呻吟视频| 精品国产露脸久久av麻豆| 一本—道久久a久久精品蜜桃钙片| 无限看片的www在线观看| 亚洲国产毛片av蜜桃av| 亚洲精品视频女| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲七黄色美女视频| 日韩av免费高清视频| 久久久久精品性色| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 国产精品久久久久成人av| 搡老岳熟女国产| 大话2 男鬼变身卡| 国产精品免费大片| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 久久av网站| 天天操日日干夜夜撸| 久久精品久久久久久噜噜老黄| 国产精品三级大全| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 男人爽女人下面视频在线观看| 久热这里只有精品99| 视频在线观看一区二区三区| 国产成人a∨麻豆精品| 另类精品久久| 亚洲精品久久成人aⅴ小说| 久久久国产精品麻豆| 七月丁香在线播放| 亚洲精品第二区| 18禁国产床啪视频网站| 亚洲av男天堂| 亚洲精品第二区| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 久久精品国产综合久久久| 丁香六月天网| 一区二区三区精品91| 男女国产视频网站| 亚洲国产精品成人久久小说| 捣出白浆h1v1| 亚洲av福利一区| 男人爽女人下面视频在线观看| 久久精品aⅴ一区二区三区四区| 18在线观看网站| 观看美女的网站| 老熟女久久久| 最新的欧美精品一区二区| 久久青草综合色| 国产乱人偷精品视频| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 秋霞伦理黄片| 91国产中文字幕| 丝袜美足系列| 久久毛片免费看一区二区三区| 国产一区二区三区av在线| 嫩草影院入口| avwww免费| 中文欧美无线码| 久久韩国三级中文字幕| 80岁老熟妇乱子伦牲交| 国产一区二区三区av在线| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 18禁国产床啪视频网站| 又大又爽又粗| 亚洲综合精品二区| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 97人妻天天添夜夜摸| 中文字幕人妻丝袜一区二区 | h视频一区二区三区| 亚洲美女黄色视频免费看| 丝袜美足系列| a级片在线免费高清观看视频| 日韩精品有码人妻一区| 丝袜脚勾引网站| 深夜精品福利| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| av不卡在线播放| 国产乱人偷精品视频| 人成视频在线观看免费观看| 国产成人a∨麻豆精品| 精品视频人人做人人爽| 日本vs欧美在线观看视频| 卡戴珊不雅视频在线播放| 天堂俺去俺来也www色官网| 国产一区二区三区综合在线观看| 免费av中文字幕在线| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 精品一区二区免费观看| 久久人人爽人人片av| 国产成人精品在线电影| 国产精品三级大全| 亚洲成人免费av在线播放| av在线观看视频网站免费| 99九九在线精品视频| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 亚洲三区欧美一区| 天天操日日干夜夜撸| 丁香六月欧美| 亚洲精品一二三| 操出白浆在线播放| 精品卡一卡二卡四卡免费| 另类精品久久| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费| 啦啦啦视频在线资源免费观看| 国产精品香港三级国产av潘金莲 | 国产99久久九九免费精品| 精品国产一区二区三区四区第35| 色婷婷av一区二区三区视频| 飞空精品影院首页| 亚洲精品视频女| 精品久久久精品久久久| 伦理电影大哥的女人| 男女高潮啪啪啪动态图| 免费少妇av软件| 国产精品无大码| 老司机影院成人| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 熟妇人妻不卡中文字幕| 亚洲精品久久久久久婷婷小说| 男男h啪啪无遮挡| 在线观看人妻少妇| 叶爱在线成人免费视频播放| 美女主播在线视频| 国产99久久九九免费精品| 久久久国产欧美日韩av| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 狠狠婷婷综合久久久久久88av| 久久人人爽av亚洲精品天堂| h视频一区二区三区| 亚洲国产av影院在线观看| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 一区二区三区四区激情视频| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站 | videosex国产| 国产一区二区 视频在线| 巨乳人妻的诱惑在线观看| 最黄视频免费看| 97人妻天天添夜夜摸| 亚洲成人av在线免费| 黄色怎么调成土黄色| avwww免费| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 乱人伦中国视频| 国产精品一国产av| 天堂俺去俺来也www色官网| 最近最新中文字幕大全免费视频 | 国产日韩欧美亚洲二区| 视频区图区小说| 一区二区三区激情视频| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| www.熟女人妻精品国产| 午夜免费观看性视频| 亚洲av男天堂| 国产爽快片一区二区三区| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 久久 成人 亚洲| 久久亚洲国产成人精品v| 国产成人91sexporn| 如何舔出高潮| 日本av免费视频播放| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 综合色丁香网| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| 性少妇av在线| 韩国精品一区二区三区| 午夜老司机福利片| 丝袜在线中文字幕| 日本午夜av视频| 黄网站色视频无遮挡免费观看| 欧美精品人与动牲交sv欧美| 精品少妇久久久久久888优播| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 在现免费观看毛片| 满18在线观看网站| 中文乱码字字幕精品一区二区三区| 老司机影院毛片| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 久久ye,这里只有精品| 久久狼人影院| 成人三级做爰电影| 国产xxxxx性猛交| 一本色道久久久久久精品综合| 韩国精品一区二区三区| 一区二区av电影网| 九九爱精品视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 国产黄频视频在线观看| 日韩中文字幕欧美一区二区 | 亚洲欧洲精品一区二区精品久久久 | 成年美女黄网站色视频大全免费| av不卡在线播放| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 欧美日韩综合久久久久久| 精品少妇内射三级| 最近中文字幕2019免费版| 中文字幕高清在线视频| 亚洲成色77777| 国产成人免费无遮挡视频| 亚洲国产日韩一区二区| av在线播放精品| 在线精品无人区一区二区三| 久久青草综合色| 亚洲精品美女久久久久99蜜臀 | 丰满饥渴人妻一区二区三| 最新的欧美精品一区二区| 久热爱精品视频在线9| 午夜福利网站1000一区二区三区| 黄色视频在线播放观看不卡| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 视频在线观看一区二区三区| 最近的中文字幕免费完整| 久久久久久久久久久久大奶| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 国产 精品1| 成人毛片60女人毛片免费| 久久精品亚洲熟妇少妇任你| 国产女主播在线喷水免费视频网站| 国产精品熟女久久久久浪| 51午夜福利影视在线观看| 美国免费a级毛片| 香蕉丝袜av| 国产精品久久久久成人av| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| netflix在线观看网站| 久久女婷五月综合色啪小说| 一级毛片我不卡| 国产av精品麻豆| 亚洲欧美一区二区三区久久| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说| 欧美在线一区亚洲| 最近2019中文字幕mv第一页| 只有这里有精品99| 国产精品蜜桃在线观看| 国产一区二区在线观看av| 丝瓜视频免费看黄片| 久久这里只有精品19| www.自偷自拍.com| 一级毛片 在线播放| 亚洲成人免费av在线播放| 亚洲精品乱久久久久久| 欧美黑人精品巨大| 国产视频首页在线观看| 亚洲精品美女久久久久99蜜臀 | 九九爱精品视频在线观看| 精品国产一区二区久久| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 久热这里只有精品99| 国产视频首页在线观看| 亚洲精品美女久久久久99蜜臀 | 久久精品国产a三级三级三级| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 国产又爽黄色视频| 国产片内射在线| 亚洲成人国产一区在线观看 | 飞空精品影院首页| 亚洲伊人久久精品综合| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 亚洲情色 制服丝袜| 亚洲国产精品999| 最近中文字幕高清免费大全6| 美女高潮到喷水免费观看| 大片免费播放器 马上看| 大陆偷拍与自拍| av不卡在线播放| 欧美精品一区二区大全| 一级黄片播放器| 欧美精品一区二区免费开放| 免费黄网站久久成人精品| 七月丁香在线播放| h视频一区二区三区| 国产高清国产精品国产三级| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 免费观看人在逋| 老司机影院成人| 久久天躁狠狠躁夜夜2o2o | 亚洲欧美成人精品一区二区| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 高清欧美精品videossex| 精品福利永久在线观看| 五月天丁香电影| 天天添夜夜摸| 亚洲,一卡二卡三卡| 精品人妻熟女毛片av久久网站| 日日摸夜夜添夜夜爱| 免费高清在线观看日韩| av女优亚洲男人天堂| 日韩大码丰满熟妇| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆 | 久久青草综合色| 90打野战视频偷拍视频| 在线 av 中文字幕| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 桃花免费在线播放| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲 | 99九九在线精品视频| 伦理电影大哥的女人| 免费在线观看完整版高清| 国产精品无大码| 亚洲精品第二区| 男女下面插进去视频免费观看| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆 | 欧美日韩福利视频一区二区| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 老司机深夜福利视频在线观看 | 亚洲精品第二区| 久久人妻熟女aⅴ| 亚洲成人手机| 国产熟女欧美一区二区| 下体分泌物呈黄色| 欧美人与性动交α欧美精品济南到| av在线app专区| 国产激情久久老熟女| 欧美人与善性xxx| 亚洲国产欧美网| 国产有黄有色有爽视频| 99热全是精品| 日本wwww免费看| 日本欧美视频一区| 欧美日韩视频高清一区二区三区二| 国产精品.久久久| 老司机深夜福利视频在线观看 | 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 交换朋友夫妻互换小说| 在线观看www视频免费| 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院| 美女福利国产在线| 一级片免费观看大全| 999精品在线视频| 日韩大片免费观看网站| 黄片小视频在线播放| 王馨瑶露胸无遮挡在线观看| 欧美精品人与动牲交sv欧美| 亚洲国产成人一精品久久久| xxx大片免费视频| 高清视频免费观看一区二区| 91老司机精品| 亚洲在久久综合| 久久久久久久精品精品| 亚洲国产精品999| 天堂8中文在线网| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 久久亚洲国产成人精品v| 国产视频首页在线观看| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 少妇精品久久久久久久| 桃花免费在线播放| 免费黄网站久久成人精品| 国产精品秋霞免费鲁丝片| 嫩草影视91久久| 看非洲黑人一级黄片| 午夜精品国产一区二区电影| av在线观看视频网站免费| 国产日韩欧美视频二区| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜精品| 婷婷色麻豆天堂久久| 国产精品国产三级国产专区5o| av在线观看视频网站免费| 热re99久久精品国产66热6| 一区在线观看完整版| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看 | 国产亚洲午夜精品一区二区久久| 看十八女毛片水多多多| 少妇 在线观看| 亚洲伊人久久精品综合| 欧美老熟妇乱子伦牲交| 高清欧美精品videossex| 日本av免费视频播放| 午夜影院在线不卡| av国产精品久久久久影院| 最近最新中文字幕大全免费视频 | 久久久久久久久久久免费av| 最近的中文字幕免费完整| 亚洲伊人久久精品综合| 亚洲第一青青草原| 国产在视频线精品| 欧美精品一区二区免费开放| 美女午夜性视频免费| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 精品亚洲乱码少妇综合久久| 久久热在线av| 男女免费视频国产| 在线亚洲精品国产二区图片欧美| 夫妻午夜视频| 天天添夜夜摸| 超碰97精品在线观看| av网站在线播放免费| 看十八女毛片水多多多| 久久人人爽人人片av| 国产精品亚洲av一区麻豆 | 超碰成人久久| 最黄视频免费看| 成人午夜精彩视频在线观看| 午夜日韩欧美国产| 免费人妻精品一区二区三区视频| 欧美av亚洲av综合av国产av | 国产免费福利视频在线观看| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 国产有黄有色有爽视频| 国产一级毛片在线| √禁漫天堂资源中文www| 亚洲成人av在线免费| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 人人妻人人澡人人爽人人夜夜| 99热全是精品| av又黄又爽大尺度在线免费看| 久久亚洲国产成人精品v| 国精品久久久久久国模美| 国产熟女欧美一区二区| 水蜜桃什么品种好| 69精品国产乱码久久久| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 别揉我奶头~嗯~啊~动态视频 | 波多野结衣av一区二区av| av在线播放精品| 亚洲一区二区三区欧美精品| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦中文免费视频观看日本| 麻豆av在线久日| 久久久国产欧美日韩av| 亚洲精品av麻豆狂野| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲| av卡一久久| 亚洲精品,欧美精品| 国产淫语在线视频| 日韩欧美精品免费久久| 免费观看a级毛片全部| 久热这里只有精品99| 一本大道久久a久久精品| 国产极品粉嫩免费观看在线| 尾随美女入室|