• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The dynamics of poverty and crime

    2014-03-20 08:22:24HaiyunZhaoZhilanFengCarlosCastilloChavez

    Haiyun Zhao, Zhilan Feng, Carlos Castillo-Chavez

    (1.Law School, Yale University, New Haven, CT 06511, USA;2.Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA;3.Mathematical and Computational Modeling Sciences Center,Arizona State University, Tempe, AZ 85287, USA)

    1 Introduction

    There is a direct correlation between the poverty and criminality[2-3].Becker′s economic theory of crime[1]assumes that people resort to crime only if the costs of committing the crime are lower than the benefits gained.Those living in poverty,therefore,have a much greater chance of committing property crime[3-4]than the general population,as they stand to gain more with each crime.Property crime includes the offenses of burglary,larceny-theft,motor vehicle theft,and arson[5].In his 1968 paper[1],Becker used statistical and economic analysis to determine the optimal control of crime.Here,we use a system of ordinary differential equations (ODEs) to try and get a more realistic,dynamical solution to that same question.

    One of the main objectives of this modeling study is to find a cost-effective strategy to lower criminality,thus lowering the cost of crime to society.Pervious works have addressed this problem[1,13]using statistical and economic approaches,while we do so by taking a mathematical approach.The use of ODEs allows us to examine the interactions between poverty,crime and intervention,which provides a dynamic,rather than static,view of how criminality is affected by varying intervention parameters.

    It is known that the problem of crime is alleviated by either decreasing poverty[14]or by increasing the severity of the ensuing punishment[15].Our model considers both intervention measures concomitantly.Logically,crime will decrease if one or the other intervention parameters is increased.However,because we seek a pragmatic solution in a world where resources are limited and cost is always a consideration,we cannot reduce crime by simply relieving all poverty or by incarcerating all criminals.Instead,we seek a cost-effective strategy to combat crime.Our model shows that the optimal solution is actually a combination of the two control measures and pinpoints where that optimal solution is.

    2 Model

    Naturally,not all crime can be stopped;that would not be economically desirable.This model seeks to optimize interventions so that crime is reasonably controlled while the cost is minimal,or crime level is minimal under a given constraint on cost.The two intervention measures considered in the model are represented byγ,the rate of converting those in poverty to recovered,andρ,the rate of incarceration,which can vary due to the change in the effort of enforcement.In the model,the population is divided into five sub-classes:the non-impoverished classN,the poverty classP,the criminal classC,the jailed classJ,and recovered class (from jail or from impoverished class)R.Let these variables represent the fractions of the sub-popuations at timet.Then

    N(t)+P(t)+C(t)+J(t)+R(t)=1.

    Letσdenote the rate of the flow from the non-impoverished class to the impoverished class.It is assumed thatσis omnipresent and dependent upon the unemployment rate because of the nature of unemployment and because of the dependency of poverty on unemployment.Letγdenote the conversion rate from thePclass to theRclass due to government interventions;ρdenote the rate at which criminals are captured andεdenote the fraction of these criminals who ended up in jail;δdenote the rate at which individuals get out of jails;μdenote the rate at which individuals enter and exit the populstion.All rates are per capita and are positive constants.The interaction between poverty and crime is governed by the following system of differential equations:

    (1)

    Here‘′’ denotes d/dt.The model assumes that there is a certain probability that a person in thePclass will resort to crime after coming into contact with a criminal.The termβPCis the conversion of impoverished individuals to criminals due to contact over a certain period of time,andβrepresents the “transmission” rate.A recovered individual may also become criminal again but at a reduced rateφβRCwhere 0≤φ≤1 is the reduction fraction that accounts for recidivism.According to the report from Bureau of Justice Statistics,about two-thirds (67.8%) of released prisoners were arrested for a new crime within 3 years,and three-quarters (76.6%) were arrested within 5 years[16].The assumption is that those who have already gone to jail and entered theRclass may revert back to criminality at some reduced rateφβdue to contact with criminals.The rate is reduced because these people have a greater cost to commit their next crime,according to Becker′s theory[1].A list of all variables and parameters are provided in Table 1.

    Table 1 Definition of symbols frequently used in the model analysis and simulations.All rates are per-capita

    3 Mathematical analysis

    In this section we derive threshold conditions that determine the population dynamics of the system (1),and these threshold conditions can be helpful for identifying crime control strategies.

    LetRdenote the reproduction number of criminals,which is defined as the number of secondary criminal cases generated by one typical criminal individual during the entire period of criminality when introduced into a non-impoverished population.It can be calculated from model (1) that the reproductive number is given by

    R=RP+RR,

    (2)

    where

    (3)

    RPandRRrepresent the contributions from thePandRclasses,respectively.The factorsβ/(ερ+μ) andφβ/(ερ+μ) give the numbers of new criminals from thePandRclasses,respectively,produced by one criminal individual during the entire criminal period before being captured.The factorσ/(σ+μ) gives the probability that a non-impoverished individual survived and entered the impoverished class whileμ/(γ+μ) andγ/(γ+μ) represent respectively the probabilities that aPindividual remains in thePclass or has moved into theRclass.As shown below,R=1 is a threshold value which determines whether the population size of criminals will go to zero or establish at a positive equilibrium ast→∞.This is shown by studying the existence and stability of equilibria of the system (1).

    System (1) always has the crime-free equilibrium (CFE),denoted byE0=(N0,P0,C0,J0,R0):

    (4)

    LetE*= (N*,P*,C*,J*,R*) withC*>0 denote the positive crime activity at an equilibrium.Setting the right-hand-side of equations in (1) equal to zero we can express all components ofE*in terms ofx=C*:

    (5)

    Using the fact thatN+P+C+J+R=1 (and noting thatN*=μ/(σ+μ)),we get the equation forx:

    (6)

    or equivalently

    (a2x2+a1x+a0)x=0,

    (7)

    where

    (8)

    Equation (7) has one solutionx=0 and two other solutions,which we denote byx±,given by

    Notice thata2>0 for all parameter values.The sign ofa0depends on the magnitude ofR.We consider two cases.

    Case1R>1.In this case,a0<0 anda0a2<0.Hence,x-is always negative whilex+is always positive.It follows that equation (7) has a unique positive solution;and thus,there is a unique positive equilibriumE*.

    Case2R<1.In this case,a0>0 anda0a2>0.If the duration in the poverty class 1/γis smaller than the total duration in the population 1/μ(which is true in general) and

    (9)

    (note thatRR0,in which casex±are either negative or complex.Thus,there is no positive equilibrium.

    Result1WhenR>1,system (1) has a unique crime equilibriumE*.WhenR<1 and condition (9) holds,there is only the CFEE0.

    We proceed to show the stability of the equilibria.At the CFE,E0,the Jacobian matrix is

    (10)

    J(E0) has four negative eigenvaluesλ1=-(σ+μ),λ2=-(γ+μ),λ3=-(δ+μ),λ4=-μ,and the fifth eigenvalue is given by

    λ5=(ερ+μ)(R-1).

    Hence,all eigenvalues ofJ(E0) are negative ifR<1,andJ(E0) has one positive eigenvalue ifR>1.Fig.1(a) plots the numerical solutions of system (1) for the caseR<1.We observe that C(t)→0 ast→∞.Fig.1(b) is for the caseR>1.It shows that the solution converges to a positive steady state,showing thatE0is unstable.Thus,the following result holds.

    Result2The CFE equilibriumE0is locally asymptotically stable (l.a.s.) ifR<1,and it is unstable ifR>1.

    The characteristic equation for the crime equilibriumE*is a degree 5 polynomial for which it is difficult to obtain analytical results.We explore the stability ofE*numerically.Fig.1(b) is a time plot of numerical solutions of system (1) for the caseR>1.It shows that the solution converges toE*ast→∞.The parameter values used are:β= 2.8,φ= 0.1,μ= 0.1,σ= 0.5μ,δ= 1/5,ε= 0.7,ρ= 0.2,γ= 0.25.TheRvalues are 0.99 (β=2) in (a) and 1.4 (β=2.8) in (b).

    Figure 1 Time plots of the solutions of system (1) forR<1 (see (a)) andR>1 (see (b)) It illustrates that solutions converge to either the crime-free equilibriumE0ifR<1 or the crime equilibriumE*ifR>1 ast→∞.

    Figure 2 Phase portrait projected to the (P,C) plane for R>1.It shows that solutions converge to E* (marked by the solid circle) as t→∞

    The stability ofE*whenR>1 is also demonstrated in the phase portrait shown in Fig.2,which projects the solutions onto the (P,C) plane for various initial conditions.We observe that all solutions converge toE*ast→∞.The parameter values are the same as in Fig.1(b).We have also run simulations of system (1) for a wide range of parameter values andE*is stable in these cases.

    Result3Based on numerical simulations for a wide range of parameter values,the crime equilibriumE*is stable whenever it exists.

    The existence and stability results of the equilibrium points of system (1) provide conditions that can be used to evaluate crime control policies and identify cost-effective strategies,as demonstrated in the next section.

    4 Cost-effective crime control strategies

    Assume that the population has stabilized at the positive equilibriumE*,which implies the assumption thatR>1 based on the analysis in the previous section.In this case,the density of poverty class is

    and the density of criminal class isC*withC*=x+being the positive solution of equation (7).The parameters representing crime control and intervention areγ(conversion rate fromPtoR) andρ(criminal capture).Clearly,the reproduction numberRas well asP*=P*(γ,ρ) andC*=C*(γ,ρ) are functions ofγandρ.Fig.3 shows the dependence ofR(the surface plot on the left) and the crime levelC*(the surface plot on the right) onγandρ.The parameter values used are:β= 2,φ= 0.1,μ= 0.1,σ= 0.5μ,δ= 0.5,ε= 0.1.The lighter plane in theRandC*plots corresponds toR=1 andC*=0,respectively.Thus,for all values ofγandρsuch thatR(γ,ρ)<1,there is no equilibrium with positiveC*.

    Figure 3 The 3D plots of the reproduction number R (left) and the crime level C* (right) as a function of intervention parameters γ and ρ.The lighter plane represents R=1 (left) and C*=0 (right).It illustrates that C*>0 only for the values of γ and ρ such that R(γ,ρ)>1.

    Figure 4 Contour plot of the crime level at the positive equilibrium C* as a function of γ and ρ.The solid circle corresponds to the baseline values γ0 and ρ0,for which the criminal level is 0 level curve identifies the region (shaded) in the (γ,ρ) plane in which the crime level will fall to zero.

    Although different combinations ofγandρcan be used to obtain a given level of crime activity,the costs associated with these control measures might be very different,some of which can be higher than the background cost C0while others lower.Thus,a better strategy would lower the cost without increasing the crime activity.There are various ways to compute the cost associated with the control measures.For the purpose of demonstration,we consider a particular cost function.The similar approach can be used for other cost functions.Denote the total cost under the current policy (γ0,ρ0) by C0while all other parameters are being fixed.When we vary the control parametersγandρ,the total cost,which we denote by C(γ,ρ),includes the cost associated with efforts for converting poverty individuals (P) to recovered class (R),the cost of efforts related to capturing criminals,as well as the cost of crimes (to the society or the victims).An example of such function can be defined as

    (11)

    Fig.5 plots the cost function given in (11).Fig.5(a) shows the surface of C(γ,ρ) in relation to the baseline cost C0(the darker plane),and Fig.5(a) plots the contour curves.The solid circle identifies the points corresponding to the baseline values (γ0,ρ0),and the dashed curve corresponds to the intersection of the surface C(γ,ρ) with the C0plane.That is,the costs are the same for all values ofγandρalong the dashed curve.The dotted curve is another level curve along which the cost has the same value and it is lower than C0.

    Figure 5 Cost as a function of intervention parametersγandρ.The left figure indicates the region in the (γ,ρ) plane where the cost function C(γ,ρ) (the lighter surface) is below the cost function C0(the darker plane).The figure on the right is a contour plot showing three curves.The dashed curve corresponds to C(γ,ρ)=C0=5.6.For or all (γ,ρ) above this dashed curve,C(γ,ρ)

    To idenitify new intervention strategies in comparison with current policy,we consider the following two scenarios:

    Strategy(I) A reduced criminal level without increasing the cost,i.e.,

    Strategy(II) A lreduced costCthat can lead to possible elimination of crime activity,i.e.,

    C(γ,ρ)

    As mentioned earlier,the control strategies may depend on the constantsBiandwiin the cost function (11).Variations of the relative magnitudes of these constants can lead to different strategies.For example,in the case whenB1(cost per criminal) is small,the dependence of the total cost onγandρis shown in Fig.7.There are several features that are qualitatively different from the case shown in Figs.5 and 6.Because of the lower cost of crimes (B1),the benefits from convertingPtoR(effect ofγ) and capturing criminal (effect ofρ) are reduced.Thus,the total cost rises dramatically with increasedγandρ(see the 3D surface on the left),which is opposite of the case shown in Fig.5.This also affects the relative roles ofγandρwhen considering the reduction of crime activities without changing the baseline cost.As shown in the contour plot (right),for (γ,ρ) along the cost curve (dashed) withγ>γ0andρ<ρ0,the cost curve is below the crime curve (thick solid),indicating a higher crime activity.The parameter values used are the same as in Fig.6 except thatw1B1=5,w2B2=20 andw3B3=200.

    5 Discussion

    In this paper we developed a mathematical model to study the dynamics of poverty and crime.By studying the property of equilibria and their stability we derived threshold conditions which can be used to determine the prevalence and control of the crime activity.That is,the dynamics of the model depend on the reproductive numberR.WhenR< 1,the crime level will always fall to zero,whereas whenR> 1,the crime will be persistent (see Results 2,3 and Fig.3).Therefore,our analysis on cost-effective control is only concerned with the caseR> 1.When the crime activity is persistent we explored the possibility of crime control via government interventions (represented by the parametersγandρ) without increasing the total cost associated with the crime activity under a baseline (e.g.,status quo) intervention program (represented byγ0andρ0).We demonstrated that under certain conditions crime control strategies can be identified (see,for example,Figs.6) if all the relevant cost and weight constants (Biandwi) are known.

    We presented two examples to show how a cost-effective control strategy can be identified for a give set of parameter values.These examples illustrated that for different populations and under different conditions (determined by the baseline valuesγ0andρ0as well as the cost and weight constantsBiandwi),the cost-effective strategies can be very different (see Figs.6 and 7).

    The implications of the model are what we expected.Naturally,eliminating all crime is not feasible.The model together with the cost function show that,for a given crime level,there will be optimal values of the parametersγandρ,such that the cost of controlling crime is at a minimum.Note that we have only suggested one cost function,which is given in (11).Other forms of cost functions can be formulated depending on the particular factors associated with the population under investigation,including the poverty and crime situations,and the specific constraints for the costs of crime control and intervention,among other considerations.

    :

    [1] Gary S Becker.Crime and punishment:An economic approach[J].Journal of Political Economy,1968,76:167-217.

    [2] Marcel Fafchamps and Bart Minten.Crime and poverty:Evidence from a natural experiment[M].University of Oxford Centre for the Study of African Economies,2002.

    [3] Morgan Kelly.Inequality and crime[J].Review of Economics and Statistics,2000,82(4):530-539.

    [4] W Henry Chiu,Paul Madden.Burglary and income inequality[J].Journal of Public Economics,1998,69(1):123-141.

    [5] U.S.Department of Justice,Federal Bureau of Investigation.Uniform crime reports:Crime in the united states.Accessed May 6,2014.http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2010/crime-in-the-u.s.-2010/property-crime.

    [6] Newsday.Crime in New York City 2009-2013[OL/J].Accessed May 7,2014.http://data.newsday.com/long-island/data/crime/new-york-city-crime-rate/.

    [7] US Census Bureau.State & county quick facts[OL/J].Accessed May 7,2014.http://quickfacts.census.gov/qfd/states/36/36005.html.

    [8] Mark Acohen.The costs of crime and justice[M].Routledge,2012.

    [9] National Institute of Justice.Victim costs and consequences:A new look[OL/J].Accessed May 7,2014.https://www.ncjrs.gov/pdffiles/victcost.pdf.

    [10] David A Anderson.The aggregate burden of crime[J].The Journal of Law and Economics,1999,42(2):611-642.

    [11] Isaac Ehrlich.On the usefulness of controlling individuals:An economic analysis of rehabilitation,incapacitation and deterrence[J].The American Economic Review,1981,pages 307-322.

    [12] Federal Bureau of Prisons.Federal prison system per capita costs fy 2012.Accessed May 7,2014.http://www.bop.gov/foia/fy12_per_capita_costs.pdf.

    [13] Isaac Ehrlich.Participation in illegitimate activities:A theoretical and empirical investigation[J].Journal of Political Economy,1973,81(3):521-565.

    [14] Ann Dryden Witte.Estimating the economic model of crime with individual data[J].The Quarterly Journal of Economics,1980,94(1):57-84.

    [15] Michael K Block,John M Heineke.A labor theoretic analysis of the criminal choice[J].American Economic Review,1975,65(3):314-325.

    [16] Alexia D C,Matthew R D,Howard N S.Recidivism of prisoners released in 30 states in 2005:Patterns from 2005 to 2010[OL/J].BJS,2014,http://www.bjs.gov/index.cfm?ty=pbdetail iid=4986.

    [17] Kathryn E Mccollister,Michael T French,Hai Fang.The cost of crime to society:New crime-specific estimates for policy and program evaluation[J].Drug and Alcohol Dependence,2010,108(1):98-109.

    [18] U.S. Department of Justice,Federal Bureau of Investigation.Uniform crime reports:Crime in the united states.Accessed May 6,2014.http://www2.fbi.gov/ucr/cius2007/.

    国产成+人综合+亚洲专区| 国产精品 国内视频| 男女做爰动态图高潮gif福利片 | 99国产综合亚洲精品| 午夜精品国产一区二区电影| 可以在线观看毛片的网站| 人妻久久中文字幕网| 在线观看日韩欧美| 长腿黑丝高跟| 波多野结衣高清无吗| 亚洲专区字幕在线| 最近最新中文字幕大全电影3 | 精品久久久久久成人av| 免费看十八禁软件| 国产在线观看jvid| 中文亚洲av片在线观看爽| 夜夜躁狠狠躁天天躁| 一级作爱视频免费观看| 久久人妻熟女aⅴ| 国产91精品成人一区二区三区| 亚洲精品久久成人aⅴ小说| 欧美不卡视频在线免费观看 | 淫妇啪啪啪对白视频| 自拍欧美九色日韩亚洲蝌蚪91| 18禁裸乳无遮挡免费网站照片 | 久久精品国产亚洲av香蕉五月| 免费看a级黄色片| 一区二区日韩欧美中文字幕| 亚洲成人精品中文字幕电影 | 日本五十路高清| 高清欧美精品videossex| 久久人人爽av亚洲精品天堂| 首页视频小说图片口味搜索| 又大又爽又粗| 极品教师在线免费播放| a级片在线免费高清观看视频| 亚洲 国产 在线| 老熟妇乱子伦视频在线观看| 我的亚洲天堂| 欧美另类亚洲清纯唯美| 99久久国产精品久久久| 亚洲色图 男人天堂 中文字幕| 亚洲一码二码三码区别大吗| 亚洲熟妇中文字幕五十中出 | 黄色片一级片一级黄色片| 在线观看免费日韩欧美大片| 18禁美女被吸乳视频| 国产91精品成人一区二区三区| 涩涩av久久男人的天堂| 少妇 在线观看| 午夜激情av网站| 亚洲国产欧美网| 天堂影院成人在线观看| 少妇的丰满在线观看| 一级作爱视频免费观看| 国产av精品麻豆| 免费在线观看完整版高清| 欧美av亚洲av综合av国产av| 黄色成人免费大全| netflix在线观看网站| 制服人妻中文乱码| 久久久久久久久免费视频了| 精品第一国产精品| 亚洲第一欧美日韩一区二区三区| 久久久国产成人精品二区 | 国产精品一区二区精品视频观看| 亚洲三区欧美一区| 国产精品免费视频内射| 国产免费男女视频| 一级毛片高清免费大全| av天堂久久9| √禁漫天堂资源中文www| 欧美黄色淫秽网站| 久久久国产成人免费| 色精品久久人妻99蜜桃| 中文字幕人妻丝袜制服| 欧美日本中文国产一区发布| av在线播放免费不卡| 欧美一区二区精品小视频在线| 一级a爱视频在线免费观看| 久久精品国产综合久久久| 一级毛片精品| 我的亚洲天堂| 欧美大码av| 男女高潮啪啪啪动态图| 中文字幕色久视频| 国产麻豆69| 久9热在线精品视频| 久久99一区二区三区| 露出奶头的视频| 黄色视频不卡| www.999成人在线观看| 久久精品国产亚洲av香蕉五月| 天天影视国产精品| 免费看a级黄色片| 久久人人97超碰香蕉20202| 亚洲专区国产一区二区| 日本黄色视频三级网站网址| 黄色 视频免费看| 久久欧美精品欧美久久欧美| 久久人人97超碰香蕉20202| 日韩免费av在线播放| 亚洲一区二区三区色噜噜 | 91字幕亚洲| 久久婷婷成人综合色麻豆| 动漫黄色视频在线观看| 久热爱精品视频在线9| 欧美日韩瑟瑟在线播放| 久久精品亚洲精品国产色婷小说| 精品卡一卡二卡四卡免费| 国产1区2区3区精品| 我的亚洲天堂| 精品久久久久久久久久免费视频 | а√天堂www在线а√下载| 国产有黄有色有爽视频| 国产免费现黄频在线看| 国产精品九九99| 高清黄色对白视频在线免费看| 极品教师在线免费播放| 女生性感内裤真人,穿戴方法视频| 少妇被粗大的猛进出69影院| 一区二区日韩欧美中文字幕| 日韩精品免费视频一区二区三区| 亚洲第一av免费看| 亚洲自拍偷在线| 波多野结衣高清无吗| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 真人做人爱边吃奶动态| av国产精品久久久久影院| 日日夜夜操网爽| 99国产精品99久久久久| 精品国产国语对白av| 国产精品野战在线观看 | 亚洲美女黄片视频| 波多野结衣高清无吗| www.自偷自拍.com| 午夜精品国产一区二区电影| 身体一侧抽搐| 亚洲全国av大片| 12—13女人毛片做爰片一| ponron亚洲| 乱人伦中国视频| 欧美日韩亚洲高清精品| 悠悠久久av| 日本免费一区二区三区高清不卡 | 黄色怎么调成土黄色| 无限看片的www在线观看| 日韩精品中文字幕看吧| 水蜜桃什么品种好| 国产成人欧美| 91成人精品电影| 久久精品aⅴ一区二区三区四区| 19禁男女啪啪无遮挡网站| 欧美日本中文国产一区发布| 琪琪午夜伦伦电影理论片6080| 90打野战视频偷拍视频| 大陆偷拍与自拍| 亚洲七黄色美女视频| 99国产精品一区二区蜜桃av| 精品福利永久在线观看| 一级片免费观看大全| 久久精品91无色码中文字幕| 欧美精品一区二区免费开放| 香蕉国产在线看| 欧美日韩视频精品一区| 男人的好看免费观看在线视频 | 18禁美女被吸乳视频| 亚洲一区二区三区欧美精品| 亚洲人成电影观看| 欧美色视频一区免费| 久99久视频精品免费| 国产成人一区二区三区免费视频网站| 精品久久久久久电影网| 国产熟女午夜一区二区三区| 国产麻豆69| 精品欧美一区二区三区在线| 校园春色视频在线观看| 日本三级黄在线观看| 亚洲精品国产色婷婷电影| 制服人妻中文乱码| 人人澡人人妻人| 色综合婷婷激情| 中文字幕精品免费在线观看视频| 一区二区三区激情视频| 成人av一区二区三区在线看| 亚洲国产精品999在线| 亚洲,欧美精品.| 90打野战视频偷拍视频| 免费看十八禁软件| 99久久综合精品五月天人人| 高清在线国产一区| 可以在线观看毛片的网站| 久久久久久久久中文| 中文字幕精品免费在线观看视频| 水蜜桃什么品种好| 黄色 视频免费看| 国产三级在线视频| 在线观看一区二区三区| 国产精品免费一区二区三区在线| 免费高清视频大片| 成人免费观看视频高清| 日本免费a在线| 99riav亚洲国产免费| 欧美成狂野欧美在线观看| 国产国语露脸激情在线看| 女人精品久久久久毛片| 精品午夜福利视频在线观看一区| 法律面前人人平等表现在哪些方面| 久久人妻熟女aⅴ| 午夜精品久久久久久毛片777| 久久久精品国产亚洲av高清涩受| 无人区码免费观看不卡| 成人亚洲精品av一区二区 | 男女做爰动态图高潮gif福利片 | 激情视频va一区二区三区| 午夜视频精品福利| 亚洲第一av免费看| 国产精品香港三级国产av潘金莲| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| 电影成人av| 久9热在线精品视频| 女人精品久久久久毛片| 国产精品久久电影中文字幕| www.精华液| 人妻丰满熟妇av一区二区三区| 91在线观看av| 欧美日韩av久久| 国产又色又爽无遮挡免费看| 老汉色av国产亚洲站长工具| 国产av精品麻豆| 亚洲五月婷婷丁香| 中出人妻视频一区二区| 精品国内亚洲2022精品成人| 亚洲 欧美 日韩 在线 免费| 亚洲av成人不卡在线观看播放网| 精品人妻在线不人妻| 久久香蕉国产精品| 免费搜索国产男女视频| 日本一区二区免费在线视频| 成人18禁在线播放| 亚洲欧美一区二区三区久久| 亚洲精品成人av观看孕妇| 欧美+亚洲+日韩+国产| 欧美黑人精品巨大| 久久久久久久午夜电影 | 午夜免费鲁丝| 亚洲va日本ⅴa欧美va伊人久久| 亚洲三区欧美一区| 国产野战对白在线观看| 亚洲精品一二三| 天天添夜夜摸| 超色免费av| 两人在一起打扑克的视频| 国产高清videossex| 老司机亚洲免费影院| 老司机靠b影院| 亚洲美女黄片视频| 国产黄a三级三级三级人| 日韩av在线大香蕉| 热99re8久久精品国产| 成人影院久久| 亚洲一区二区三区不卡视频| 午夜两性在线视频| 国产精品香港三级国产av潘金莲| 淫秽高清视频在线观看| 高清毛片免费观看视频网站 | 国产日韩一区二区三区精品不卡| 色综合婷婷激情| 一二三四在线观看免费中文在| 乱人伦中国视频| 欧美激情极品国产一区二区三区| 69av精品久久久久久| 精品日产1卡2卡| 亚洲欧美一区二区三区久久| 国产一区二区三区视频了| 另类亚洲欧美激情| 最近最新中文字幕大全免费视频| 久久这里只有精品19| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 午夜免费成人在线视频| 99国产精品免费福利视频| 亚洲aⅴ乱码一区二区在线播放 | 大香蕉久久成人网| 老司机福利观看| 看黄色毛片网站| 妹子高潮喷水视频| 国产不卡一卡二| 99精国产麻豆久久婷婷| 别揉我奶头~嗯~啊~动态视频| 国产成人啪精品午夜网站| netflix在线观看网站| 久久精品91蜜桃| 美女午夜性视频免费| 90打野战视频偷拍视频| 香蕉国产在线看| 国产成人啪精品午夜网站| 香蕉久久夜色| 一进一出抽搐gif免费好疼 | 18禁黄网站禁片午夜丰满| 黄片播放在线免费| 九色亚洲精品在线播放| 亚洲成人精品中文字幕电影 | tocl精华| 黑人猛操日本美女一级片| 9热在线视频观看99| 精品久久久久久,| 久久久国产精品麻豆| 青草久久国产| 亚洲情色 制服丝袜| 一级黄色大片毛片| 午夜福利欧美成人| 91av网站免费观看| 两人在一起打扑克的视频| 不卡av一区二区三区| 亚洲成av片中文字幕在线观看| 国产97色在线日韩免费| 18美女黄网站色大片免费观看| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 久久精品亚洲av国产电影网| www.精华液| 老司机深夜福利视频在线观看| 一a级毛片在线观看| 免费观看人在逋| 精品一区二区三区四区五区乱码| 亚洲自偷自拍图片 自拍| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜制服| e午夜精品久久久久久久| 色播在线永久视频| 18禁观看日本| 国产一区二区三区在线臀色熟女 | 国产免费男女视频| 精品人妻1区二区| 精品久久久久久久毛片微露脸| 国产精品美女特级片免费视频播放器 | 精品日产1卡2卡| 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 国产精品爽爽va在线观看网站 | 我的亚洲天堂| 国产视频一区二区在线看| 久热这里只有精品99| 亚洲一码二码三码区别大吗| 国产成人欧美在线观看| 高清欧美精品videossex| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 美女 人体艺术 gogo| 一级毛片精品| 国产高清视频在线播放一区| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 91精品国产国语对白视频| 999久久久国产精品视频| 亚洲精品美女久久av网站| 久久久久九九精品影院| 国产高清国产精品国产三级| 变态另类成人亚洲欧美熟女 | 国产男靠女视频免费网站| 国内毛片毛片毛片毛片毛片| 久久久国产成人精品二区 | 在线天堂中文资源库| 在线观看免费日韩欧美大片| 色尼玛亚洲综合影院| 午夜两性在线视频| 亚洲第一青青草原| 香蕉国产在线看| 看免费av毛片| 黄色 视频免费看| 欧美日本中文国产一区发布| 久9热在线精品视频| av国产精品久久久久影院| 国产高清视频在线播放一区| 国产精品一区二区三区四区久久 | 欧洲精品卡2卡3卡4卡5卡区| 国产精品99久久99久久久不卡| 黄色女人牲交| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 久久国产乱子伦精品免费另类| 日韩高清综合在线| 日日爽夜夜爽网站| 国产野战对白在线观看| 亚洲七黄色美女视频| 多毛熟女@视频| 国产亚洲精品久久久久久毛片| 亚洲成人国产一区在线观看| 欧美精品一区二区免费开放| 国产精品电影一区二区三区| 亚洲全国av大片| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看| 午夜激情av网站| 亚洲成av片中文字幕在线观看| 亚洲成a人片在线一区二区| 无限看片的www在线观看| 精品国产一区二区三区四区第35| 久久亚洲真实| 天堂影院成人在线观看| 老司机靠b影院| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 一本综合久久免费| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 国产激情欧美一区二区| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 高清在线国产一区| 久久久久久人人人人人| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 成人国产一区最新在线观看| 亚洲人成77777在线视频| 91麻豆av在线| 国产视频一区二区在线看| 长腿黑丝高跟| 女警被强在线播放| 国产伦一二天堂av在线观看| 日本欧美视频一区| 啪啪无遮挡十八禁网站| 黄片播放在线免费| 悠悠久久av| 欧美日韩亚洲综合一区二区三区_| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇熟女久久| 在线av久久热| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 中文字幕人妻丝袜一区二区| 极品人妻少妇av视频| 欧美激情久久久久久爽电影 | 纯流量卡能插随身wifi吗| 日本a在线网址| 50天的宝宝边吃奶边哭怎么回事| 欧美日本亚洲视频在线播放| 久久天躁狠狠躁夜夜2o2o| а√天堂www在线а√下载| 欧美乱妇无乱码| 一级毛片高清免费大全| 国产成人系列免费观看| 日韩大码丰满熟妇| 99久久99久久久精品蜜桃| 亚洲片人在线观看| 久久香蕉激情| 久久国产精品影院| 国产高清视频在线播放一区| 婷婷精品国产亚洲av在线| 国产黄色免费在线视频| 欧美乱色亚洲激情| 免费在线观看完整版高清| 国产区一区二久久| 国产99白浆流出| 高清黄色对白视频在线免费看| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 日韩国内少妇激情av| 欧美黄色片欧美黄色片| 成人国语在线视频| 在线观看www视频免费| 精品国产乱码久久久久久男人| 欧美大码av| 波多野结衣av一区二区av| 两性夫妻黄色片| 热99国产精品久久久久久7| 天堂动漫精品| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 香蕉丝袜av| 我的亚洲天堂| 男人舔女人下体高潮全视频| 无人区码免费观看不卡| 少妇 在线观看| 亚洲av电影在线进入| 国产亚洲欧美精品永久| 午夜精品国产一区二区电影| 精品福利永久在线观看| 日日夜夜操网爽| 在线观看免费视频网站a站| 国产成人av教育| 一边摸一边做爽爽视频免费| 久久中文字幕人妻熟女| 久久影院123| 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆成人av在线观看| 18禁美女被吸乳视频| 国产激情欧美一区二区| 黄片小视频在线播放| 国产成人欧美在线观看| 国产精品综合久久久久久久免费 | 精品一区二区三区视频在线观看免费 | 在线观看一区二区三区| 女警被强在线播放| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 亚洲精品久久午夜乱码| av欧美777| 亚洲欧美激情综合另类| 亚洲 欧美 日韩 在线 免费| 精品免费久久久久久久清纯| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 欧美丝袜亚洲另类 | 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 9191精品国产免费久久| 人人妻人人爽人人添夜夜欢视频| 成人三级做爰电影| 亚洲少妇的诱惑av| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 亚洲欧美精品综合久久99| 99久久人妻综合| 欧美日韩视频精品一区| 国产精品免费视频内射| 精品免费久久久久久久清纯| 看片在线看免费视频| 亚洲av美国av| 日韩欧美在线二视频| 国产在线观看jvid| 国产麻豆69| 纯流量卡能插随身wifi吗| 男人的好看免费观看在线视频 | 亚洲午夜精品一区,二区,三区| 在线天堂中文资源库| 欧美久久黑人一区二区| 男女做爰动态图高潮gif福利片 | 亚洲九九香蕉| 99久久99久久久精品蜜桃| 久久精品人人爽人人爽视色| av国产精品久久久久影院| 久久精品国产清高在天天线| 老司机福利观看| 91成人精品电影| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 亚洲人成电影观看| 水蜜桃什么品种好| 大型av网站在线播放| 国产精品久久久久成人av| 亚洲狠狠婷婷综合久久图片| 久久国产亚洲av麻豆专区| 深夜精品福利| 天堂影院成人在线观看| 在线观看免费视频网站a站| 精品久久蜜臀av无| 男女午夜视频在线观看| 午夜老司机福利片| 18禁观看日本| 在线观看日韩欧美| 色哟哟哟哟哟哟| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 在线观看午夜福利视频| 欧美日韩av久久| 日本免费a在线| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 精品高清国产在线一区| 女性生殖器流出的白浆| 午夜免费鲁丝| 午夜福利,免费看| 国产在线精品亚洲第一网站| 深夜精品福利| 国产精品一区二区免费欧美| 一区福利在线观看| 精品无人区乱码1区二区| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 精品国产超薄肉色丝袜足j| 男人的好看免费观看在线视频 | 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 欧美在线黄色| 精品日产1卡2卡| 精品国产一区二区三区四区第35| 大码成人一级视频| 日本欧美视频一区| 多毛熟女@视频| 婷婷六月久久综合丁香| xxx96com| videosex国产| 国产亚洲精品一区二区www| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频| 一级黄色大片毛片| 亚洲五月婷婷丁香| 亚洲一区二区三区色噜噜 | 两人在一起打扑克的视频| 丝袜在线中文字幕| 在线观看日韩欧美| 三上悠亚av全集在线观看| 三级毛片av免费| 日本五十路高清| 97超级碰碰碰精品色视频在线观看| 国产三级在线视频| 精品久久蜜臀av无| 男女下面进入的视频免费午夜 | 不卡av一区二区三区| 高清黄色对白视频在线免费看| 老司机在亚洲福利影院|