• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of a multi-patch dynamical model about cattle brucellosis

    2014-03-20 08:22:22JuanZhangShiguiRuanGuiquanSunXiangdongSunZhenJin

    Juan Zhang, Shigui Ruan, Guiquan Sun,Xiangdong Sun, Zhen Jin

    (1.School of Mechatronic Engineering, North University of China, Taiyuan, Shan′xi 030051, China;2.Complex Systems Research Center, Shanxi University, Taiyuan, Shan′xi 030006, China;3.Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250,USA;4.School of Mathematical Science, Fudan University, Shanghai 200433, China;5.The Laboratory of Animal Epidemiological Surveillance, China Animal Health & Epidemiology Center, Qingdao, Shandong 266032, China)

    1 Introduction

    Brucella, one of the world′s major zoonotic pathogens known,causes infectious abortion in animals and Malta Fever in man[1]. Since many kinds of domestic animals,such as sheep, cattle, dogs, pig and so on, can be infected by brucella,brucellosis usually causes economic devastation on a global scale. China is no exception. In Zhejiang province which locates in the southern China, the livestock breeding, dairy, the leather processing industry have gotten great development.A mass of dairy cows, beefs, row fur and other animal by-products were taken to trade annually. But it has also brought lots of cattle brucellosis infection[2, 3]. In fact, the cow remains an intermittent carrier for years in China[4]. For cattle, transmission of brucella typically occurs through direct contact with brucella carriers or oral contact with aborted foetal material including the bacteria throughout the byre[4, 5]. Bull can spread infection through semen, but often the disease leads to infertility or arthritis. More detailed information about cattle brucellosis can be seen in [6].

    Since Brucellosis caused by brucella is a non-fatal disease, it is often overlooked by the majority of the scientific community. The local government of Zhejiang province has regularly taken detection measures and culled infected cattle immediately. Yet, the data of positive cattle brucellosis in Zhejiang are rising year by year and it has influenced the local economy, even leads to the local prevalence of human brucellosis. From Fig.1, we can see that brucellosis has been spreading from north to south in Zhejiang province.So, one of main reasons of the geographical spread of the disease is the transportation of cattle between cities within Zhejiang province. Cattle transportation can cause cross infection of individuals among different regions. Besides, through vehicles and staff movement, it can also lead to the disperdal of brucella surviving in environment.Therefore, public health officials and scientific community should pay more attention to the transmission of cattle brucellosis.

    Dynamical systems method is one of the most useful and important tools in studying biological and epidemiological models[7-13].Some researches have applied dynamical systems method to study brucellosis[14-17].In 1994,Gonzalez-Guzman and Naulin[14]were the first to apply dynamical models to study bovine brucellosis.In 2005,besides transmission within sheep and cattle populations, Zinsstag et al.[17]considered the transmission to humans in a dynamical model. The livestock are classified into three subclasses: the susceptible, the seropositive and the immunized. In 2009, Xie and Horan[15]built a simple dynamical model with the susceptible, the infected and the resistant subclasses to discuss brucellosis in the elk and cattle population. In 2010, Ainseba et al.[16]considered two transmission modes about the ovine brucellosis in their model: direct mode caused by infected individuals and indirect mode related to brucella in the environment. For the transmission of brucellosis in China, there are also some studies[18-22]. Hou et al.[20]investigated the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region of China. Zhang et al.[21]and Nie et al.[22]established dynamical models about dairy cattle brucellosis in Zhejiang and Jilin Provinces, respectively. According to the spatial spread of disease, there are two types of model we can apply:multi-patch models[23-30]and reaction-diffusion models[31-33].The goal of this paper is to establish an n-patch dynamical model to discuss the effects of cattle dispersal and brucella diffusion on the geographical spread of the disease.

    The article is organized as follows. In Sections 2 , we propose ann-patch model about cattle brucellosis with cattle transportation and brucella diffusion, and analyze its dynamical behavior. In section 3, we apply numerical method to discuss the transmission of the disease between two patches under different conditions. In section 4, we give a brief discussion.

    2 Model and dynamical behavior

    There are 11 cities in Zhejiang province, where Hangzhou is the provincial capital. More generally, we propose an epidemic dynamical model with cattle dispersal betweennpatches. The number of cattle in each patch can be denoted byNi,i=1,2,…,n. For each patch, the cattle population is divided into three classes:

    Fig.1 The distribution of infected dairy cattle in Zhejiang from 2001 to 2010.(a) 2001. (b)2002. (c)2003. (d) 2004. (e)2005. (f)2006.(g) 2007. (h)2008. (i)2009.(j) 2010.

    susceptible,exposed and infective individuals, the numbers of which at timetinith patch are denoted bySi(t),Ei(t) andIi(t), respectively. During the infected period, the infected individuals (the exposed and the infectious individuals) discharge brucella into the environment. The quantity of brucella in environment is denoted byVi(t). Consequently, the susceptible cattle can be infected by contacting with the exposed cattle, the infectious cattle and the brucella in environment. Compared with the infectious individuals, the transmission coefficient of the exposed individuals is relatively smaller. So the auxiliary parameterθis introduced. The internal relationship of each individual innpatches can be described in the following system and the parameter meanings can be seen in Table 1, where parametersAi,βi,αi,mi,δi,μi,riandwiare all positive constants.θis a parameter whose value is between 0 and 1.aji,bji,cjianddji(j≠i) are non-negative constants.aii,bii,ciianddiiare non-positive constants.

    (1)

    It is easy to know that there exist the following relationships for the migration rates.

    ? 1≤i≤n.

    (2)

    Firstly, we consider the existence and uniqueness of the disease-free equilibrium. Let the right hand side of system (1) be zero and chooseEi=Ii=Vi=0, we can obtain the following system.

    which can be expanded as follows.

    Observing the coefficient matrix and combining Eq.(2), we know that the coefficient matrix is absolutely diagonally dominant about columns. So the above system has a unique untrivial solution and the solution is positive. Thus the corresponding disease-free equilibrium of system (1) is existent and unique, which can be denoted as

    E0=(S10,0,0,0,…,Si0,0,0,0,…,Sn0,0,0,0).

    Applying the next generation matrix method, we can present the expression of the basic reproduction number.Define

    and

    where,

    and

    The basic reproduction number isR0=ρ(FV-1). DefiningM=F-Vands(M):=max{Reλ:λis an eigenvalue ofM}, we have the following result.

    Lemma2There hold two equivalences[34]:

    R0<1?s(M)<0,R0>1?s(M)>0.

    (3)

    By Theorem 2 in [34], the disease-free equilibriumE0is locally asymptotically stable whenR0<1 and unstable whenR0>1. Now we further investigate the global dynamical behavior ofE0.

    Firstly, we consider the auxiliary system

    (4)

    whose Jacobian matrix is

    It is already known that the Jacobian matrix is absolutely diagonally dominant about column and the system (3) has a unique positive equilibriumS0=(S10,S20,S30,…,Sn0)T. Moreover, -mi+aii<0, 1≤i≤n. So, all eigenvalues of the Jacobian matrix have negative real parts which imply thatS0is locally stable. Since system (4) is a linear system, equilibriumS0is globally stable.

    Theorem1WhenR0<1, the disease-free equilibriumE0of system (1) is globally asymptotically stable inΓ.

    ProofNow, we only need to prove the global attraction of the disease-free equilibrium. BecauseR0<1, thens(M)<0. For small enoughη,s(M+Mη)<0, where

    It is obvious to know that

    (5)

    Then the following auxiliary system is introduced.

    (6)

    The positive equilibriumS0of system (6) has been proved to be globally stable. So, forη, there existsTsuch that ?t>T,S(t)≤S0+η, whereS(t)=(S1(t),…,Sn(t)). Thus, we obtain the following system.

    Define

    X={(S1,E1,I1,V1,…,Sn,En,In,Vn):Si≥0,Ei≥0,Ii≥0,Vi≥0,i=1,…,n},

    X0={(S1,E1,I1,V1,…,Sn,En,In,Vn)∈X:Ei>0,Ii>0,Vi>0,i=1,…,n},

    ?X0=XX0.

    Considering the auxiliary system

    (7)

    For system (7), similar as system (4), there exists a unique positive equilibriumS0() and it is global asymptotically stable. By the implicity function theorem, it follows thatS0() is continuous in term of. For givenτ, we can restrictsmall enough such thatS0()≥S0-τfor allt>T1.

    Theorem2WhenR0>1, there exists positive constantsuch that when ‖(Ei(0),Ii(0),Vi(0))‖

    (8)

    ProofBecauseR0>1,s(M)>0. So, for small enoughτ,s(M-Mτ)>0, where

    Now we proceed by contradiction to prove the above conclusion. Suppose, there existandT>0 such thatEi(t)<,Ii(t)T. Then for allt>T, we can have that

    (9)

    For the right side system, there exists a unique positive equilibriumS0() which is global asymptotically stable. There exists a large enoughT1>Tsuch thatS(t)≥S0(). BecauseS0()≥S0-τ,S(t)≥S0-τfor allt>T1. Thus, there holds

    Becauses(M-Mτ)>0,Ii(t)→∞,Ei(t)→∞,Vi(t)→∞ ast→∞,i=1…n, which is a contraction. So, inequality (8) is well-founded.

    Theorem3WhenR0>1, system (1) admits at least one positive equilibrium, and there exists positive constantsuch that every solution of (1) with (Si(0),Ei(0),Ii(0),Vi(0))∈X0satisfies

    (10)

    ProofFirstly, we show that system (1) is uniformly persistent with respect to (X0,?X0). It is easy to know that bothXandX0are positively invariant and ?X0is relatively closed inX. Moreover, from Lemma 1, system (1) is point dissipative. SetM?={(S(0),E(0),I(0),V(0)):(S(t),E(t),I(t),V(t))∈?X0, ?t≥0,i=1,…,n}, whereS(t)=(S1(t),…,Sn(t)),E(t)=(E1(t),…,En(t)),I(t)=(I1(t),…,In(t)),V(t)=(V1(t),…,Vn(t)). It is needed to show that

    M?={(S(t),0,…,0):S(t)≥0}.

    (11)

    Noting that

    {(S(t),0,…,0):S(t)≥0}?M?,

    (12)

    we only need to prove

    M??{(S(t),0,…,0):S(t)≥0,i=1,…,n}.

    (13)

    Suppose not. Assume (S(0),E(0),I(0),V(0))∈M?. There exist ani0(1≤i0≤n) and at0such that (Ei0(t0),Ii0(t0),Vi0(t0))T>0. Then we can separate {1,…,n} into two setsQ1andQ2such that

    (Ei(t0),Ii(t0),Vi(t0))T=0, ?i∈Q1,

    (Ei(t0),Ii(t0),Vi(t0))T>0, ?i∈Q2.

    It is easy to know thatQ1andQ2are not empty. Fori∈Q2, without loss of generality, we assumeEi(t0)>0,Ii(t0)=Vi(t0)=0. From the equationsIi′(t0)=δiEi(t0)>0 andVi′(t0)=riEi(t0)>0, we can know that there is a small enough0>0 such thatEi(t)>0,Ii(t)>0,Vi(t)>0,i∈Q2fort00. So, there exists1>0 such thatEj(t)>0,j∈Q1fort00 such thatIj(t)>0,Vj(t)>0,j∈Q1fort0

    3 Application to two patches

    In this section, for simplicity, assumingn=2, we perform numerical simulation to study the effects of cattle dispersal on brucellosis transmission. Leta12=-a22,a21=-a11,b12=-b22,b21=-b11,c12=-c22,c21=-c11,d12=-d22,d21=-d11. Then system (1) reduces to

    (14)

    Also, we can obtain the basic reproduction numbersR1,R2of two patches under the situation that there exists no migration of cattle and the diffusion of brucella between them as follows.

    Now, we mainly have a look at the effect of some parameters and population scales on the basic reproduction number and the number of the infected individuals, respectively.

    Example1When all the parameter values are same between two patches and the dispersal rates of each subpopulation from one patch to the other are taken as the same. Assume thatA1=A2=13000;m1=m2=0.25;δ1=δ2=6;μ1=μ2=0.85;r1=r2=5;w1=w2=6;a12=a21=b12=b21=c12=c21=d12=d21=0.1;β1=β2=2.1×10-6;θ=0.5.

    (1) Ifα1=α2=2.2×10-5,R0=R1=R2=1.0886. In this case, the brucellosis in two patches will become endemic with time (see Fig.2).

    (2) Ifα1=α2=1.8×10-5,R0=R1=R2=0.9096. In this case, the infectious cattle in two patches will disappear with time (see Fig.3).

    Fig.2 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch. The initial values will be taken as S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=40000,E2(0)=I2(0)=V2(0)=0.

    Fig.3 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch.S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=40000,E2(0)=I2(0)=V2(0)=0.

    Figs.2 and 3 confirm that the basic reproduction numberR0is the transmission threshold of brucellosis in two patches. Besides, the sensitivity of the basic reproduction numberR0in term ofβ1,α1,A1,a12,b12,c12,d12can be seen in Fig.4. From Fig.4, we know thatR0will increase with the increase ofA1. Comparing withβ1, the effect ofα1onR0is larger. What is interesting is that the transport of susceptible cattle can reduceR0, which implies that the dispersal of susceptible cattle can relief the transmission situation of brucellosis in the whole region. However, the transport of the infected cattle or the diffusion of brucella has no influence onR0.

    Example2When the numbers of cattle in two patches are different, the disease situation will be different from Example 1.Assume that the number of cattle in the first patch is larger than the second patch.A1=20000;A2=10000;m1=m2=0.25;δ1=δ2=6;μ1=μ2=0.85;r1=r2=5;w1=w2=6;β1=β2=2.1×10-6;θ=0.5;α1=α2=2.2×10-5.

    (1) If the dispersal rate of the first patch is smaller than the second patch,a12=b12=c12=d12=0.3,a21=b21=c21=d21=0.1. In this case,R0=1.1785,R1=1.3993,R2=0.6997(see Fig.5).

    (2) If the dispersal rate of the first patch is larger than the second patch,a12=b12=c12=d12=0.1,a21=b21=c21=d21=0.3. In this case,R0=1.4059,R1=1.3993,R2=0.6997(see Fig.6).

    From Figs. 5 and 6, we can see that the patch whose dispersal rate is bigger, the number of infectious cattle will be smaller. For the patch that has larger cattle population, the emigration of susceptible cattle can reduceR0, see Fig.7. However, the emigration of the brucella carriers and the diffusion of brucella can increaseR0. For the patch that has smaller cattle population, the emigration of all subpopulation can reduceR0.

    Fig.4 R0 in term of parameters A1,β1,α1,a12,b12,c12,d12,a21,b21.

    Fig.5 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch. The initial values will be taken as S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=20000,E2(0)=I2(0)=V2(0)=0.

    Example3We need to know that when the basic reproduction numbersR1andR2of two patches are both less than 1, what is aboutR0? The parameter values are the same as Example 2 except forα1andα2. Assumeα1=α2=1.8×10-5.

    (1) If the dispersal rate of the first patch is larger than the second patch,a12=b12=c12=d12=0.3,a21=b21=c21=d21=0.1. In this case,R0=0.9548,R1=0.9096,R2=0.6997. The brucellosis in two patches will disappear with time. (see Fig.8)

    (2) If the dispersal rate of the first patch is larger than the second patch,a12=b12=c12=d12=0.1,a21=b21=c21=d21=0.3. In this case,R0=1.0233,R1=0.9096,R2=0.6997. The infectious disease in two patches will become endemic with time.(see Fig.9)

    Fig.6 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch. The initial values will be taken as S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=20000,E2(0)=I2(0)=V2(0)=0.

    Fig.7 R0 in term of parameters a12,b12,c12,d12,a21,b21,c21,d21.

    Fig.8 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch. The initial values will be taken as S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=20000,E2(0)=I2(0)=V2(0)=0.

    Fig.9 The number of the infectious cattle with time. (a) in the first patch. (b) in the second patch. The initial values will be taken as S1(0)=40000,E1(0)=7,I1(0)=12,V1(0)=100,S2(0)=20000,E2(0)=I2(0)=V2(0)=0.

    From Figs. 8 and 9, we can see that if the basic reproduction numbers of two patches without cattle and brucella dispersal are less than 1, with the change of dispersal rates between patches, the basic reproduction number in the whole region will be variable. It can be less than 1, also can be more than 1 as the dispersal rates increase.

    4 Discussion

    For Zhejiang province of China, the recent prevalance of brucellosis in cattle is believed to be caused by the transportation of cattle and brucella between cities in Zhejiang province. In this article, we applied ann-patch dynamical model to study the effect of dispersal of cattle and brucella on the spatial transmission of brucellosis. Firstly, we analyzed the dynamical behavior of the model. More specifically, assumingn=2, we carried out the sensitivity analysis of the basic reproduction number and the number of the infectious cattle in term of different parameter values. Finally, it is obtained that the dispersal of the susceptible cattle can relief the spread of brucellosis in the whole region. However, the emigration of the brucella carriers or the diffusion of brucella in patch whose rasing quantity of cattle is larger can increaseR0. On the contrary, the emigration of the brucella carriers or the diffusion of brucella in patches where the amount of live cattle is smaller can reduceR0. In summary, the dispersal of the susceptible population of each patch and the centralization of the infected cattle to the patches where the breeding scale is bigger are in favor of the controlling of the disease.

    :

    [1] M. L. Boschiroli,V. Foulongne,D.O′Callaghan.Brucellosis:a worldwide zoonosis[J].Current Opinion in Microbiology,2001,4:58-64.

    [2] W. M. Xu,S. F. Shi,Y. Yang,H. Y. Jin,H. Wang.Epidemic situation and exploration of the prevention and control strategies on Brucellosis in Zhejiang Province[J].Chinese Rural Health Service Administration,2007,27(3):209-211.

    [3] W. M. Xu,H. Wang,S. J. Zhu,Y. Yang,J. Wang,X. Y. Jin,L. L. Gao,Y. Yang.2000-2007 the human and livestock brucellosis situation and control measure in Zhejiang province[J].Chin. J. Prev. Med.,2009,43(8):746-747.

    [4] Z. Bercovich.Maintenance of Brucella abortus-free herds:a review with emphasis on the epidemiology and the problems in diagnosing Brucellosis in areas of low prevalence[J].Vet. Quart.,1998,20:81-88.

    [5] D. C. Blood,O. M. Radostits.Veterinary medicine:A textbook of the diseases of cattle,sheep,pigs,goats,horses.(7th ed.)[M].London:Balliere Tindall,1989.

    [6] T. England,L. Kelly,R. D. Jones, A. Macmillan, M. Wooldridge.A simulation model of brucellosis spread in British cattle under several testing regimes[J].Prev. Vet. Med.,2004,63:63-73.

    [7] J. Zhang,Z. Jin,G. Q. Sun,S. G. Ruan.Spatial spread of rabies in China[J].J. Appl. Analy. Compu.,2012,2(1):111-126.

    [8] J. Q. Li,X. C. Song,F. Y. Gao.Global stability of a virus infection model with two delays and two types of target cells[J].J. Appl. Analy. Compu.,2012,2(3),281-292.

    [9] K. Hong,P. X. Weng.Stability and traveling waves of diffusive predator-prey model with age-structure and nonlocal effect[J].J Appl. Analy. Compu.,2012,2(2):173-192.

    [10] J. Zhang,Z. Jin,G. Q. Sun,T. Zhou,S. G. Ruan.Analysis of rabies in China:Transmission dynamics and control[J].PLoS one,2011,6(7):e20891.

    [11] J. Zhang,Z. Jin,G. Q. Sun,X. D. Sun,S. G. Ruan.Modeling seasonal rabies epidemic in China[J].Bull. Math. Biol.,2012,74:1226-1251.

    [12] J. Zhang,Z. Jin,G. Q. Sun,X. D. Sun,Y. M. Wang,B. X. Huang.Determination of original infection source of H7N9 avian influenza by dynamical model[J].Scientific Reports,2014,4:4846.

    [13] M. T. Li,G. Q. Sun,J. Zhang,Z. Jin.Global dynamic behavior of a multigroup cholera model with indirect transmission[J].Discrete Dynamics in Nature and Society,2013,Article ID 703826.

    [14] J. Gonzalez-Guzman,R. Naulin.Analysis of a model of bovine brucellosis using singular perturbations[J].J. Math. Biol.,1994,33:211-223.

    [15] X. Fang,D. H. Richard.Disease and behavioral dynamics for brucellosis control in greater yellowstone area[J].J. Agr. Resour. Ec.,2009,34(1):11-33.

    [16] B. Ainseba,C. Benosman,P. Magal.A model for ovine brucellosis incorporating direct and indirect transmission[J].J. Biol. Dynam.,2010,4(1):2-11.

    [17] J. Zinsstag,F. Roth,D. Orkhon,G. Chimed-Ochir,M. Nansalmaa,J. Kolar,P. Vounatsou.A model of animal-human brucellosis transmission in Mongolia[J].Prev. Vet. Med.,2005,69:77-95.

    [18] M. T. Li,G. Q. Sun,Y. F. Wu,J. Zhang,Z. Jin.Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm[J].Applied Mathematics and Computation,2014,237(5):582-594.

    [19] M. T. Li,G.Q. Sun,J. Zhang,Z. Jin,X. D. Sun,Y. M. Wang,B. X. Huang,Y. H. Zheng.Transmission dynamics and control for a Brucellosis model in Hinggan league of Inner Mongolia,China[J].Mathematical Bioscience and Engineering,(Accepted),2014.

    [20] Q. Hou,X. D. Sun,J. Zhang,Y. J. Liu,Y. M. Wang, Z. Jin.Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region,China[J].Math. Biosci.,2013,242:51-58.

    [21] J. Zhang,X. D. Sun,G. Q. Sun,Q. Hou,M. T. Li,B. X Huang,Z. Jin.Prediction and control of brucellosis transmission of dairy cattle in Zhejiang Province,China[M].In press.

    [22] J. Nie,X. D. Sun,G. Q. Sun,J. Zhang, Z. Jin.Modeling the transmission dynamics of dairy cattle brucellosis in Jilin Province,China[M].In press.

    [23] D. Z. Gao,S. G. Ruan.A multipatch malaria model with logistic growth populations[J].SIAM J. Appl. Math.,2012,72(3):819-841.

    [24] W. D. Wang,X. Q. Zhao.An epidemic model in a patchy environment[J].Math. Biosci.,2004,190:97-112.

    [25] D. Z. Gao,S. G. Ruan.An SIS patch model with variable transmission coefficients[J].Math. Biosci.,2011,232:110-115.

    [26] F. Zhang,X. Q. Zhao.A periodic epidemic model in a patchy environment[J].J. Math. Anal. Appl.,2007,325:496-516.

    [27] P. Auger,E. Kouokam,G. Sallet,M. Tchuente,B. Tsanou.The Ross-Macdonald model in a patchy environment[J].Math. Biosci.,2008,216:123-131.

    [28] E. Kouokam,P. Auger,H. Hbid,M. Tchuente.Effect of the number of patches in a multi-patch SIRS model with fast migration on the basic reproduction rate[J].Acta. Biotheor.,2008,56:75-86.

    [29] W. D. Wang,X. Q. Zhao.An epidemic model with population dispersal and infection period[J].SIAM J. Appl. Math.,2006,66(4):1454-1472.

    [30] L. J. S. Allen,B. M. Bolker,Y. Lou,A. L. Nevai.Asymptotic profiles of the steady states for an SIS epidemic patch model[J].SIAM J. Appl. Math.,2007,67:1283-1309.

    [31] Y. Morita.Spectrum comparison for a conserved reaction-diffusion system with a variational property[J].J. Appl. Analy. Compu.,2012,2(1):57-71.

    [32] H. S. Mahato,M. B?hm.Global existence and uniqueness of solution for a system of semilinear diffusion-reaction equations[J].J. Appl. Analy. Compu.,2012,3(4),357-376.

    [33] L. Z. Li,N. Li,Y. Y. Liu,L. H. Zhang.Existence and uniqueness of a traveling wave front of a model equation in synaptically coupled neuronal networks[J].J. Appl. Analy. Compu.,2013,3(2),145-167.

    [34] P. Van Den Driessche ,J. Watmough.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Math. Biosci.,2002,180(1-2):29-48.

    [35] H. Thieme.Convergence results and a Poincaré-Bendixson trichotomy for asymptotically au-tonomous differential equations[J].J. Math. Biol.,1992,30:755-763.

    [36] W. M. Hirsch,H. L. Smith,X. Q. Zhao.Chain transitivity attractivity and strong repellors for semidynamical systems[J].J. Dynam. Differ. Equat.,2001,13(1):107-131.

    [37] H. R. Thieme.Persistence under relaxed point-dissipativity (with application to an endemic model)[J].SIAM J. Math. Anal.,1993,24:407-435.

    [38] X. Q. Zhao.Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications[J].Can. Appl. Math. Quart.,1995,3:473-495.

    欧美人与善性xxx| 亚洲熟妇中文字幕五十中出| 欧美日韩在线观看h| av免费观看日本| 国产av码专区亚洲av| 久久久久久久久久久免费av| 欧美不卡视频在线免费观看| 亚洲精品一区蜜桃| 99在线视频只有这里精品首页| 国产在视频线精品| 欧美一区二区国产精品久久精品| 国产午夜精品久久久久久一区二区三区| 国产免费福利视频在线观看| 成人高潮视频无遮挡免费网站| 99热精品在线国产| 亚洲天堂国产精品一区在线| 久99久视频精品免费| 水蜜桃什么品种好| av卡一久久| 99久国产av精品国产电影| 亚洲aⅴ乱码一区二区在线播放| 最近视频中文字幕2019在线8| 国产免费视频播放在线视频 | kizo精华| 国产乱来视频区| 欧美zozozo另类| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 三级毛片av免费| 免费观看人在逋| 婷婷色麻豆天堂久久 | 成年版毛片免费区| 国产v大片淫在线免费观看| 18禁在线无遮挡免费观看视频| 久久婷婷人人爽人人干人人爱| 日本免费一区二区三区高清不卡| 国产精品人妻久久久久久| 亚洲久久久久久中文字幕| 久久国内精品自在自线图片| 99久久中文字幕三级久久日本| 1000部很黄的大片| 两性午夜刺激爽爽歪歪视频在线观看| 99热这里只有精品一区| 国产精品嫩草影院av在线观看| 亚洲av一区综合| 我要看日韩黄色一级片| 国产女主播在线喷水免费视频网站 | 精品国产一区二区三区久久久樱花 | 熟女电影av网| 乱码一卡2卡4卡精品| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 又黄又爽又刺激的免费视频.| 又黄又爽又刺激的免费视频.| 久久这里有精品视频免费| 18+在线观看网站| 中文字幕av在线有码专区| 亚洲在线自拍视频| 搞女人的毛片| 国产老妇女一区| 永久网站在线| 日本黄大片高清| 大香蕉久久网| 搞女人的毛片| 内射极品少妇av片p| 一级爰片在线观看| 蜜桃亚洲精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 久久99热这里只频精品6学生 | 精品久久久久久久末码| 久久久精品94久久精品| 日韩欧美精品v在线| 免费观看在线日韩| 在线播放无遮挡| 青春草视频在线免费观看| 成人亚洲精品av一区二区| 日韩一区二区三区影片| 卡戴珊不雅视频在线播放| 色哟哟·www| 亚洲综合色惰| 亚洲精品日韩在线中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 亚洲伊人久久精品综合 | 成人毛片60女人毛片免费| 久久久a久久爽久久v久久| 啦啦啦啦在线视频资源| 日韩av在线大香蕉| 97在线视频观看| 国内揄拍国产精品人妻在线| 欧美又色又爽又黄视频| 三级男女做爰猛烈吃奶摸视频| 久久精品国产鲁丝片午夜精品| 1024手机看黄色片| 男女国产视频网站| 最新中文字幕久久久久| 国产精品无大码| 免费看光身美女| 网址你懂的国产日韩在线| 欧美97在线视频| 秋霞在线观看毛片| 久久精品国产亚洲网站| 熟女人妻精品中文字幕| 能在线免费看毛片的网站| 男女国产视频网站| 国产视频首页在线观看| 国产亚洲最大av| 日韩精品有码人妻一区| 日本与韩国留学比较| 2021天堂中文幕一二区在线观| 大香蕉久久网| 尤物成人国产欧美一区二区三区| 日本欧美国产在线视频| 欧美成人一区二区免费高清观看| 国产亚洲午夜精品一区二区久久 | 亚洲aⅴ乱码一区二区在线播放| 日日干狠狠操夜夜爽| 一级毛片久久久久久久久女| 免费观看人在逋| 欧美一区二区国产精品久久精品| 国产精品,欧美在线| 爱豆传媒免费全集在线观看| 日日撸夜夜添| 欧美bdsm另类| 国产极品天堂在线| 97人妻精品一区二区三区麻豆| 国产成人91sexporn| 国产 一区精品| 国产精品国产三级专区第一集| 欧美一区二区精品小视频在线| 天堂中文最新版在线下载 | 免费人成在线观看视频色| 午夜激情福利司机影院| 久久精品综合一区二区三区| 日本午夜av视频| 精品少妇黑人巨大在线播放 | 婷婷色综合大香蕉| 亚洲成人精品中文字幕电影| 欧美一区二区精品小视频在线| 我的老师免费观看完整版| 在线a可以看的网站| 亚洲最大成人中文| 国产成人一区二区在线| 99热精品在线国产| 精品少妇黑人巨大在线播放 | av又黄又爽大尺度在线免费看 | 国产成人精品婷婷| 成人漫画全彩无遮挡| 舔av片在线| 国国产精品蜜臀av免费| 变态另类丝袜制服| 欧美高清性xxxxhd video| 精品欧美国产一区二区三| 在线免费观看不下载黄p国产| 国产中年淑女户外野战色| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 亚洲国产成人一精品久久久| 成人美女网站在线观看视频| 亚洲av成人精品一区久久| 夜夜爽夜夜爽视频| 免费观看精品视频网站| 99热精品在线国产| 国产免费又黄又爽又色| 国产精品麻豆人妻色哟哟久久 | 最后的刺客免费高清国语| av国产久精品久网站免费入址| 国产黄色小视频在线观看| 舔av片在线| 狠狠狠狠99中文字幕| 午夜免费激情av| 水蜜桃什么品种好| 欧美3d第一页| 国产单亲对白刺激| 国产精品久久电影中文字幕| 欧美成人午夜免费资源| 尤物成人国产欧美一区二区三区| 青春草视频在线免费观看| 免费av观看视频| 在线播放无遮挡| 免费看光身美女| 成年女人看的毛片在线观看| 日本免费一区二区三区高清不卡| 国产av在哪里看| 国产精品人妻久久久影院| 一级毛片电影观看 | 视频中文字幕在线观看| 国产成人a∨麻豆精品| 午夜老司机福利剧场| 亚洲最大成人手机在线| 极品教师在线视频| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 在线播放国产精品三级| 老司机影院毛片| 色吧在线观看| 国产精品久久久久久av不卡| 成人亚洲精品av一区二区| 麻豆成人av视频| 欧美三级亚洲精品| 国产一区二区三区av在线| 日日撸夜夜添| 丝袜美腿在线中文| 51国产日韩欧美| 18禁动态无遮挡网站| 亚洲国产精品国产精品| 色网站视频免费| 国产精品综合久久久久久久免费| 免费看a级黄色片| 亚洲怡红院男人天堂| 国产亚洲最大av| 日韩欧美精品免费久久| 国产久久久一区二区三区| 国产探花极品一区二区| 欧美区成人在线视频| 中文字幕av成人在线电影| 日韩强制内射视频| 亚洲国产最新在线播放| 69av精品久久久久久| 免费黄色在线免费观看| 亚洲不卡免费看| 亚洲三级黄色毛片| 久久久久免费精品人妻一区二区| 亚洲欧美日韩东京热| 日日啪夜夜撸| 国产成年人精品一区二区| 欧美性感艳星| 狠狠狠狠99中文字幕| 成人二区视频| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 国产 一区精品| 日韩三级伦理在线观看| 好男人视频免费观看在线| 国产片特级美女逼逼视频| 久久99热这里只频精品6学生 | 七月丁香在线播放| 91久久精品国产一区二区三区| 久久国内精品自在自线图片| 成人欧美大片| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看 | 亚洲国产欧美人成| 久久久久九九精品影院| 欧美97在线视频| 日本五十路高清| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| av天堂中文字幕网| 免费电影在线观看免费观看| 一区二区三区免费毛片| 九九爱精品视频在线观看| 国产免费男女视频| 亚洲成人中文字幕在线播放| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 人人妻人人澡人人爽人人夜夜 | 免费观看在线日韩| 舔av片在线| 欧美色视频一区免费| 老女人水多毛片| 特级一级黄色大片| 亚洲精品自拍成人| 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 天天躁日日操中文字幕| 毛片一级片免费看久久久久| 久久久国产成人精品二区| 欧美高清成人免费视频www| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 天堂网av新在线| 国产一级毛片七仙女欲春2| or卡值多少钱| 晚上一个人看的免费电影| 亚洲无线观看免费| 日本五十路高清| 日韩av在线大香蕉| 国产精品久久久久久久久免| 日韩欧美在线乱码| 国产乱人视频| 嫩草影院精品99| 2021少妇久久久久久久久久久| 国产av一区在线观看免费| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 少妇丰满av| 国产在视频线精品| 成年av动漫网址| 看十八女毛片水多多多| 少妇丰满av| 综合色丁香网| 久热久热在线精品观看| av专区在线播放| 人妻夜夜爽99麻豆av| 久久99热这里只有精品18| 亚洲精品国产av成人精品| 特大巨黑吊av在线直播| 成年版毛片免费区| 成人国产麻豆网| 成人漫画全彩无遮挡| 三级国产精品片| 国产激情偷乱视频一区二区| 边亲边吃奶的免费视频| 一边亲一边摸免费视频| 免费大片18禁| 欧美成人免费av一区二区三区| 特级一级黄色大片| 村上凉子中文字幕在线| 久久99热这里只频精品6学生 | 国产老妇伦熟女老妇高清| 在线免费观看不下载黄p国产| 免费观看精品视频网站| 亚洲中文字幕日韩| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频| 国产精品久久电影中文字幕| 小蜜桃在线观看免费完整版高清| 国内少妇人妻偷人精品xxx网站| 久久久成人免费电影| 丰满少妇做爰视频| 欧美潮喷喷水| 亚洲怡红院男人天堂| 在线免费十八禁| 伊人久久精品亚洲午夜| 日日撸夜夜添| 国产亚洲一区二区精品| 全区人妻精品视频| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 内射极品少妇av片p| 九色成人免费人妻av| 极品教师在线视频| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 亚洲久久久久久中文字幕| 伦精品一区二区三区| 热99在线观看视频| 日韩亚洲欧美综合| 人妻制服诱惑在线中文字幕| 国产成人精品婷婷| 成人二区视频| 亚洲成人av在线免费| 国产一区二区亚洲精品在线观看| 亚洲av不卡在线观看| 熟女电影av网| 亚洲欧洲日产国产| 少妇人妻精品综合一区二区| www.av在线官网国产| 亚洲国产精品专区欧美| 亚洲最大成人手机在线| 午夜视频国产福利| 日本午夜av视频| 一级毛片我不卡| 啦啦啦韩国在线观看视频| 婷婷色麻豆天堂久久 | 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩| 午夜亚洲福利在线播放| 狂野欧美白嫩少妇大欣赏| 国产在线一区二区三区精 | 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 久久人人爽人人片av| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 免费看av在线观看网站| 白带黄色成豆腐渣| 欧美精品国产亚洲| 99久国产av精品国产电影| 天堂av国产一区二区熟女人妻| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 国产精品永久免费网站| 免费看a级黄色片| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 人妻系列 视频| 三级毛片av免费| 日韩精品有码人妻一区| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 我的老师免费观看完整版| 亚洲欧洲日产国产| 国产大屁股一区二区在线视频| 26uuu在线亚洲综合色| 国产人妻一区二区三区在| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 三级国产精品片| av.在线天堂| 中文字幕熟女人妻在线| 日韩欧美国产在线观看| 自拍偷自拍亚洲精品老妇| 在现免费观看毛片| 麻豆成人av视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近2019中文字幕mv第一页| 午夜视频国产福利| 久久久午夜欧美精品| av卡一久久| 国产精品电影一区二区三区| 哪个播放器可以免费观看大片| 99久久精品国产国产毛片| 免费看光身美女| 国产精品久久久久久精品电影| 午夜激情欧美在线| 欧美高清成人免费视频www| 日产精品乱码卡一卡2卡三| 校园人妻丝袜中文字幕| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 嫩草影院新地址| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 国产精品爽爽va在线观看网站| 成人鲁丝片一二三区免费| 久久精品国产亚洲av涩爱| 国内揄拍国产精品人妻在线| 亚洲va在线va天堂va国产| 夜夜爽夜夜爽视频| 国产真实伦视频高清在线观看| 一夜夜www| 蜜桃久久精品国产亚洲av| 欧美精品一区二区大全| 欧美一区二区亚洲| 99久国产av精品| 99视频精品全部免费 在线| 欧美性感艳星| 欧美另类亚洲清纯唯美| 精品国产一区二区三区久久久樱花 | 菩萨蛮人人尽说江南好唐韦庄 | 99热6这里只有精品| 伊人久久精品亚洲午夜| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 国产老妇女一区| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 伊人久久精品亚洲午夜| 亚洲伊人久久精品综合 | 如何舔出高潮| 全区人妻精品视频| 日韩强制内射视频| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 成人午夜高清在线视频| videos熟女内射| 日韩av在线免费看完整版不卡| 欧美日韩精品成人综合77777| 三级国产精品片| 女人久久www免费人成看片 | 国产精品国产三级国产专区5o | 成人午夜高清在线视频| 看片在线看免费视频| 精品一区二区免费观看| 热99re8久久精品国产| 1000部很黄的大片| 久久6这里有精品| 国产成人精品一,二区| 亚洲自拍偷在线| 国产精品一区www在线观看| 网址你懂的国产日韩在线| 亚洲av电影在线观看一区二区三区 | 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 国产伦理片在线播放av一区| 亚洲最大成人av| 久久人人爽人人片av| 日韩av不卡免费在线播放| 久99久视频精品免费| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 插逼视频在线观看| av国产久精品久网站免费入址| 精品久久久久久久久久久久久| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 三级国产精品片| 午夜福利网站1000一区二区三区| 午夜福利在线观看吧| 亚洲无线观看免费| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 91久久精品电影网| 国产精品久久视频播放| 日韩国内少妇激情av| 久久精品综合一区二区三区| 国产精品久久电影中文字幕| 国产极品天堂在线| 午夜爱爱视频在线播放| 中文亚洲av片在线观看爽| 久久综合国产亚洲精品| 精品久久久噜噜| 国产精品无大码| 人妻少妇偷人精品九色| 在线观看66精品国产| av视频在线观看入口| 91精品一卡2卡3卡4卡| 国产黄a三级三级三级人| 亚洲精品一区蜜桃| av国产免费在线观看| 人妻系列 视频| 边亲边吃奶的免费视频| 好男人视频免费观看在线| 91狼人影院| 青春草亚洲视频在线观看| 亚洲人成网站高清观看| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 亚洲伊人久久精品综合 | 熟女人妻精品中文字幕| 亚洲国产高清在线一区二区三| 69人妻影院| 亚洲丝袜综合中文字幕| 色综合亚洲欧美另类图片| 欧美另类亚洲清纯唯美| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| av福利片在线观看| 午夜亚洲福利在线播放| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 建设人人有责人人尽责人人享有的 | 日本五十路高清| 97热精品久久久久久| 国产精品99久久久久久久久| 久久久久久国产a免费观看| 高清在线视频一区二区三区 | 国产成人福利小说| 在线播放国产精品三级| 黄片wwwwww| 桃色一区二区三区在线观看| 级片在线观看| 国产av在哪里看| 毛片女人毛片| 天天一区二区日本电影三级| 综合色丁香网| 日韩视频在线欧美| 国产高清视频在线观看网站| 丝袜喷水一区| 日韩制服骚丝袜av| 日本三级黄在线观看| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 亚洲精品成人久久久久久| 国产一级毛片在线| 日本五十路高清| 99热这里只有是精品在线观看| 日产精品乱码卡一卡2卡三| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 欧美色视频一区免费| 身体一侧抽搐| 2021少妇久久久久久久久久久| 欧美xxxx性猛交bbbb| 特大巨黑吊av在线直播| 日韩中字成人| 日本黄色片子视频| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 免费观看在线日韩| 亚洲av免费高清在线观看| 免费观看在线日韩| 亚洲最大成人手机在线| 永久免费av网站大全| 午夜激情欧美在线| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 三级国产精品片| 3wmmmm亚洲av在线观看| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 老司机影院成人| 日韩一本色道免费dvd| 免费黄色在线免费观看| 国产三级中文精品| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 精品欧美国产一区二区三| 中文字幕av成人在线电影| 一级黄片播放器| 精品人妻视频免费看| 国产精品久久久久久久久免| 最新中文字幕久久久久| 亚洲人成网站在线播| 亚洲综合色惰| 最近最新中文字幕大全电影3| 内地一区二区视频在线| 精品不卡国产一区二区三区| 亚洲四区av| 国产乱人视频| 免费黄色在线免费观看| 黄片无遮挡物在线观看| 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 男女那种视频在线观看| 久久精品影院6| 欧美高清成人免费视频www| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 最后的刺客免费高清国语|