• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Banach空間中可數(shù)簇全擬-φ-漸近非擴張非自映射的強收斂定理

    2014-03-19 09:34:04李小蓉
    關鍵詞:有界不動點子集

    李小蓉

    (宜賓學院 數(shù)學學院, 四川 宜賓 644000)

    1 預備知識

    本文假設E是實Banach空間,E*是E的對偶,C是E的非空閉凸子集,J:E→2E*是按照如下方式定義的賦范對偶映射

    J(x)={f*∈E*:〈x,f*〉=

    ‖x‖2=‖f*‖2,x∈E}.

    都有

    設U={x∈E:‖x‖=1}是單位球面,稱Banach空間E是光滑的,如果對?x,y∈U,極限

    存在.如果對?x,y∈U,極限一致存在,則稱E是一致光滑的.

    設C是Banach空間E的一非空閉凸子集,稱映射T:C→E是非擴張的,如果對?x,y∈C都有

    ‖Tx-Ty‖≤‖x-y‖.

    ‖Tnx-Tny‖≤kn‖x-y‖, ?x,y∈C.

    本文用F(T)表示T的不動點集,即F(T)={x∈C:x=Tx}.設C是Banach空間E的子集,稱映射C是E的收縮核,如果存在連續(xù)的映射P:E→C,使得Px=x,?x∈C.顯然一致凸Banach空間的每個非空閉凸子集都是E的收縮核.稱映射P:E→C是非擴張的收縮映射,如果P是非擴張的,且是C到E的收縮的映射.

    現(xiàn)在假設E是光滑的、嚴格凸、自反的Banach空間,C是E的非空閉凸子集.本文用φ:E×E→R+={a∈R|a>0}表示Lyapunov函數(shù)

    φ(x,y)=‖x‖2-2〈x,Jy〉+‖y‖2, ?x,y∈E.

    由φ的定義可得

    (‖x‖-‖y‖)2≤φ(x,y)≤

    (‖x‖+‖y‖)2, ?x,y∈E,

    φ(x,J-1(λJy+(1-λ)Jz)≤

    λφ(x,y)+(1-λ)φ(x,z), ?x,y∈E.

    ?x∈E.

    引理1.1[2]設E是嚴格凸、光滑的Banach空間,則φ(x,y)=0當且僅當x=y.

    引理1.2[2]E是自反、嚴格凸、光滑的Banach空間,D是E的非空閉凸子集,則有

    ?x∈D,y∈E.

    引理1.3[2]E是自反、嚴格凸、光滑的Banach空間,D是E的非空閉凸子集,則有

    ?〈z-y,J(x)-J(z)〉≥0, ?y∈D.

    定義1.5設E是實Banach空間,C是E的非空閉凸子集,

    1) 稱C是E的收縮核,如果存在連續(xù)函數(shù)P:E→C,使得Px=x,?x∈C;

    2) 稱P:E→C為保核收縮映射,如果P2=P;

    3) 稱P:E→C為非擴張的保核收縮映射,如果P是非擴張的,且為保核收縮映射.

    定義1.6設P:C→E是非擴張的收縮映射,

    1) 稱自映射T:C→C為擬-φ-非擴張映射,如果F(T)≠?且

    φ(u,Tnx)≤φ(u,x),

    ?x∈C,u∈F(T),n≥1;

    2) 稱T:C→E為擬-φ-非擴張非自映射,如果F(T)≠?且

    φ(u,T(PT)n-1x)≤φ(u,x),

    ?x∈C,u∈F(T),n≥1;

    3) 稱T:C→E為擬-φ-漸近非擴張非自映射,如果F(T)≠?,且存在實序列{kn}?[1,∞),kn→1使得

    φ(u,T(PT)n-1x)≤knφ(u,x),

    ?x∈C,u∈F(T),n≥1.

    注1.7由定義1.5可知,如果T:C→E是擬-φ-非擴張非自映射,則T為擬-φ-漸近非擴張非自映射(取kn=1).

    引理1.8[3]設E是一致凸、光滑、自反的Banach空間,序列{xn}和{yn}?E.如果φ(xn,yn)→0,且{xn}或{yn}有界,則‖xn-yn‖→0.

    φ(u,Ti(PTi)n-1x)≤φ(u,x)+νnζ(φ(u,x))+μn,

    ?n≥1,i≥1, ?x∈C,u∈F.

    多值的和單值的全擬-φ-漸近非擴張映像的例子見文獻[4],該文中已指出,通常的廣義漸近非擴張映像是全擬-φ-漸近非擴張映像的特例.

    定義1.10稱非自映射T:C→E為一致L-Lipschitz連續(xù),如果存在常數(shù)L>0使得

    ‖T(PT)n-1x-T(PT)n-1y‖≤L‖x-y‖,

    ?x,y∈C, ?n≥1.

    引理1.11設E是一致光滑、嚴格凸,且具有Kadec-Klee性質的Banach空間,C是E的非空閉凸子集.T:C→E是全擬-φ-漸近非擴張非自映射,ζ:R+={a∈R|a>0}→R+={a∈R|a>0}是嚴格增的連續(xù)函數(shù),其中,ζ(0)=0,且當n→∞時,非負實序列νn→0,μn→0,如果μ1=0,則T的不動點集F(T)是閉集合.

    證明令序列{un}?F(T),其中當n→∞時,un→u.由于T是全擬-φ-漸近非擴張非自映射,且μ1=0,故可得

    故φ(u,Tu)=0,即u∈F(T).因此F(T)是閉集合.

    關于漸近非擴張自映射或非自映射的強弱收斂、相對非擴張、擬-φ-非擴張、擬-φ-漸近非擴張自映射和非自映射的強弱收斂性,參見文獻[5-29].

    2 主要結論

    定理2.1設E是一致光滑、嚴格凸、自反,且具有Kadec-Klee性質的Banach空間,C是E的非空閉凸子集.令{Ti:C→E,i=1,2,3,…}是一簇一致全擬-φ-漸近非擴張非自映射,對?i≥1,Ti都是一致Li-Lipschitz連續(xù)映射.設實序列{αn}?[0,1],{βn}?(0,1)滿足以下條件:

    設xn是按以下方式生成的序列

    ?x1∈E,C1=C;

    yn,i=J-1[αnJx1+(1-αn)(βnJxn+

    (1-βn)JTi(PTi)n-1xn],i≥1;

    φ(z,x1)+(1-αn)φ(z,xn)+ξn};

    其中

    證明分5步證明此定理.

    1) 首先證F和Cn是C的閉凸子集.

    由引理1.11知F(Ti)是閉集合,又已知F是C的有界凸子集,故F是C的閉凸子集.

    設序列{un}?F(T),且un→u.由于Ti:C→E是一簇全擬-φ-漸近非擴張非自映射,故

    由已知C1=C是閉凸的.設當n≥2時Cn是閉凸集,下面證Cn+1是閉凸集.

    φ(z,x1)+(1-αn)φ(z,xn)+ξn}=

    (1-αn)φ(z,xn)+ξn}∩Cn=

    2(1-αn)〈z,Jxn〉-2〈z,Jyn,i〉≤

    αn‖x1‖2+(1-αn)‖xn‖2-‖yn,i‖2}∩Cn,

    故Cn+1是閉凸集.

    2) 證明對?n≥1有F?C.

    顯然有F?C1=C.設對某個n≥2有F?Cn,令

    wn,i=J-1(βnJxn+(1-βn)JTi(PTi)n-1xn),

    對任何u∈F?Cn有

    φ(u,yn,i)=φ(u,J-1(αnJx1+(1-αn)Jwn,i))≤

    αnφ(u,x1)+(1-αn)φ(u,wn,i),

    φ(u,wn,i)=φ(u,J-1(βnJxn+

    (1-βn)JTi(PTi)n-1xn))≤

    βnφ(u,xn)+(1-βn)φ(u,Ti(PTi)n-1xn)≤

    βnφ(u,xn)+(1-βn)(φ(u,xn)+

    νnζ(φ(u,xn))+μn)=

    φ(u,xn)+(1-βn)(νnζ(φ(u,xn))+μn).

    因此可得

    {φ(u,xn)+(1-βn)(νnζ(φ(u,xn))+μn)}≤

    αnφ(u,x1)+(1-αn){φ(u,xn)+

    αnφ(u,x1)+(1-αn)φ(u,xn)+

    αnφ(u,x1)+(1-αn)φ(u,xn)+ξn,

    其中

    即u∈Cn+1,因此F?Cn+1.

    3) 證明序列{xn}?C強收斂于C中一點u*.

    〈xn-y,Jx1-Jxn〉≥0, ?y∈Cn.

    又因為對?n≥1,F?Cn,故可得

    〈xn-u,Jx1-Jxn〉, ?u∈F.

    由引理1.2知,對?n≥1,?u∈F有

    φ(u,x1)-φ(u,xn)≤φ(u,x1).

    φ(xni,x1)≤φ(u*,x1), ?ni≥1.

    由于范數(shù)‖·‖是弱下半連續(xù)的,故可得

    ‖u*‖2-2〈u*,Jx1〉+‖x1‖2=φ(u*,x1),

    則有

    且‖xni‖→‖u*‖.因為xni?u*和E具有Kadec-Klee性質可得

    由φ(xn,x1)收斂和

    可得

    φ(xn,x1)=φ(u*,x1).

    現(xiàn)設存在序列{xnj}?{xn}也滿足xnj→q,則由引理1.2可得

    φ(u*,x1)-φ(u*,x1)=0,

    故u*=q且

    因此

    4)證明u*∈F.

    因為xn+1∈Cn+1和αn→0,故

    (1-αn)φ(xn+1,xn)+ξn→0,n→∞.

    由于xn→u*,且由引理1.7可得,對?i≥1有

    φ(u,Ti(PTi)n-1xn)≤φ(u,xn)+

    νnζ(φ(u,xn))+μn,

    故{Ti(PTi)n-1xn}是一致有界的.

    ‖wn,i‖=‖J-1(βnJxn+

    (1-βn)JTi(PTi)n-1xn)‖≤

    βn‖xn‖+(1-βn)‖Ti(PTi)n-1xn‖≤

    ‖xn‖+‖Ti(PTi)n-1xn‖,

    即{wn,i}是一致有界序列.

    由假設αn→0,對?i≥1可得

    因為J在E*的每個有界閉子集下是一致連續(xù)的,對?i≥1可得

    J在E的每個子集下是一致連續(xù)的可得

    (1-βn)(JTi(PTi)n-1xn-Ju*)‖=

    由條件(ii)可得

    由于J是一致連續(xù)的,故

    ?i≥1.

    對?i≥1,Ti是一致Li-Lipschitz連續(xù)可得

    ‖Ti(PTi)nxn-Ti(PTi)n-1xn‖≤

    ‖Ti(PTi)nxn-Ti(PTi)n-1xn+1‖+

    ‖Ti(PTi)nxn+1-xn+1‖+

    ‖xn+1-xn‖+‖xn-Ti(PTi)n-1xn‖≤

    (Li+1)‖xn+1-xn‖+‖Ti(PTi)nxn+1-xn+1‖+

    ‖xn-Ti(PTi)n-1xn‖.

    因為

    且xn→u*,因此可得

    由TiP的連續(xù)性,可得TiPu*=u*.因為u*∈C,Pu*=u*,故Tiu*=u*.由于i的任意性知u*∈F.

    注2.2定理2.1與參考文獻中的結果不同之處在于:本文在具有Kadec-Klee性質的一致光滑和嚴格凸Banach空間中研究了一類完全擬-φ-漸近非擴張非自映像簇的公共不動點的迭代逼近問題.而在參考文獻中討論的是:在一致凸和一致光滑的Banach空間中漸近非擴張非自映像(或廣義漸近非擴張非自映像簇)的公共不動點的迭代逼近問題.本文的結果改進和推廣了這些文獻中的相應的結果.

    致謝宜賓學院青年基金項目(2010Q29)對本文給予了資助,謹致謝意.

    [1] Goebel K. Topics in Metric Fixed Piont Theory: Cambridge Studies in Advanced Mathematics[M]. Cambridge:Cambridge University Press,1990.

    [2] Alber Y I. Metric and Generalized Projection Operators in Banach Spaces:Properties and Applications[C]//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York:Marcel Dekker,1996:15-50.

    [3] Kiziltunc H, Temir S. Convergence theorems by a new iteration process for a finite family of nonself asymptotically nonexpansive mappings with errors in Banach spaces[J]. Comput Math Appl,2011,61(9):2480-2489.

    [4] Chang S S. Strong convergence theorems of nonlinear operator equations for countable family of multivalued total quasi-φ-asymptotically nonexpansive mappings with applications[J]. Fixed Point Theory Appl,2012:69.

    [5] Xu H K, Yin X M. Strong convergence theorems for nonexpansive nonself-mappings[J]. Nonlinear Anal,1995,24:223-228..

    [6] Takahashi W, Kim G E. Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces[J/OL]. Nonlinear Anal,1998(3),doi:10.1016/S0362-546X(97)00482-3.

    [7] Chidume C E, Ofoedu E U, Zegeye H. Strong and weak convergence theorems for asymptotically nonexpansive mappings[J]. J Math Anal Appl,2003,280:364-374.

    [8] Alber Y I, Reich S, Yao J C. Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces[J]. Abst Appl Anal,2003(2003):193-216.

    [9] Matsushita S, Kuroiwa D. Approximation of fixed points of nonexpansive nonself-mappings[J]. Sci Math Jpn,2003,57:171-176.

    [10] Song Y, Chen R. Viscosity approximation methods for nonexpansive nonself-mappings[J]. Math Anal Appl,2006,321:316-326.

    [11] Chang S S, Joseph Lee H W, Chan C K. A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications[J]. Nonlinear Anal:TMA,2010,73:2260-2270.

    [12] Su Y F, Xu H K, Zhang X. Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications[J]. Nonlinear AnalTMA,2010,73:3890-3906.

    [13] Chang S S, Chan C K, Joseph Lee H W. Modified Block iterative algorithm for quasi-φ-asymptotically nonexpansive mappings and equilibrium problem in Banach spaces[J]. Appl Math Comput,2011,217:7520-7530.

    [14] YIldIrIm I, Ozdemir M. A new iterative process for common fixed points of finite families of non-self-asymptotically non-expansive mappings[J]. Nonlinear Anal:TMA,2009,71(3/4):991-999.

    [15] Yang L P, Xie X S. Weak and strong convergence theorems of three step iteration process with errors for nonself-asymptotically nonexpansive mappings[J]. Math Comput Model,2010,52(5/6):772-780.

    [16] Wang L. Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings[J]. J Math Anal Appl,2006,323(1):550-557.

    [17] Wang L. Explicit iteration method for common fixed points of a finite family of nonself asymptotically nonexpansive mappings[J]. Comput Math Appl,2007,53(7):1012-1019.

    [18] Pathak H K, Cho Y J, Kang S M. Strong and weak convergence theorems for nonself-asymptotically perturbed nonexpansive mappings[J]. Nonlinear Anal:TMA,2009,70(5):1929-1938.

    [19] Thianwan S. Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space[J]. J Comput Appl Math,2009,224(2):688-695.

    [20] Qin X L, Cho S Y, Wang T Z, et al. Convergence of an implicit iterative process for asymptotically pseudocontractive nonselfmappings[J/OL]. Nonlinear Anal,2011,doi:10.1016/j.na.2011.04.031.

    [21] Hao Y, Cho S Y, Qin X. Some weak convergence theorems for a family of asymptotically nonexpansive nonself mappings[J/OL]. Fixed Point Theory Appl,2010,doi:10.1155/2010/218573.

    [22] Guo W P, Guo W. Weak convergence theorems for asymptotically nonexpansive nonself-mappings[J]. Appl Math Lett,2011,217(24):2181-2185.

    [23] Nilsrakoo W, Sajung S. Strong convergece theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces[J]. Appl Math Comput,2011,217(14):6577-6586.

    [24] Chang S S, Joseph Lee H W, Chan C K, et al. Approximation theorems for total quasi-φ-asymptotically nonexpansive mappings with applications[J]. Appl Math Comput,2011,218:2921-2931.

    [25] Wang Z M, Su Y F, Wang D X, et al. A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces[J]. J Comput Appl Math,2011,235:2364-2371.

    [26] Zegeye H, Ofoedu E U, Shahzad N. Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings[J]. Appl Math Comput,2010,216:3439-3449.

    [27] Chang S S, Joseph Lee H W, Chan C K, et al. A modified Halpern-type iterative algorithm for totally quasi-φ-asymptotically nonexpansive mappings with applications[J]. Appl Math Comput,2012,218(11):6489-6497.

    [28] Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space[J]. Appl Math Mech,2009,30:1105-1112.

    [29] 雷賢才. 全漸近非擴張映象和無限族非擴張映象的強收斂定理[J]. 四川師范大學學報:自然科學版,2013,36(1):71-76.

    猜你喜歡
    有界不動點子集
    復Banach空間的單位球上Bloch-型空間之間的有界的加權復合算子
    由一道有關集合的子集個數(shù)題引發(fā)的思考
    拓撲空間中緊致子集的性質研究
    一類抽象二元非線性算子的不動點的存在性與唯一性
    關于奇數(shù)階二元子集的分離序列
    一類具低階項和退化強制的橢圓方程的有界弱解
    活用“不動點”解決幾類數(shù)學問題
    淺談正項有界周期數(shù)列的一些性質
    每一次愛情都只是愛情的子集
    都市麗人(2015年4期)2015-03-20 13:33:22
    不動點集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對合
    蚌埠市| 琼结县| 宝鸡市| 昂仁县| 夏河县| 仲巴县| 彰化县| 毕节市| 越西县| 秦安县| 齐河县| 肥乡县| 罗田县| 广元市| 富裕县| 郎溪县| 汶上县| 西乌珠穆沁旗| 乌恰县| 门源| 云南省| 黄骅市| 甘孜| 绵阳市| 临安市| 凤凰县| 宁陕县| 循化| 昌平区| 旬阳县| 南涧| 万山特区| 策勒县| 河北省| 临猗县| 青浦区| 辽宁省| 耒阳市| 丰城市| 古丈县| 资兴市|