• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多年凍土區(qū)低層建筑地下室土基的解凍計算

    2014-03-19 03:44:56TerentyKornilovIgorRozhinEkaterinaKononovaDmitryGrigorievAyynaDanilova
    關(guān)鍵詞:俄羅斯科學(xué)院土基多年凍土

    Terenty A.Kornilov,Igor I.Rozhin,Ekaterina A.Kononova,Dmitry A.Grigoriev,Ayyna N.Danilova

    (1.東北聯(lián)邦大學(xué)工程技術(shù)學(xué)院,雅庫茨克677000,俄羅斯;2.俄羅斯科學(xué)院西伯利亞分院石油和天然氣研究所,雅庫茨克677980,俄羅斯)

    0 Introduction

    In the conditions of permafrost one of the basic principles of construction is a preservation in a frozen condition of foundation of engineering constructions in the course of their maintenance which provides the stability,reliability and increases the service life of objects.For low-rise buildings of individual construction the surface basements are used primarily surface foundations bedding on filling,as a rule,without use of devices for airing of foundations and without sufficient thermal insulation of socle overlapping.As a result,there are cases of thawing of permafrost soil foundations,accordingly,the decrease of bearing ability of the basements and as a result,uneven deformations of buildings.

    For relatively permafrost foundations of small width buildings,the thawing of foundations in operation when used foundation,capable to perceive uneven rainfall,for example,the cross-tape or slabby basements is allowed.It is as an alternative offered to provide and keep stability of permafrost soil for the entire period of house maintenance when using the superficial rigid basements on the adding condensed with gravel,at the expense of device of a heat-insulation layer under the house.

    In the design and construction of buildings and constructions on frozen soil are widely used construction norms and rules,which are based on synthesis of long-term experience and on results of natural and laboratory experiments.However,they don't consider all variety of service conditions and types of constructed designs.At the same time computational experiment gives the chance to vary a wide range of entry conditions(meteorological data,temperature and heterogeneity of soil foundations,existence of thawed zones,salinity of ground waters),and also conditions of thermal influence of a construction on soil.These opportunities need to be used in cases,when it comes to the new types of construction designs which aren't reflected in standards.

    Technological schemes and design features of constructions contacting with permafrost soils have to be considered surely at their design,construction and maintenance.Here the choice of correct decision is impossible without scientifically reasonable understanding of thermal processes occurring in system“frozen or thawed soil-engineering structure-environment”.For this purpose,it is necessary to know a temperature field of the soil foundation at any moment that gives the chance to predict soundly the stability of structures.However,it is difficult to set up such predictions for long term,since at the alternating temperature of the environment one has to solve the multifront Stefan's problem.The similar circumstance completely excludes possibility of analytical methods application.

    With the development of computer facilities there is an opportunity to obtain rather authentic data on thermal processes the study of which in laboratory or natural conditions is very difficult,sometimes it is simply impossible and always demands considerable expenses of means and time.Moreover,results of such experiments practically aren't reproduced so they can't be used for long forecasting.This opportunity is realized in a method of computational experiment which essence is expressed by a triad“mathematical modelcomputational algorithm-the program realizing it”.

    1 Statement of the problem and the method of solution

    In this work by methods of mathematical modeling is investigated the thawing process of permafrost soil foundations of low-rise buildings with surface basements taking into account dynamics of temperature change of atmospheric air,total solar radiation,albedo of a surface,thickness of snow cover and coefficient of convective heat transfer of air.

    In mathematical model the following assumptions were made:

    1)heat transfer in the soil foundation is purely conductive;therefore,mass transfer processes are not taken into account in calculating the temperature field;

    2)thermophysical characteristics of the layers of the natural foundation are assumed piecewise-constant for the thawed and frozen states,taking into account their slight variation in the temperature range considered;

    3)phase transition of moisture occurs at a constant temperature(Tph-const)without the initial humidity(ω-const)and volume alteration.

    The mathematical description of dynamics of a two-dimensional temperature field in soil foundation is executed on basis of the general statement of the Stefan problems.The model includes the quasi-linear heat conduction equation with the corresponding initial and boundary conditions,which taking into account multiple layers of the soil foundation has an appearance:

    Here λk(T)and?Ck(T)—coefficient of thermal conductivity and volumetric heat capacity k-of the soil foundation layer which are approximated as piecewiseconstant(smoothed)functions on temperature T in a vicinity of phase transition;y,z—longitudinal and vertical coordinates,t—time.The area of soil foundation by depth Bzand width By=By1+By2,where By1—half-width of building basement,By2—area size out of building basement is considered.

    The numerical solution of problems of this kind is carried out by the methods based on the way,stated in the monograph[1].For this method authors of the works[2-3]developed an economicalfront-capturing difference scheme with the smoothing of discontinuous coefficients in the heat conductivity equation for temperature in the phase transition neighborhood.The schemes with a smoothing of coefficients are characterized by that the interphase boundary is not identified explicitly,the homogeneous difference schemes are used.The phase transition heat W=(qph+Tphcp)ρω is introduced by using the Dirac δ-function as a concentrated heat capacity in the heat capacity coefficient ?Ck(T).In the last expression qph-specific heat of the phase transition,cp-the specific heat capacity of water,ρ-soil density.

    Temperature field in an initial time point is set in the form of function depending only on vertical coordinate z:

    On ground surface of soil foundation boundary condition of the third sort taking into account heat receipts at expense of radiation is set[4]:

    where λ1—thermal conductivity of top layer of soil foundation,Ta—temperature of atmospheric air,αz—specified coefficient of heat transfer to upper bound of soil foundation—coefficient of heat transfer between ground surface and atmospheric air which depends on wind velocity υa[5],Qsr—total solar radiation,A—surface albedo.In settlement area where there is a building basement thermal radiation is neglected,that is at 0≤y≤By1is accepted Qsr=0.

    All layers of building basement,and also snow cover out of building are considered as thermal resistance in specified coefficient of heat transfer αz:

    where αin—coefficient of heat transfer between inner air and floor surface of building;R—general thermal resistance of the whole building basement design(socle overlapping);δs—thickness of snow cover.True heat conductivity(without mass transfer)of snow cover λs(W/m·℃)depends on density ρs(g/sm3)[4]:On borders of soil foundation layers conditions of ideal thermal contact,i.e.boundary conditions of the fourth sort(equality of temperatures and heat fluxes),are accepted.

    Also we accept a condition of symmetry and an equality condition to zero heat fluxes on sufficient removal from building borders:

    In the developed mathematical model of two-dimensional section of building basement with heat-insulating material are considered:dynamics of the cyclic change of atmospheric air temperature;the dependence coefficient of heat transfer between ground surface and atmospheric air on wind velocity.Besides,out of residential building change of snow cover,influence of total solar radiation and albedo of ground surface are considered.

    The problem(1)-(4)is solved by the finitedifference method using the transverse-longitudinal scheme(total approximation)[6-7].Thus the effective calculation of the two-dimensional problem is based on the method of splitting-up by spatial coordinates using the scheme of variable directions[8-9]and implicit methods to provide stability of the obtained one-dimensional problems.The resulting difference problem being nonlinear,its solution is found by the method of simple iterations and of sweeping(the tridiagonal inversion)algorithm.

    2 Results of the computational experiment

    Calculations are executed at basic data,which include:data on design of socle overlapping,on material structure of soil foundation and their heat and physical characteristics,given to thermometry,sizes of studied basement of building.Missing data(average monthly values of air temperature,velocity of a wind,total solar radiation and albedo of ground surface,and also each decade values of thickness and density of snow cover)were taken from the published reference or scientific books[4,10-14].

    Natural data of temperatures on depth are provided in Table 1 and Table 2 for permafrost-soil conditions of Namtsy village and Yakutsk City,which are accepted to entry conditions.Physical properties of multilayered soil foundation,where h-power of soil layer,and lower indexes mean are given in Table 3 and Table 4: th-thawed,f-frozen.These data are obtained on the basis of complex construction researches,and heat and physical properties of soil are accepted on standard values.

    Calculations of thermal mode of soil foundation under the building were carried out at following entrance data:qph=334 400 J/kg,cp=4 184 J/(kg ·℃),By=20 m;Bz=15 m,αin=8.7 W/(m2(℃).Temperature in a residential building is constant and equals to Ta=20℃.The variation of value of general thermal resistance of socle design is accepted for more frequently applied structure of basement part of building(dumping from PGS-300 mm,rubble-50 mm,a heat-insulation layer from PSB-S,sand-50 mm,air layer,board flooring-32 mm).

    Table 1 Temperatures on depth of soil foundation in the middle of October(Namtsy)

    Table 2 Temperatures on depth of soil foundation in the middle of March(Yakutsk)

    Table 3 Characteristics of layers of soil foundation for conditions of Namtsy

    Continued table 3

    Table 4 Characteristics of layers of soil foundation for conditions of Yakutsk

    In computational experiment was studied the influence of base design and width of low-rise buildings on dynamics of change of thawing bowl of soil under the building.Temperature fields of soil foundation and various configurations of thawing bowl depending on building sizes,thermal resistance of socle overlapping and permafrost-soil conditions in various time points are received.

    Fig.1 shows dynamics of change of thawing bowl of soil foundation under the building depending on value of general thermal resistance of basement,and Fig.2-depending on sizes of building basement.In these figures S is thawing depth.

    In Fig.3-Fig.6 configurations of thawing bowl under buildings where figures at curves correspond to years of maintenance of buildings are presented.The analysis of results showed that with increase in thermal resistance of buildings basements,that is,with increase in thickness of heater and air layer penetration of thermal indignations into soil is slowed down that promotes reduction of depth of thawing of soil foundation and increases its thermal stability.Moreover,from Fig.1,and Fig.4 follows Fig.3 that relation of depths of soil thawing on axis of symmetry of building in 50 years of maintenance in inverse proportion to relation of thermal resistance of basement.

    Fig.1 Changes of thawing bowl of soil foundation under building by width and time at building half-width of By1=3.5 m(Namtsy):1-R=5.13 m2·K/W;2-R= 7.44 m·2K/W

    The increase in width of building conducts,as one would expect,to increase in depth of thawing that is well visible from Fig.2,and also from Fig.4 and Fig.5.Physically this results from fact that with increase in width of building penetration of temperature wave from atmospheric air to foundation center(symmetry axis)is at a loss,that is,here thawing bowl is formed only under influence of thermal influence of construction.

    Fig.2 Change of thawing bowl of soil foundation under building by width and time at thermal resistanceof R= 7.44 m2(K/W(Namtsy):1-By1=3.5 m;2-By1=7.0 m;3-By1=10.0 m

    Fig.3 Configurations of thawing bowl under building,width of B=7 m and thermal resistance of R=5.13 m2·K/W(Namtsy)

    Fig.4 Configurations of thawing bowl under building,width of B=14 m and thermal resistance of R=7.44 m2·K/W(Namtsy)

    Fig.5 Configurations of thawing bowl under building,width of B=20 m and thermal resistance of R=7.44 m2·K/W(Namtsy)

    Fig.6 Configurations of thawing bowl under building,width B=20 m and thermal resistance of R=7.44 m2· K/W(Yakutsk)

    Influence like soil can be estimated,having compared results ofcalculations presented in Fig.5 (Namtsy)and Fig.6(Yakutsk).From these drawings follows that thawing depth for conditions of Yakutsk is less,than for conditions of Namtsy,in spite of fact that in the first case soil is damper,less dense and heatconducting.Here major importance has that fact that at the beginning of building maintenance in Yakutsk the soil foundation was in a frozen state,and temperature of freezing of soil because of salinity of steam space always is lower than 0℃,as defined a difference in depth of thawing approximately in 2 m.

    Results of computational experiment are compared to calculations for joint venture 25.13330.2012.Estimated two sizes:thawing depth on center of building and thawing depth on periphery.Results of comparison are presented in Table 5(Namtsy)and Table 6(Yakutsk),and for two combinations of base design and building width,but for different building sites-in Fig.7 and Fig.8.Previously we will notice that except distinctions in types of soil for Namtsy and Yakutsk,in the first case at the initial moment already there was a thawed layer of 2 m in depth that don't consider existing rules.

    Table 5 Comparison of calculated depths of thawing under building in the conditions of Namtsy

    Continued table 5

    Table 6 Comparison of calculated depths of thawing under building in the conditions of Yakutsk

    Continued table 6

    The main conclusion which follows from results presented in these tables,is that depth of soil thawing,calculated on existing rules,doesn't depend on thermal resistance of socle overlapping.

    For building site of Yakutsk of distinction for long terms of building maintenance of are more considerable,than for Namtsy(compare curves in Fig.7 and Fig.8).Besides here,as well as in case of Namtsy,existing rules give identical size of thawing for various thermal resistance of basement(see Table 6),and at small terms of maintenance(1 year and 5 years)these distinctions not only quantitative,but also qualitative (see curves 1 and 5 in Fig.7 and Fig.8).Partially these divergences of sizes of thawing can be explained that in SP 25.13330.2012 initial condition of thawing bowl(prior to building maintenance)and cyclic change of temperature of atmospheric air aren't considered,and all physical characteristics of soil foundation are averaged on depth,however to size of thermal resistance is rational to explain tolerance of results of calculation it is impossible.

    Fig.7 Comparison of results of calculation of thawing bowl,existing rules received by technique(dot curves)and numerical modeling (continuous curves)at B=7 m,R=5.13 m2 (K/W(October,Namtsy)

    Fig.8 Comparison of results of calculation of thawing bowl,existing rules received by technique(dot curves)and numerical modeling (continuous curves)at B=20 m,R=7.44 m2 (K/W(April,Yakutsk)

    3 Conclusions

    The general conclusion which follows from the comparative analysis of results of calculation:technique of existing rules isn't suitable for determination of depth of thawing of soil under buildings of small sizes and(or)with big warming of socle part.

    [1] Tikhonov A N,Samarsky A A.Equations of the mathematical physics[M],5th edition.Moscow:Nauka,1977.

    [2] Samarsky A A,Moiseenko B D.Economical shock-capturing scheme for the multidimensional Stefan problems[J].Comput.Math.and Math.Phys.1965,5(5):816-827.

    [3] Budak B M,Solovieva E N,Uspensky A B.Difference method with coefficients smoothing for solving the Stefan problem[J].Comp.Math.and Math.Phys.,1965,5(5):828-840.

    [4] Pavlov A V.Soil heat transfer with atmosphere in northern and middle atitudes of USSR territory[M].Yakutsk:Yakut book publishing house,1975.

    [5] Porkhayev G V,Shchelokov V K.Forecasting of temperature mode of permafrost soil in built-up territories[M].Leningrad:Stroyizdat,1980.

    [6] Samarsky A A.Introduction to the theory of difference schemes[M].Moscow:Nauka,1971.

    [7] Kalitkin N N.Numerical methods[M].Moscow:Nauka,1978.

    [8] Yanenko N N.The subincremental method of solving the multidimensional problems of the mathematical physics[M].Novosibirsk:Nauka,1967.

    [9] Yanenko N N.The method of fractional steps[M].New York: Springer-Verlag,1971.

    [10]Gavrilova M K.Climate of the Central Yakutia[M].Yakutsk: Yakut book publishing house,1973.

    [11]SNIP(Building Norms and Rules)II-3-79*.Construction heating engineer[M].Moscow:State Constr.of Russia,1998.

    [12]SNIP(Building Norms and Rules)23-01-99.Construction climatology[M].Moscow:State Constr.of Russia,2000.

    [13]Fedorov A N,Maksimov T K,Gavrilyev P P,et al.Spasskaya cave:Complex researches of permafrost landscapes[M].Yakutsk: Publishing house of Permafrost Institute SB RAS,2006.

    [14]SP(Set of Rules)25.13330.2012.Bases and foundations on permafrost soil[M].Moscow,2012.

    猜你喜歡
    俄羅斯科學(xué)院土基多年凍土
    程耿東:俄羅斯科學(xué)院外籍院士里的中國科學(xué)家
    華人時刊(2023年7期)2023-05-17 09:04:20
    市政道路土基施工常見質(zhì)量問題及解決措施
    四川水泥(2022年2期)2022-02-25 04:04:38
    中國東北多年凍土退化對植被季節(jié)NDVI 的影響研究
    腳手架樓(大家拍世界)
    太陽能制冷在多年凍土熱穩(wěn)定維護中的傳熱效果研究
    多年凍土地基隔熱保溫技術(shù)研究綜述
    土基水閘滲流穩(wěn)定分析與防滲措施淺述
    多年凍土區(qū)鐵路路堤臨界高度研究
    永凍層排水處理的案例研究
    凍融循環(huán)引起的飽和孔隙組合轉(zhuǎn)換模擬研究
    中亚洲国语对白在线视频| 亚洲色图av天堂| 久久久久久久久免费视频了| 久久人妻av系列| 国产99久久九九免费精品| 日日摸夜夜添夜夜添小说| 国产99久久九九免费精品| 中文字幕最新亚洲高清| 很黄的视频免费| 非洲黑人性xxxx精品又粗又长| 久久精品91无色码中文字幕| 亚洲一码二码三码区别大吗| 丝袜美腿诱惑在线| 天天添夜夜摸| 搡老妇女老女人老熟妇| 免费人成视频x8x8入口观看| 国产精品久久久久久人妻精品电影| 一边摸一边抽搐一进一小说| av视频在线观看入口| 亚洲在线自拍视频| 日本撒尿小便嘘嘘汇集6| 午夜精品久久久久久毛片777| 国内毛片毛片毛片毛片毛片| 亚洲av电影在线进入| 免费观看人在逋| 免费看美女性在线毛片视频| 国产精品自产拍在线观看55亚洲| 99国产综合亚洲精品| 国内毛片毛片毛片毛片毛片| 啪啪无遮挡十八禁网站| 成人手机av| 日本一区二区免费在线视频| 可以在线观看的亚洲视频| aaaaa片日本免费| 99热6这里只有精品| 国产探花在线观看一区二区| 国产三级中文精品| 欧美日韩中文字幕国产精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 波多野结衣高清无吗| 国产精品九九99| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 久久久久久人人人人人| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品av视频在线免费观看| 啪啪无遮挡十八禁网站| 久久午夜综合久久蜜桃| 日韩欧美在线二视频| 精品久久久久久久末码| 香蕉丝袜av| 亚洲七黄色美女视频| 亚洲人成伊人成综合网2020| 正在播放国产对白刺激| 一区二区三区国产精品乱码| 精品福利观看| 久久久久久免费高清国产稀缺| 久久这里只有精品中国| 亚洲熟妇中文字幕五十中出| 国产午夜精品久久久久久| 听说在线观看完整版免费高清| 国产精品精品国产色婷婷| 最近最新中文字幕大全免费视频| 午夜福利在线观看吧| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成伊人成综合网2020| 熟女少妇亚洲综合色aaa.| 九色国产91popny在线| 高潮久久久久久久久久久不卡| 免费观看精品视频网站| 国产午夜精品论理片| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 深夜精品福利| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 天天添夜夜摸| 国产精品久久电影中文字幕| 国产精品久久久久久久电影 | 又紧又爽又黄一区二区| 天堂√8在线中文| 国产精品,欧美在线| 欧美黄色片欧美黄色片| 麻豆成人午夜福利视频| 国产午夜精品论理片| 成人三级黄色视频| 最近最新免费中文字幕在线| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 一级黄色大片毛片| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 老汉色∧v一级毛片| 女生性感内裤真人,穿戴方法视频| 好男人在线观看高清免费视频| 黄色a级毛片大全视频| 悠悠久久av| a级毛片a级免费在线| 午夜激情福利司机影院| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 俺也久久电影网| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产精品久久久不卡| 美女黄网站色视频| 1024香蕉在线观看| a级毛片a级免费在线| 禁无遮挡网站| 伦理电影免费视频| 黑人操中国人逼视频| 成人18禁在线播放| 亚洲欧美日韩高清在线视频| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 日本黄色视频三级网站网址| 男人舔奶头视频| 丁香欧美五月| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 国产成人欧美在线观看| 精品国产乱子伦一区二区三区| 欧美日韩瑟瑟在线播放| 欧美又色又爽又黄视频| av在线天堂中文字幕| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 99热只有精品国产| 国产成人一区二区三区免费视频网站| 国产黄片美女视频| 女生性感内裤真人,穿戴方法视频| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 男女床上黄色一级片免费看| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 国产三级黄色录像| 午夜福利成人在线免费观看| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 欧美3d第一页| 亚洲国产高清在线一区二区三| 日韩三级视频一区二区三区| 老司机福利观看| 久热爱精品视频在线9| 岛国视频午夜一区免费看| 欧美日韩福利视频一区二区| 免费无遮挡裸体视频| 黄片小视频在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| www.999成人在线观看| 免费在线观看亚洲国产| 色老头精品视频在线观看| 美女黄网站色视频| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 亚洲精品美女久久av网站| а√天堂www在线а√下载| 亚洲精品久久国产高清桃花| 久久精品国产99精品国产亚洲性色| 观看免费一级毛片| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 人妻丰满熟妇av一区二区三区| 色在线成人网| 最近在线观看免费完整版| 欧美绝顶高潮抽搐喷水| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av| 一二三四社区在线视频社区8| 国产成人一区二区三区免费视频网站| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 级片在线观看| 美女大奶头视频| 久久精品成人免费网站| 国产午夜精品论理片| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| 欧美日韩瑟瑟在线播放| 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 动漫黄色视频在线观看| 我要搜黄色片| 波多野结衣巨乳人妻| www日本黄色视频网| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 九九热线精品视视频播放| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 国产高清激情床上av| 午夜精品久久久久久毛片777| 超碰成人久久| 久久久国产精品麻豆| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 久久人妻福利社区极品人妻图片| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 久久天堂一区二区三区四区| 给我免费播放毛片高清在线观看| www日本在线高清视频| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 亚洲成av人片免费观看| 免费高清视频大片| 欧美性猛交╳xxx乱大交人| 亚洲成a人片在线一区二区| 脱女人内裤的视频| 国产精品久久久久久久电影 | 99精品在免费线老司机午夜| 久久人人精品亚洲av| 91成年电影在线观看| 一级作爱视频免费观看| 国产成人啪精品午夜网站| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 国产精品九九99| 99精品久久久久人妻精品| 国产激情偷乱视频一区二区| 无遮挡黄片免费观看| 欧美在线一区亚洲| 久久伊人香网站| 在线观看免费视频日本深夜| 午夜免费成人在线视频| 国内精品一区二区在线观看| 一区二区三区高清视频在线| av欧美777| 亚洲黑人精品在线| 成人国语在线视频| 欧美乱码精品一区二区三区| 久久久久久九九精品二区国产 | 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 美女免费视频网站| 麻豆国产97在线/欧美 | 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 免费搜索国产男女视频| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 嫩草影院精品99| 桃色一区二区三区在线观看| 91在线观看av| 久久香蕉国产精品| 夜夜躁狠狠躁天天躁| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产高清在线一区二区三| 男女之事视频高清在线观看| 人人妻人人看人人澡| 18禁国产床啪视频网站| 伦理电影免费视频| 一区福利在线观看| 国产单亲对白刺激| 久久久国产欧美日韩av| 欧美日韩一级在线毛片| 999精品在线视频| 亚洲黑人精品在线| 少妇熟女aⅴ在线视频| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 国产又色又爽无遮挡免费看| 婷婷丁香在线五月| 村上凉子中文字幕在线| 午夜激情福利司机影院| 久久精品人妻少妇| 欧美日韩一级在线毛片| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频 | av国产免费在线观看| 三级毛片av免费| 全区人妻精品视频| 国产精品 国内视频| 亚洲自偷自拍图片 自拍| av有码第一页| 国产1区2区3区精品| 久久亚洲精品不卡| 色综合欧美亚洲国产小说| 午夜福利在线在线| 日本一区二区免费在线视频| 一区二区三区高清视频在线| 一级作爱视频免费观看| 我的老师免费观看完整版| 久久久久国内视频| 不卡av一区二区三区| 露出奶头的视频| 国产99久久九九免费精品| 丰满的人妻完整版| 国产精品久久电影中文字幕| 国产高清激情床上av| 国产成人欧美在线观看| 亚洲国产精品999在线| 热99re8久久精品国产| 亚洲电影在线观看av| 麻豆av在线久日| 两性午夜刺激爽爽歪歪视频在线观看 | 一个人观看的视频www高清免费观看 | 怎么达到女性高潮| 欧美黑人欧美精品刺激| 观看免费一级毛片| 国产精品一及| svipshipincom国产片| 美女免费视频网站| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 久久久久国产一级毛片高清牌| 午夜影院日韩av| 热99re8久久精品国产| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 免费人成视频x8x8入口观看| 岛国在线观看网站| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 亚洲av电影在线进入| 日日爽夜夜爽网站| 久久久国产精品麻豆| 欧美最黄视频在线播放免费| 久久久水蜜桃国产精品网| 啦啦啦观看免费观看视频高清| 午夜免费观看网址| 日本一本二区三区精品| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 亚洲av美国av| 黄色a级毛片大全视频| 亚洲18禁久久av| 制服人妻中文乱码| 丰满的人妻完整版| 亚洲av成人精品一区久久| 国产精品久久久久久精品电影| svipshipincom国产片| 久久精品夜夜夜夜夜久久蜜豆 | 99国产极品粉嫩在线观看| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 午夜福利在线在线| 两人在一起打扑克的视频| 亚洲真实伦在线观看| 99久久国产精品久久久| 亚洲真实伦在线观看| 免费在线观看成人毛片| 2021天堂中文幕一二区在线观| 热99re8久久精品国产| 嫩草影视91久久| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 日本免费一区二区三区高清不卡| 精品欧美国产一区二区三| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 身体一侧抽搐| bbb黄色大片| 嫩草影视91久久| 国产麻豆成人av免费视频| 男人舔奶头视频| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 亚洲男人的天堂狠狠| 巨乳人妻的诱惑在线观看| 免费看日本二区| 国产不卡一卡二| 色av中文字幕| 在线永久观看黄色视频| 九色国产91popny在线| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 琪琪午夜伦伦电影理论片6080| 99国产精品99久久久久| 亚洲av电影在线进入| 欧美日韩国产亚洲二区| 日本a在线网址| 亚洲国产欧美网| 精品国产美女av久久久久小说| 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| aaaaa片日本免费| 久热爱精品视频在线9| 日本a在线网址| 亚洲成av人片在线播放无| 亚洲,欧美精品.| 色av中文字幕| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 曰老女人黄片| 久久香蕉国产精品| 国产在线精品亚洲第一网站| 欧美在线黄色| 免费观看人在逋| 窝窝影院91人妻| 国产成年人精品一区二区| 精品久久蜜臀av无| 97碰自拍视频| 香蕉国产在线看| 国产亚洲精品久久久久久毛片| 欧美黑人精品巨大| 九九热线精品视视频播放| 亚洲av电影在线进入| 成人午夜高清在线视频| 亚洲成av人片在线播放无| 亚洲精品粉嫩美女一区| 久久久久国产一级毛片高清牌| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看 | 国产精品99久久99久久久不卡| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| 在线观看美女被高潮喷水网站 | 国内少妇人妻偷人精品xxx网站 | 国产精品 欧美亚洲| 精品电影一区二区在线| 狂野欧美白嫩少妇大欣赏| 久久香蕉精品热| 老鸭窝网址在线观看| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 国产亚洲精品一区二区www| 亚洲av日韩精品久久久久久密| 久久久精品大字幕| 久久精品国产清高在天天线| √禁漫天堂资源中文www| 亚洲美女黄片视频| 在线观看免费午夜福利视频| 亚洲欧美精品综合一区二区三区| 中文字幕熟女人妻在线| 男女那种视频在线观看| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类 | 久久久久久久久中文| 一个人免费在线观看的高清视频| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| 国语自产精品视频在线第100页| 亚洲av美国av| 精品久久蜜臀av无| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| 成人三级黄色视频| 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 亚洲精华国产精华精| 国产精品一区二区三区四区免费观看 | 麻豆成人午夜福利视频| 老汉色∧v一级毛片| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 久久精品91无色码中文字幕| 国产亚洲精品一区二区www| 国产欧美日韩精品亚洲av| 亚洲av成人精品一区久久| 久久国产乱子伦精品免费另类| 好男人在线观看高清免费视频| 亚洲熟女毛片儿| 国产精华一区二区三区| 国产激情欧美一区二区| 丰满人妻一区二区三区视频av | 久久久国产欧美日韩av| 精品无人区乱码1区二区| 久久精品91蜜桃| 一夜夜www| 一级毛片女人18水好多| 国产一区在线观看成人免费| 在线观看午夜福利视频| 黑人操中国人逼视频| 亚洲无线在线观看| 两个人看的免费小视频| 国产一区二区在线观看日韩 | 两性午夜刺激爽爽歪歪视频在线观看 | 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 舔av片在线| 中文在线观看免费www的网站 | 麻豆成人午夜福利视频| 一本大道久久a久久精品| xxxwww97欧美| 少妇粗大呻吟视频| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 欧美性猛交╳xxx乱大交人| 欧美乱码精品一区二区三区| 久久久精品欧美日韩精品| 在线国产一区二区在线| 国产亚洲欧美在线一区二区| 亚洲av中文字字幕乱码综合| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 在线看三级毛片| 麻豆久久精品国产亚洲av| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| 最新美女视频免费是黄的| 国产精品一及| 久久午夜综合久久蜜桃| 久久久久久久久久黄片| 国产片内射在线| 色在线成人网| 亚洲免费av在线视频| 午夜免费成人在线视频| 在线看三级毛片| 一区二区三区高清视频在线| 操出白浆在线播放| 91字幕亚洲| 老司机午夜十八禁免费视频| 精品人妻1区二区| 99久久精品国产亚洲精品| 97人妻精品一区二区三区麻豆| 精品午夜福利视频在线观看一区| 美女免费视频网站| 日本在线视频免费播放| 午夜a级毛片| 少妇的丰满在线观看| www.自偷自拍.com| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产高清在线一区二区三| 亚洲精华国产精华精| 欧美日韩瑟瑟在线播放| 久久中文字幕一级| 国产亚洲精品av在线| 亚洲中文av在线| 亚洲av片天天在线观看| 一夜夜www| 欧美不卡视频在线免费观看 | 国产免费男女视频| cao死你这个sao货| 变态另类成人亚洲欧美熟女| 久久久久九九精品影院| 少妇粗大呻吟视频| 后天国语完整版免费观看| 老熟妇仑乱视频hdxx| 女人被狂操c到高潮| 亚洲片人在线观看| 国产精品永久免费网站| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 一本精品99久久精品77| 91麻豆精品激情在线观看国产| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 国产av一区二区精品久久| 国产av一区在线观看免费| 18禁国产床啪视频网站| 91老司机精品| 久久久精品欧美日韩精品| 搡老熟女国产l中国老女人| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 狂野欧美白嫩少妇大欣赏| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 欧美黑人欧美精品刺激| 窝窝影院91人妻| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 又黄又粗又硬又大视频| а√天堂www在线а√下载| 天天一区二区日本电影三级| 欧美zozozo另类| 欧美日韩精品网址| 亚洲成av人片免费观看| 12—13女人毛片做爰片一|