• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Responses of Longitudinal and Transversal Nonlinear Coupling Vibration of Ship Shafting

    2014-03-16 08:14:12YANGZhirongZOUDonglinRAOZhushiTaNa
    船舶力學(xué) 2014年12期

    YANG Zhi-rong,ZOU Dong-lin,RAO Zhu-shi,Ta Na

    (1 State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;2 Marine Engineering Institute,Jimei University,Xiamen 361021,China)

    1 Introduction

    When ship sailing on the water,it inevitably brings non-uniform wake field in the stern.Propeller works in spatially non-uniform wake field would produce plus forces which transfer to the hull through the propulsion shaft and the thrust bearing and its base.The plus forces may cause shafting vibration that propagates through the supporting structure to the hull,and results in a high-level structure-borne noise[1-3].The vibration transmission through the propellershafting system of ships and submarines represents a critical issue that must be addressed in order to reduce the acoustic signature.Transversal centrifugal forces produced from the concentrated mass and the coupler due to shaft rotation,which are another transversal vibration excitation sources.The amplitude of the generated vibration response is small if the amplitude of the excitation force is small and the coupling effect between longitudinal and transversal vibrations is weak,therefore the vibrations of the whole shafting system are linear.The linear shafting vibration calculation methods can be used such as:analytical method,Holzer method,Tolle law,Tepckux law,energy law,amplification factor method and transfer matrix method etc.In addition,some researchers[4-5]analyzed,corrected,improved the linear shafting vibration calculation methods,and proposed a variety of new algorithms.

    The doubly coupled transversal-torsional vibrations of monosymmetric beams and the doubly coupled longitudinal-torsional vibrations of monosymmetric beams have been investigated by several authors.Li[6]analyzed the coupled transversal and torsional vibration of axially loaded Bernoulli-Euler beams taking into account the effect of warping stiffness and gave allowance to the presence of axial force.V?r?s[7]presented a numerical method to analyze the effect of steady state lateral loads on the coupled transversal-torsional vibrations and mode shapes of Bernoulli-Vlasov beams.He found that the initial bending moment had a significant effect on the mode shapes which proved the need of second order dynamics in structural analysis.Klausbruckner[8]studied on coupled vibration of thin-walled channel beams with different cross-sectional areas and lengths,which were conducted using theoretical and experimental approaches.The theoretical approach was based on analytical and finite element methods and the experimental approach utilized the methods of laser hologram interferometer.Al-Bedoor[9]developed a model for the coupled torsional and transversal vibrations of unbalanced rotors,which treated the rotor torsional deformation angle as an individual degree of freedom.Simulation results showed energetic interaction between the rotor transversal and torsional vibrations.Chen[10]investigated the coupled axial-torsional vibration of thin-walled Z-section beam induced by boundary conditions,otherwise the effect of boundary conditions and the value of warping function at centroid on the coupled axial and torsional natural frequency of Z-section beam was also studied.However,the doubly coupled transversal-longitudinal vibrations of monosymmetric beams or shafts with multi-elastic supports have been little reported in the recent literature.

    The relatively large deflection deformation of the shafting is produced if the excitation force is large,thus its elastic coupling effect of longitude and transverse becomes notable and affects the shafting vibration.It is necessary to study the responses of longitudinal and transversal coupling nonlinear vibrations of ship shafting.Such solving methods of the nonlinear problem are usually as:Galerkin/Newton-Raphson method(N/R),the harmonic balance method,the perturbation method,the incremental harmonic balance method and numerical integration method.Incremental harmonic balance method(IHB)[11]firstly spreads the differential equations of motion by NR method,then solves incremental differential equations in the frequency domain.Analytical solutions of simple structures with simple boundary conditions can be well obtained and have certain guiding significance to the engineering practice application.However,the propulsion shaft which has multi-elastic supports and lumped mass,it has some difficulty in seeking the solutions of the equations just utilizing the analytical method such as the Incremental Harmonic Balance method.The FEM has advantages in modeling simply and good processing in the complex structures with complex boundary conditions.Therefore,it gradually becomes the main method for calculating practical engineering problems.Hu[12]utilized the FEM to derive the longitudinal and transversal coupled nonlinear beam element stiffness matrix and proposed using iterative method to solve the nonlinear problems.However,the investigated structure is relatively simple and the results can not reveal some important characteristics of the actual structure.In this paper,the ship shafting with multi-elastic supports and lumped mass is studied.The FEM is used to establish the dynamic model of the longitudinal and transversal coupling vibration.The responses of linear vibration and nonlinear coupling vibration of propulsion shaft are calculated and the results are analyzed.The results have certain guidance significance to the practical engineering research for ship shafting.

    2 The governing differential equations of coupling vibration

    The beam structure model is used to simplify the propulsion shaft shown in Fig.1.It suffers the longitudinal and transversal harmonic loads.Here the shear,the moment of inertia,and the fluctuation effect of propulsion shaft are neglected.Considering u to o),the partial differential equations of coupling vibration for shaft can be written as follows[13]:

    Fig.1 The model of beam structure

    The ship shafting mainly consists of the propeller,propeller shaft,intermediate shaft,flange,thrust shaft,thrust bearing and its base.Here the propeller and its attached waterare simplified as lumped mass M,furthermore the propulsion shaft is equivalent to a distributed mass and flexibility homogeneous shaft.Radial stiffness of stern bearing and intermediate bearing is equivalent to linear spring stiffness.Radial and longitudinal stiffness of thrust bearing and its base is also equivalent to linear spring stiffness.It usually can be simplified as shown in Fig.2.

    Fig.2 The ship shafting with multi-elastic supports and lumped mass

    3 Finite element modeling of nonlinear coupling vibration of ship shafting

    3.1 The stiffness and mass matrix of the beam element

    The plane beam element is used to simulate the longitudinal vibration and the transversal vibration of ship shafting.A two-node beam element is shown in Fig.3.The length of the beam element is L.Each node has three degrees of freedom,which are the displacements of longitudinal,transversal and rotation,respectively.The node vector of the element can be written as[14]:

    Fig.3 The beam element

    A linear interpolation function is used to denote the longitudinal displacement of the element and the cubic polynomial function is used to denote the transversal displacement of the element as follows:

    Considering the coupling interaction,the potential energy and kinetic energy of the beam element can be expressed as:

    Substituting the expression(3)into the Eq.(8),the stiffness matrix of the beam element is composed of the following three parts[12]:

    Substituting the expression(3)into the Eq.(8),the mass matrix of the beam element can be obtained as:

    3.2 The stiffness and mass matrix of the beam element with multi-elastic supports and lumped mass

    If the beam element has radial elastic supports Kciand Kcjat the left and right nodes respectively,furthermore has a longitudinal elastic support KTat the right node as shown in Fig.4,its linear stiffness matrix can be written as[15]:

    Fig.4 The beam element with-elastic supports and lumped mass

    If there is lumped mass Miat the left node i and lumped mass Mjat the right node j,the mass matrix of the element is:

    If there is a static force acting on the element,the additional element stiffness matrix generated by the axial force is:

    4 Example and results

    The length of propulsion shaft is 14.46 m.It has an outside diameter of 280 mm and an inside diameter of 165 mm,respectively.The mass of the propeller and added water is 6 875 kg,and the mass of couplings follower end is 1 300 kg.The shafting system has Young’s modulus of 214 GPa and density of 7 850 kg/m3,respectively.The radial stiffness of stern bearing is 3.05×108N/m and the radial stiffness of intermediate bearing is 1.06×108N/m.The radial stiffness of thrust bearing is 2.66×108N/m and the longitudinal stiffness of thrust bearing is 1.342 5×1010N/m.The shafting system suffers a static axial force,which is P=19 600 N.It is in a static equilibrium state in initial time.Apply the left end of shaft with longitudinal harmonic excitation force,its amplitude is FL=5.86×105N and its frequency is fL=23.3 Hz.Apply the middle position of shaft with transversal harmonic excitation force,its amplitude is FT=3×105N and its frequency is fT=20 Hz.Considering the influence of damping,we set ξ=0.01.The nonlinear vibration responses of the propulsion shaft are calculated by using the combination of the Newmark method and the Newton-Raphson method.

    4.1 The natural frequencies of ship shafting affected by the axial force

    When the propulsion shaft works under the sea water,the axial force can be produced from static thrust.The natural frequencies of ship shafting are affected by the axial force as well as the structure dimension parameters of ship shafting.Tab.1 shows the impact of the natural frequencies of ship shafting affected by different axial forces.

    Tab.1 The natural frequencies of ship shafting affected by different axial forces

    Seen from Tab.1,the natural frequency of ship shafting in each order is slightly reduced as the axial force increasing.This can be explained by the formula(15),in which the stiffness of the element is slightly reduced as the axial force increasing.Thus,the natural frequencies of ship shafting are also slightly reduced,however the impact is little.

    4.2 The responses of nonlinear coupling vibration of ship shafting

    Fig.5 shows the displacement curves of longitudinal vibration of ship shafting in time and frequency domains considering the coupling vibration effect.The figure shows the maximum displacement amplitude of the longitudinal vibration is approximately 1.04 mm.When the longitudinal and transversal coupling vibration effect is taken into account,one peak response frequency is corresponding to the excitation frequency of the linear longitudinal vibration at 23.3 Hz.In addition,the frequency in the low fre-quency region,the frequencies 40 Hz in the inter-mediate frequency region,and the frequency 80 Hz(4fT)also have peak responses due to the coupling effect.Fig.6 shows the displacement curves of transversal vibration of ship shafting in time and frequency domains considering the coupling vibration effect.The figure shows the maximum displacement amplitude of the transversal vibration is approximately 11 mm.When the longitudinal and transversal coupling vibration effect is taken into account,one peak response frequency is corresponding to the excitation frequency of the linear transversal vibration at 20 Hz.In addition,the frequencies 3.3and 60 Hz(3fT)also have peak responses due to the coupling effect.

    Fig.5 The displacement time-history and amplitudefrequency curves of nonlinear coupling longitudinal vibration of ship shafting

    Fig.6 The displacement time-history and amplitude-frequency curves of nonlinear coupling transversal vibration of ship shafting

    Fig.7 Comparison of time-history responses between linear and nonlinear longitudinal vibrations

    Figs.7-8 are the comparison of linear and nonlinear longitudinal vibration responses in time and frequency domains.We can see from Fig.7 that the displacement responses of nonlinear longitudinal vibration with coupling effect are larger than the responses of linear longitudinal vibration.The results are due to coupling excitation items.Seen from Fig.8,the longitudinal vibration responses with and without coupling effect have a common excitation frequency component at 23.3 Hz.In addition,the coupling vibration responses have frequency components with transversal excitation frequency doubling and excitation frequenciesof addition or subtraction and other linear combinations.

    Fig.8 Comparison of amplitude-frequency responses between linear and nonlinear longitudinal vibrations

    Figs.9-10 are the comparison of linear and nonlinear transversal vibration responses in time and frequency domains.We can see from Fig.9,the displacement responses of transversal vibration with and without coupling effect are basically the same.This may because the coupling excitation effect is not obvious,so the response amplitude of coupling vibration is small and almost the same to the response amplitude of linear vibration.However,seen from Fig.10,the coupling vibration responseshave frequency components with excitation frequencies of addition or subtraction linear combinations as well as the common excitation frequency component of the transversal vibration.

    Fig.9 Comparison of time-history responses between linear and nonlinear transversal vibrations

    Fig.10 Comparison of amplitude-frequency responses between linear and nonlinear transversal vibrations

    In general,the time-history responses of coupling vibration are larger than linear vibration responses,especially in the longitudinal vibration.Furthermore,there are many frequency components in the frequency domain.Therefore,if there is coupling effect in the system,the natural frequencies of design system not only should avoid the excitation frequencies but also should avoid the combined excitation frequencies.

    5 The law of the responses of nonlinear coupling vibration with different excitation force amplitudes

    In order to investigate the impact of different excitation force amplitudes effect on the responses of nonlinear coupling vibration,different amplitude combinations of longitudinal and transversal excitation forces applied to the shaft are divided into three groups as follows:A.FL=8×103N,FT=5×102N;B.FL=8×103N,FT=5×104N;C.FL=8×104N,FT=5×102N.The frequencies of longitudinal and transversal excitation forces remain fL=23.3 Hz and fT=20 Hz unchanged.Other parameters and conditions are the same as mentioned above in the example.The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting while applying with different excitation force amplitudes are shown in the Figs.11-13.

    Fig.11 The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting(while FL=8×103N,FT=5×102N)

    Fig.12 The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting(while FL=8×103N,FT=5×104N)

    By comparing Fig.11 and Fig.12,which the system is applied with the excitation loads of group A and group B respectively,we can see that the longitudinal vibration nonlinear effect is significantly enhanced as the transversal excitation force amplitudes increasing.

    By comparing Fig.11 and Fig.13,which the system is applied with the excitation loads of group A and group C respectively,we can see that there is a certain increase in the responses of transversal nonlinear vibration as the longitudinal excitation force amplitudes increasing.The Fig.13 shows that the longitudinal vibration nonlinear effect is little because the transversal excitation force amplitude is small.Comparing Fig.12 and Fig.13,we can see that the transversal force impacts on the nonlinear coupling effect of longitudinal vibration is more significant than the longitudinal force impacts on the nonlinear coupling effect of transversal vibration.

    Fig.13 The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting(while FL=8×104N,FT=5×102N)

    6 The law of the responses of nonlinear coupling vibration under different excitation frequencies

    In order to investigate the impact of different excitation frequencies effect on the responses of nonlinear coupling vibration,different excitation frequency combinations are divided into two groups based on the closeness between fLand fTas follows:D.fL=23.3 Hz,fT=3.3 Hz;E.fL=23.3 Hz,fT=20 Hz.The amplitudes of longitudinal and transversal excitation forces remain FL=8×103N and FT=5×103N unchanged.Other parameters and conditions are also the same as mentioned above in the example.The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting while applying with different excitation frequencies are shown in the Figs.14-15.

    Fig.14 The displacement time-history and amplitude-frequency curves of nonlinear coupling vibration of ship shafting(while fL=23.3 Hz,fT=3.3 Hz)

    By comparing Fig.14 and Fig.15,which the system is applied with the excitation frequen-cies of group D and group E respectively,we can see that the closer between fLand fTthe more significant of nonlinear coupling effect between longitudinal and transversal vibrations.

    Fig.15 The displacement time-history and amplitude-frequency curves of nonlinear coupling longitudinal vibration of ship shafting(while fL=23.3 Hz,fT=20 Hz)

    7 Conclusions and discussion

    Ship shafting with multi-elastic supports and lumped mass is studied in this paper by the FEM based on the nonlinear stiffness and mass matrix of the beam element.Responses of longitudinal and transversal coupling vibration are calculated with different excitation force amplitudes and different excitation frequencies,furthermore the results are analyzed.Based on the results obtained in this study,the following conclusions can be drawn:

    (1)When the amplitude of shaft vibration is relatively large,the phenomenon of combined harmonic peak responses of the system is easily produced due to longitudinal and transverse nonlinear coupling effect.The system has many peak frequencies in responses.

    (2)Extensive analysis results show that the combined harmonic response components mainly distributeor 2fTin longitudinal vibration andin transversal vibration due to the longitudinal and transverse nonlinear coupling forced vibration.

    (3)The larger amplitudes of excitation forces,the stronger of coupling effect in the nonlinear vibration.In addition,the transversal force impacts on the nonlinear coupling effect of longitudinal vibration is more significant than the longitudinal force impacts on the nonlinear coupling effect of transversal vibration.

    (4)The closer between fLand fTin the excitation frequencies,the more significant nonlinear coupling effect between longitudinal and transversal vibrations.

    (5)If there is a peak frequency component in the responses of the system,maybe caused by the same frequency of the excitation source,also maybe the combined frequency of different excitation sources which is equal to the peak frequency.Therefore appropriate measures should be taken to against the relevant excitation sources for effective control.They will be helpful to completely eliminate the peak response components or to reduce the response amplitudes.By the way,increasing the damping of shafting system is also helpful for reducing the responses of nonlinear coupling vibration in longitudinal and transversal direction,respectively.

    [1]Dylejko P,Kessissoglou N,Tso Y,et al.Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J].Journal of Sound and Vibration,2007,300(1-2),101-116.

    [2]Pan X,Tso Y,Juniper R.Active control of radiated pressure of a submarine hull[J].Journal of Sound and Vibration 2008,311(1-2):224-242.

    [3]Xie J R,S S,Wu Y S.Research status on noise radiation from vibrating hull induced by propeller and reduction measures[J].Shipbuilding of China,2010,51(004):234-241.

    [4]Chen X.Ship shafting torsional vibration calculation and analysis of test cases[J].Ship Engineering,2002,(001):22-26.

    [5]Wang Z.Improved transfer matrix method for torsional vibration analysis[J].Journal of North China Electric Power University,2001,28(003):17-27.

    [6]Jun L,Rongying S,Hongxing H,et al.Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects[J].Applied Acoustics,2004,65(2):153-170.

    [7]V?r?s G M.On coupled bending-torsional vibrations of beams with initial loads[J].Mechanics Research Communications,2009,36(5):603-611.

    [8]Klausbruckner M,Pryputniewicz R.Theoretical and experimental study of coupled vibrations of channel beams[J].Journal of Sound and Vibration,1995,183(2):239-252.

    [9]Al-Bedoor B.Modeling the coupled torsional and lateral vibrations of unbalanced rotors[J].Computer Methods in Applied Mechanics and Engineering,2001,190(45):5999-6008.

    [10]Chen H H,Hsiao K M.Coupled axial-torsional vibration of thin-walled Z-section beam induced by boundary conditions[J].Thin-walled Structures,2007,45(6):573-583.

    [11]Xia P.Harmonic responses of beams with longitudinal and transversal coupling[J].Journal of Vibration Engineering,1995,8(001):67-72.

    [12]Hu Yi,Y J.Studies on the longitudinal and lateral coupled vibration of beam[J].Journal of Wuhan University of Technology:Transportation Science&Engineering,2010,34(003):537-541.

    [13]Nayfeh A H,Mook D T.Nonlinear oscillations[M].Wiley-VCH,2008.

    [14]Xu R.Structural analysis of the finite element method and MATLAB programming design[M].Beijing:China Communications Press,2006.

    [15]Zhang Z.Numerical calculation of power equipment vibration[M].Harbin:Harbin Engineering University Press,2007.

    亚洲久久久久久中文字幕| 日韩电影二区| 亚洲精品中文字幕在线视频 | 狂野欧美激情性bbbbbb| 一本一本综合久久| 好男人视频免费观看在线| 国产精品久久久久久av不卡| 最后的刺客免费高清国语| 一区二区三区四区激情视频| freevideosex欧美| 在线观看av片永久免费下载| 免费高清在线观看视频在线观看| 国产 一区精品| 亚洲综合色惰| 国产av不卡久久| 五月玫瑰六月丁香| 99热网站在线观看| 在线观看三级黄色| 97超视频在线观看视频| 黑人高潮一二区| 亚洲av成人精品一二三区| 99热网站在线观看| 丰满乱子伦码专区| 一区二区三区四区激情视频| 好男人在线观看高清免费视频| 嘟嘟电影网在线观看| 日韩在线高清观看一区二区三区| 久久久久九九精品影院| 91在线精品国自产拍蜜月| 2018国产大陆天天弄谢| 男女国产视频网站| 欧美激情在线99| av国产久精品久网站免费入址| 亚洲国产最新在线播放| 午夜爱爱视频在线播放| 青春草国产在线视频| 国产亚洲一区二区精品| 中文字幕制服av| 国产成人a区在线观看| 国产精品人妻久久久久久| 成年版毛片免费区| 99久久精品热视频| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 欧美区成人在线视频| 最新中文字幕久久久久| 性色avwww在线观看| 国产在线一区二区三区精| 三级经典国产精品| 日韩不卡一区二区三区视频在线| 国产在视频线精品| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 国产真实伦视频高清在线观看| 综合色av麻豆| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 国产精品成人在线| 最近中文字幕高清免费大全6| 国产v大片淫在线免费观看| 亚洲在久久综合| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 18+在线观看网站| 日韩一本色道免费dvd| 欧美国产精品一级二级三级 | 国产精品一及| 国语对白做爰xxxⅹ性视频网站| 高清在线视频一区二区三区| 精品熟女少妇av免费看| 一本色道久久久久久精品综合| 欧美日韩国产mv在线观看视频 | 成年女人在线观看亚洲视频 | 嘟嘟电影网在线观看| 日本熟妇午夜| 久久久久久久久大av| 一本久久精品| av专区在线播放| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 久久人人爽人人片av| 在线播放无遮挡| 91aial.com中文字幕在线观看| 嫩草影院新地址| 18禁动态无遮挡网站| 人妻制服诱惑在线中文字幕| 久久久久久久久大av| 久久国内精品自在自线图片| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 又黄又爽又刺激的免费视频.| 亚洲电影在线观看av| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 可以在线观看毛片的网站| 男女啪啪激烈高潮av片| 国产高清有码在线观看视频| 新久久久久国产一级毛片| av.在线天堂| 五月玫瑰六月丁香| 热re99久久精品国产66热6| 国产探花极品一区二区| 精品国产三级普通话版| 大香蕉97超碰在线| 欧美高清成人免费视频www| 免费高清在线观看视频在线观看| 欧美xxxx黑人xx丫x性爽| 观看免费一级毛片| 亚洲一区二区三区欧美精品 | 在线a可以看的网站| 七月丁香在线播放| 一本一本综合久久| 搞女人的毛片| 草草在线视频免费看| 卡戴珊不雅视频在线播放| 欧美成人午夜免费资源| 在线看a的网站| 国产黄a三级三级三级人| 51国产日韩欧美| 国产精品人妻久久久久久| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| av线在线观看网站| 22中文网久久字幕| 国产av国产精品国产| 高清毛片免费看| 99久久九九国产精品国产免费| 国产精品秋霞免费鲁丝片| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 精品久久久久久久人妻蜜臀av| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| av在线app专区| 永久网站在线| 亚洲av电影在线观看一区二区三区 | 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| av在线亚洲专区| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 日韩一区二区视频免费看| 日本与韩国留学比较| 国产免费视频播放在线视频| 日韩视频在线欧美| 看非洲黑人一级黄片| 18禁裸乳无遮挡免费网站照片| 成人综合一区亚洲| 国产精品偷伦视频观看了| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 色网站视频免费| 国产成人91sexporn| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 一区二区三区乱码不卡18| 亚洲av中文字字幕乱码综合| 久久精品国产自在天天线| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 国产免费视频播放在线视频| 国产又色又爽无遮挡免| 精品一区二区免费观看| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 日韩不卡一区二区三区视频在线| 99热6这里只有精品| 成人亚洲精品一区在线观看 | 一级二级三级毛片免费看| 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 亚洲精品国产色婷婷电影| 亚洲精品456在线播放app| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 亚洲不卡免费看| av在线蜜桃| 深爱激情五月婷婷| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 六月丁香七月| 小蜜桃在线观看免费完整版高清| 亚洲国产av新网站| 国产亚洲一区二区精品| 美女被艹到高潮喷水动态| 午夜日本视频在线| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 久久久国产一区二区| 亚洲精品中文字幕在线视频 | 成人美女网站在线观看视频| eeuss影院久久| 嫩草影院入口| 亚洲精品456在线播放app| 91精品一卡2卡3卡4卡| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 久久精品熟女亚洲av麻豆精品| 少妇人妻一区二区三区视频| 久久久久国产精品人妻一区二区| 亚洲国产高清在线一区二区三| 亚洲精品国产色婷婷电影| 久久久久久久久久久丰满| 在线观看av片永久免费下载| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 亚洲经典国产精华液单| 超碰av人人做人人爽久久| 又黄又爽又刺激的免费视频.| 欧美日韩在线观看h| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年女人看的毛片在线观看| 91久久精品国产一区二区成人| 国产成人a区在线观看| av免费观看日本| 国产人妻一区二区三区在| 色综合色国产| 欧美另类一区| 天堂网av新在线| 免费看a级黄色片| 嫩草影院新地址| 精品一区二区三区视频在线| av在线播放精品| 国产精品一二三区在线看| 久热这里只有精品99| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| av在线播放精品| 成人亚洲精品av一区二区| 99re6热这里在线精品视频| 日本午夜av视频| 日本av手机在线免费观看| 超碰97精品在线观看| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 日本av手机在线免费观看| 如何舔出高潮| 人妻制服诱惑在线中文字幕| 成人国产麻豆网| 午夜福利视频精品| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 99久久精品国产国产毛片| 亚洲人成网站高清观看| 国产精品久久久久久久电影| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 边亲边吃奶的免费视频| 午夜福利视频1000在线观看| 亚洲成色77777| 免费大片18禁| 欧美高清成人免费视频www| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 亚洲国产色片| 在线看a的网站| 美女内射精品一级片tv| 国产精品99久久久久久久久| 亚洲国产欧美人成| 国产淫语在线视频| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久| 97人妻精品一区二区三区麻豆| 国产淫片久久久久久久久| 成人亚洲欧美一区二区av| 欧美性感艳星| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看| 久热久热在线精品观看| 欧美日韩综合久久久久久| 国产精品三级大全| 国产乱来视频区| 伦理电影大哥的女人| 国产伦精品一区二区三区视频9| 少妇猛男粗大的猛烈进出视频 | 99精国产麻豆久久婷婷| 国产一区亚洲一区在线观看| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 午夜福利高清视频| 欧美性感艳星| 国产久久久一区二区三区| 精品国产露脸久久av麻豆| 99久久中文字幕三级久久日本| 男男h啪啪无遮挡| 97在线人人人人妻| 精品国产露脸久久av麻豆| 国产男女内射视频| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看| 国产爽快片一区二区三区| 街头女战士在线观看网站| 中文乱码字字幕精品一区二区三区| 99久久九九国产精品国产免费| 久久综合国产亚洲精品| 麻豆成人av视频| 欧美国产精品一级二级三级 | 亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| 久久久久国产精品人妻一区二区| 男女啪啪激烈高潮av片| 久久久久国产精品人妻一区二区| 91午夜精品亚洲一区二区三区| 春色校园在线视频观看| 一级毛片黄色毛片免费观看视频| 欧美成人一区二区免费高清观看| 国产老妇女一区| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片| 一级二级三级毛片免费看| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 青春草亚洲视频在线观看| 国产伦精品一区二区三区四那| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品人妻少妇| 国产精品99久久99久久久不卡 | 国产中年淑女户外野战色| 99精国产麻豆久久婷婷| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 亚洲国产精品成人综合色| 国产一区二区三区综合在线观看 | 免费看日本二区| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 久久热精品热| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 成年人午夜在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 三级国产精品片| 成人毛片a级毛片在线播放| 婷婷色综合www| 在线a可以看的网站| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 久久综合国产亚洲精品| 伦精品一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 一级a做视频免费观看| 在线观看人妻少妇| 中国三级夫妇交换| 丝袜喷水一区| 国产男人的电影天堂91| av专区在线播放| 亚洲欧洲日产国产| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 国产在线男女| 国产精品女同一区二区软件| 欧美+日韩+精品| 视频中文字幕在线观看| www.av在线官网国产| 日韩成人av中文字幕在线观看| 91狼人影院| 欧美日韩视频高清一区二区三区二| 熟女av电影| 欧美性感艳星| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 成人亚洲精品一区在线观看 | 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 亚洲成人久久爱视频| 日韩欧美 国产精品| 亚洲最大成人手机在线| 久久久久久九九精品二区国产| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 免费观看a级毛片全部| 午夜精品国产一区二区电影 | 黄色视频在线播放观看不卡| 天堂中文最新版在线下载 | 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 舔av片在线| 国产在线一区二区三区精| freevideosex欧美| 一区二区三区乱码不卡18| 大又大粗又爽又黄少妇毛片口| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 成人亚洲精品一区在线观看 | 少妇丰满av| 午夜激情福利司机影院| 国产精品久久久久久久电影| 免费观看性生交大片5| 亚洲丝袜综合中文字幕| 草草在线视频免费看| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 最近中文字幕高清免费大全6| 国产成人a区在线观看| 哪个播放器可以免费观看大片| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 少妇高潮的动态图| 国国产精品蜜臀av免费| 久久久久久久久久久丰满| 欧美日韩视频精品一区| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 久久久精品欧美日韩精品| 中文字幕久久专区| 色吧在线观看| 亚洲不卡免费看| 亚洲精品成人久久久久久| 少妇熟女欧美另类| 欧美精品一区二区大全| 久久99热6这里只有精品| 日本午夜av视频| 亚洲精品一区蜜桃| 国产男女内射视频| 人人妻人人爽人人添夜夜欢视频 | 欧美bdsm另类| 国产高清三级在线| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡 | 综合色丁香网| 色网站视频免费| 国产高清三级在线| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 少妇裸体淫交视频免费看高清| 成人免费观看视频高清| 在现免费观看毛片| 2021天堂中文幕一二区在线观| 极品教师在线视频| 成人国产av品久久久| 爱豆传媒免费全集在线观看| 国产午夜精品一二区理论片| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 久久精品人妻少妇| 国产欧美日韩一区二区三区在线 | 亚洲精华国产精华液的使用体验| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃 | 日韩精品有码人妻一区| 国产精品麻豆人妻色哟哟久久| 丰满乱子伦码专区| 国产毛片a区久久久久| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久久久按摩| 国产一级毛片在线| 97超视频在线观看视频| 91精品一卡2卡3卡4卡| 国产免费视频播放在线视频| 1000部很黄的大片| 色视频www国产| 亚洲美女视频黄频| 夜夜爽夜夜爽视频| 青青草视频在线视频观看| 三级经典国产精品| 黄色视频在线播放观看不卡| 日韩中字成人| 黄色欧美视频在线观看| 嫩草影院精品99| 女人久久www免费人成看片| 日本欧美国产在线视频| 免费看a级黄色片| av线在线观看网站| 久久精品综合一区二区三区| 免费大片黄手机在线观看| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 大码成人一级视频| 91狼人影院| 最后的刺客免费高清国语| 男女边摸边吃奶| 嘟嘟电影网在线观看| 97超视频在线观看视频| 国产毛片在线视频| 久久久久九九精品影院| 亚洲精品,欧美精品| 日日啪夜夜爽| 狂野欧美激情性xxxx在线观看| 五月开心婷婷网| 精品一区二区三区视频在线| 五月伊人婷婷丁香| 欧美97在线视频| 日韩成人av中文字幕在线观看| 国产精品久久久久久久电影| 建设人人有责人人尽责人人享有的 | 在线观看av片永久免费下载| 国产91av在线免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲在久久综合| 一本久久精品| 国产精品福利在线免费观看| 观看免费一级毛片| 国产综合精华液| av.在线天堂| 欧美丝袜亚洲另类| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| 好男人视频免费观看在线| 久久精品人妻少妇| 久久精品国产鲁丝片午夜精品| 丰满乱子伦码专区| 三级男女做爰猛烈吃奶摸视频| 少妇人妻精品综合一区二区| 亚洲伊人久久精品综合| 赤兔流量卡办理| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 欧美少妇被猛烈插入视频| 亚洲经典国产精华液单| 99热6这里只有精品| 免费av毛片视频| 久久久欧美国产精品| 国产精品久久久久久av不卡| 男女边摸边吃奶| 亚洲国产精品国产精品| 欧美性猛交╳xxx乱大交人| 国产熟女欧美一区二区| 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 看免费成人av毛片| 亚洲欧美中文字幕日韩二区| 少妇人妻 视频| 国产成人午夜福利电影在线观看| 一区二区三区乱码不卡18| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 国产亚洲午夜精品一区二区久久 | 日本一二三区视频观看| 精品人妻偷拍中文字幕| 午夜精品国产一区二区电影 | 久久久久久久亚洲中文字幕| 综合色丁香网| 1000部很黄的大片| 亚洲美女搞黄在线观看| 我要看日韩黄色一级片| 天堂中文最新版在线下载 | 汤姆久久久久久久影院中文字幕| 乱码一卡2卡4卡精品| 视频中文字幕在线观看| 边亲边吃奶的免费视频| av线在线观看网站| 成人漫画全彩无遮挡| av.在线天堂| 欧美日韩亚洲高清精品| 国产亚洲午夜精品一区二区久久 | 狂野欧美激情性bbbbbb| 久久久久久久久大av| 久久久久久久久久成人| 在线免费十八禁| 亚洲美女视频黄频| 中文资源天堂在线| 日韩亚洲欧美综合| 亚洲美女视频黄频| 亚洲性久久影院| 麻豆成人午夜福利视频| 久久99热这里只有精品18| 91狼人影院| 在线免费十八禁| 久久久成人免费电影| 高清视频免费观看一区二区| 在线 av 中文字幕| 亚洲怡红院男人天堂| 亚洲精品一二三| 男人和女人高潮做爰伦理| 国内揄拍国产精品人妻在线| 小蜜桃在线观看免费完整版高清| 国产在视频线精品| 亚洲熟女精品中文字幕| 国产成人a区在线观看| 卡戴珊不雅视频在线播放| 亚洲一区二区三区欧美精品 | 听说在线观看完整版免费高清| 高清午夜精品一区二区三区| 人妻系列 视频| 五月玫瑰六月丁香| www.av在线官网国产| 久久精品国产亚洲网站| 久久久久久久久大av| 亚洲无线观看免费| 久久久久精品性色| 日日撸夜夜添| 免费大片黄手机在线观看| 少妇熟女欧美另类| 中文精品一卡2卡3卡4更新| 波野结衣二区三区在线| 啦啦啦啦在线视频资源| 国产一区二区亚洲精品在线观看| 高清午夜精品一区二区三区|