• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Review of Short-term Prediction Techniques for Ship Motions in Seaway

    2014-03-16 08:14:20HUANGLiminDUANWenyangHANYangCHENYunSai
    船舶力學(xué) 2014年12期

    HUANG Li-min,DUAN Wen-yang,HAN Yang,CHEN Yun-Sai

    (College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)

    1 Introduction

    Six degrees of freedom ship swaying motions occur through lifetime due to the ocean environmental disturbances including sea waves,wind and ocean current,etc.,which are dangerous in ship related maritime operations such as aircraft landing in carriers,ship-borne helicopter recovery,float over,launch and recovery of submarines,and cargo transfer between ships,and so on,especially in harsh conditions.

    First studies on ship motion prediction were based on the analysis of ship motion records.And of course data obtained along hours provide information on sea state,in terms of statistical parameters including probability distribution,mean,deviation,etc.However,the more important thing is to forecast the ship motions 5 to 10 seconds ahead of time.As it is very useful for the above offshore operations in both operational safety and efficiency aspects.For example,the prediction information is critical in the motion compensation which may prevent crash of cargo in cargo transfer,improving the fire accuracy of the ship-borne weapon systems and performance of the motion control systems.Besides,another important application of ship motion prediction is to extend the operational limits by forecasting the quiescent periods where the ship motions are within acceptable limits to perform a desire maritime activity.Classical prediction approaches employ statistical data to assess whether a task can be exe-cuted,and at present ship motions are estimated through human observation.However,this may result in the outcome that an operation is never executed,whereas quiescent periods do exist.

    In this paper,definitions of short term,middle term and long term prediction of ship motions are distinguished in Section 2 while Section 3 gives the various classifications of shortterm prediction techniques for ship motions.In Section 4,development of short-term prediction methods are reviewed and assessments on prediction approaches are made.Finally,concluding remarks and recommendations are given in Section 5.

    2 Definition of short-term prediction of ship motion

    Generally,ship motion prediction includes long term prediction,middle term prediction and short term prediction with various prediction durations,applications and prediction approaches.The long term prediction is also designated as the design limits prediction[1]forecasting the possible extreme responses encountered in few months,years or even the entire life time of the ship using fluid dynamic theory and statistical means.Similar to the pre-mentioned long term prediction,middle term prediction uses fluid dynamic techniques like strip theory,2D+t,three dimensions potential theory,and probability analysis to forecast the response characteristics including the significant values,slamming times and green water possibility,and so forth.Long term prediction is mainly employed in the preliminary design while the middle term prediction is more widely applied in the optimal design and understanding of ship’s performance in the ocean waves.

    Fig.1 Cargo transfer[2]

    Fig.2 Launch and recovery of Rigid Hulled Inflatable Boats[2]

    Unlike long term and middle term prediction of the ship motion,the short term prediction adopts information on what the ship is doing right now and what it has been doing in the recent past to forecast what it may be doing in the very near future using short term prediction theories consisting of time series analysis,nonlinear system identification theory and artificial intelligent methods.With various applications from long term and middle term prediction,short term prediction is always used in compensation control and decision making for the maritime special operations such as cargo transfer between ships(as shown in Fig.1),the launch and recovery operation of Rigid Hulled Inflatable Boats(RHIBs),submarines and ship-borne helicopters(as shown in Figs.2-4,respectively),floater motion to assist motion critical offshore operations and platforms,LNG-offloading connect,automatic UAV landing,etc.

    Fig.3 Launch and recovery of submarine[2]

    Fig.4 Launch and recovery of ship-borne helicopter[2]

    3 Categorization and difficulties in the short-term prediction of ship motion

    Short term prediction of the ship motion is widely studied for its great engineering application value,so far,enormous number of forecast models have been studied,where some of them were already carried out in marine trial.Traditionally,the short term prediction models are simply categorized into frequency domain methods and time domain methods[3].This categorization method failed to describe prediction models concern with both frequency domain and time domain aspects.Therefore,new classifications of short-term prediction techniques according to the characteristics of ship response and prediction theories are introduced.

    The first solution for classification is to summarize the short term prediction models into four kinds of prediction theories including linear prediction theory,nonlinear prediction theory,intelligent prediction theory and hybrid prediction theory according to differences of their theoretical categories.Among approaches mostly used in short-term prediction study,Autoregressive(AR)model and Kalman filter are involved in linear prediction theory,while wavelet analysis based and chaotic theory based prediction models belong to nonlinear prediction theory.Intelligent prediction theory usually includes artificial neural network(ANN),support vector regression(SVR),etc.And hybrid prediction theory consists of coupled forecast models such as empirical mode decomposition based radial basis function neural network(EMD-RBFNN),empirical mode decomposition based least mean square support vector machines(EMDLMSSVM),empirical mode decomposition based autoregressive(EMD-AR)model,and so on.

    Based on the differences of mathematical tools applied in prediction models,the second way for categorization divides the prediction methods into two categories.One category is classic statistical theory,calculus and methods of mathematical physics based prediction techniques containing classic time series analysis models,Kalman filter,minor component analysis(MCA)prediction model,etc.Another category is prediction models where the very recent developed techniques are used,including wavelet theory related prediction method,artificial neural network prediction model and its extensions.

    Besides,the basis of different modeling principles,the third approach for classifying the short term prediction models is to categorize them into three types of models:hydrodynamic based prediction models,classical time series prediction models and nonlinear and artificial theories based on short term prediction models.In this point of view,convolution predictor and Kalman filter are included in hydrodynamic based prediction models.And for classical time series prediction models,AR model,ARMA model and ARIMA model etc.are included.Nonlinear and artificial theories based on short term prediction models is likely to conclude artificial neural network(ANN),fuzzy theory related prediction models and chaotic theory based on prediction models.

    The final feasible categorization method is depending on the foundation of the signal characteristics existing in ship motion time history.In general,characteristic natures to describe a stochastic process including stationarity,non-stationarity,linearity and non-linearity.Prediction methods are concluded into four categories:stationary and linear prediction methods,stationary and nonlinear prediction methods,non-stationary and linear prediction models,nonstationary and nonlinear prediction methods.Details of each category are shown in Fig.5.

    Fig.5 Classification of short-term prediction approaches

    4 Development of short-term prediction methods for ship motions

    Short term prediction of the ship motion was widely studied for its great engineering application value in the past decades,so far,enormous number of forecast models had been studied,where some of them were already carried out to marine trial.

    4.1 Hydrodynamic based predictor

    The early efforts on short term prediction were related to hydrodynamics.Kaplan(1965)[4]developed a predictor by using the wave height measurements at the bow serving as input data which was then convoluted with the ship response kernel function to obtain the motion estimation in the coming seconds.Whereas,the ship response kernel function was derived out under the consumption of linear hydrodynamic theory.However,accurate response function and wave inputs are necessary to ensure desired prediction accuracy,which are always limited in engineering application.Later in(Kaplan,1969),the Wiener filter was proposed for linear prediction of ship motions[5],which estimated the prediction results depending on statistical parameters like ship motion power spectral densities.It was successfully applied to a carrier,obtaining 5~6 seconds of prediction horizon.But the implementation was complicated and the time was consumed.

    Short term prediction using state-space approaches has been studied in a considerable number of papers.Triantafyllou et al(1981;1982;1983)addressed Kalman filtering techniques[6-8]for the prediction of six-degree-freedom motions using a precise state-space model.Numerical simulation results of DD-963 destroyer show that the prediction precision of Kalman filter greatly depends on the ocean wave frequencies,and estimation results of 8-10 seconds advance obtained for the roll while 5 seconds with respect to pitch without noise condition.On the contrast,for the noise condition,prediction horizon can reach 6-8 seconds for roll and 2-3 seconds with respect to pitch.However,Kalman filter is still difficult to be applied to forecast ship motions in the real world for its shortcomings.First of all,accurate state-space equations and noise statistics are necessary in implementing Kalman filter,which are hard to obtain in the real engineering problems.Besides,tremendous computational efforts required to solve the ship hydrodynamic coefficients for the state-space equations,result in difficulty to real time implementation.

    4.2 Classical time series prediction model

    Time series analysis is another possible solution accomplishing the short term prediction of ship motions,which only requires time history of the ship motions or with ocean waves for modeling.Practical limitations of requiring accurate state-space and noise estimation in the Kalman filter and precise response kernel function in the convolution predictor are avoided.

    There are three classic time series models for short term prediction,i.e.autoregressive(AR)model,moving average(MA)model and autoregressive moving average(ARMA)model.Among these models,AR model has been widely studied in a large number of papers for its advantages:low computation cost,convenient in real-time identification,high adaptive nature.Research works involving identification techniques for determining the model order and estimating the corresponding coefficients have been extensively surveyed.For order determination of AR model,Akaike Information Criterion(AIC)is the mostly adopted way for this problem,however,the prediction performance was not always satisfied.To improve the performance of AR model,Peng et al(2006)[9]developed an order selection technique based on corner condition,and simulation results showed that the computational complexity was shortcut with the prediction precision increased more than AR algorithm according to AIC criterion order selection.There are many algorithms for parameter estimation of AR model,such as recursive least square(RLS)[10-11]algorithm,lattice recursive least square(LRLS)algorithm[12],etc.

    AR model shows good prediction performance in stationary process,however,prediction accuracy in non-stationary and non-linear situation is out of expectation.To improve the prediction performance,Yumori(1981)[13]developed a novel ARMA model based on leading indicator method using a statistical way that finds a time domain model which best fits an input wave sensor time history to the ship response time history.It showed good predictions of phase and amplitude for 2 to 4 seconds in advance and phase for 8 to 10 seconds in 8 second waves.Simulation results by Zhao(2003)[14]using ship model testing data showed that ARMA model performances were better than AR model in prediction accuracy.But satisfactory prediction results only are obtained if it can sense waves at a distance from the ship which is not always available in the real situation.

    Among classic time series forecast models,linear prediction models are mostly focused for advantages like less computational complexity and memory demands,convenient for real-time realization.However,prediction results are far from expected in harsh sea conditions and the real motions of the ship and ocean waves are always non-stationary that conflicts with the stationary assumptions in time series analysis models.

    4.3 Nonlinear and intelligent based prediction model

    To overcome the nonlinearity and non-stationarity involved in the real-life ship motions,nonlinear theory and artificial intelligent identification methods are employed to short term prediction.

    Zhou and Zhao[15]proposed a nonlinear linear autoregressive(NAR)model by using Orthogonalization to identify NAR model,and multi-step forward prediction was also derived.Simulation results of NAR model showed better prediction precision than AR model.

    Artificial neural network(ANN)is widely preferred in processing non-linear and non-stationary problem for its intelligent ability.Investigations into the application of artificial neural network methods for short term prediction of ship motion by Khan[16]show that the artificial neural network produces excellent predictions and the ship motion may be satisfactorily predicted for up to 7 seconds.Aiming at making good prediction for non-stationry and non-linear ship motion,Weng et al[17]addressed a prediction technique based on second-order adaptive Volterra series.Further,to deal with the chaos characteristic in the ship motion,prediction model based on chaotic time series theory and radial basis function(RBF)artificial neural net-work are implemented for short term prediction[18].Simulation results show that it is able to predict ship motion acceptably up to 10 seconds with a precision rate of 85%.

    Though the above nonlinear and intelligent models perform well in data fitting,their applications in real engineering problem are still constrained because of disadvantages such as high computational cost,demanding substantial samples,non-adaptive in model identification,and so forth.

    Hybrid estimation methods are possible solutions,and attempts are carried out.In which,empirical mode decomposition[19](EMD)method was widely used to be coupled with various prediction models.Zhou et al[20]invented an empirical mode decomposition method(EMD)based on least mean square support vector machines(LSSVM)for the prediction issue.In previous study,Hou et al[21]developed an empirical mode decomposition based on radial basis function neural network(EMD-RBFNN)model to deal with the nonlinearity and non-stationarity of the ship swaying motions.But further research works in adaptive algorithms for radial function determination are still needed.Compared with the above hybrid prediction models,empirical mode decomposition autoregressive(EMD-AR)model proposed by Duan et al[22]required less computational complexity with better adaptation.Non-stationary and nonlinear characteristics of the ship motion are overcome thorough adaptive empirical mode decomposition,where simple intrinsic mode functions(IMFs)produced.After that,each component is predicted by a fitting AR model.But for all EMD based on prediction models,end effects in real-time EMD algorithm are major challenges.

    5 Conclusions and recommendations

    A review of short term prediction has been presented.Firstly,differences between short term prediction and traditional prediction of ship motions were distinguished.Then application and categorization of the short term were then introduced.Development and research challenges of short-term prediction techniques were discussed in detail.

    Linear system theory based on prediction approaches are always easy to operate,demanding low computation cost and convenient for real-time identification.However,their prediction performances are not satisfactory,especially for non-linear and non-stationary ship motions.Nonlinear and intelligent theories based on the prediction methods show good predictions for nonlinear and non-stationary ship motions when the training data are sufficient.But it is still difficult for real-time/on-line implementation of those prediction techniques as large computational complexities are involved and selection of the model parameters is not always adaptive.Therefore,Efficiency,adaptation and accuracy of non-stationary and nonlinear prediction techniques for ship motions are the key parts of future research.

    Acknowledgement

    This work was financially supported by he National Natural Science Foundation of China(No.11272097).

    [1]Shen Zhenbang,Liu Yingzhong.Theory of ship[M].Shanghai:Shanghai Jiao Tong University Press,2004:337-450.

    [2]Henry G,Cox I,Crossland P,Duncan J.Virtual ships:NATO standards development and implementation[C].United Kingdom,2009:1-16.

    [3]Zhao Xiren,Peng Xiuyan,Shen Yan,Xie Meiping.Study status quo of extremely short-time modeling and predicting of ship motion[J].Ship Engineering,2002:4-8.

    [4]Kaplan P,Sargent T P.A preliminary study of prediction techniques for aircraft carrier motions at sea[J].Oceanics,Inc.Rpt.,1965:65-23.

    [5]Kaplan P.A study of prediction techniques for aircraft carrier motions at sea[J].Journal of Hydronautics,1969,3(3):121-131.

    [6]TriantafyIlou M,Athans M.Real time estimation of the heaving and pitching motions of a ship using a Kalman filter[C]//Proc.Oceanics 81,Sept 1981.Boston MA,1981.

    [7]TriantafylIou M.and Bodson M.Real time prediction of marine vessel motion using Kalman filtering techniques[C]//Proc.OTC.Houston,Texas,1982.

    [8]TriantafylIou M,Athans M.Real time estimation of motions of a destroyer using KaIman filtering techniques[R].Laboratory for Information and Decision Systems Rep,MIT Cambridge,1983.

    [9]Peng Xiuyan,Zhao Xiren,Xu Linlin.Real-time prediction algorithm research of ship attitude motion based on order selection with corner condition[C]//1st International Symposium on Systems and Control in Aerospace and Astronautics(ISSCAA),IEEE.Harbin,2006:1070-1075.

    [10]Yang Xilin.Displacement motion prediction of a landing deck for recovery operations of rotary UAVs[J].International Journal of Control,Automation,and Systems,2013,11(1):58-64.

    [11]Peng Xiuyan,Zhao Xiren,Gao Qifen.Research on real-time prediction algorithm of ship attitude motion[J].Journal of System Simulation,2007,19(2):268-271.

    [12]Peng Xiuyan,Liu Changde.Extreme short time prediction of ship motion based on lattice recursive least square[J].Journal of Ship Mechanics,2012,16(1-2):44-51.

    [13]Yumori I R.Real time prediction of ship response to ocean waves using time series analysis[C].IEEE Oceans,1981.

    [14]Zhao Xiren,Peng Xiuyan,Lu Suping,Wei Naxin.Extreme short prediction of big ship motion having wave survey[J].Journal of Ship Mechanics,2003,7(2):39-44.

    [15]Zhou Shuqiu,Zhao Xiren.A nonlinear method of extreme short time prediction for warship motions at sea[J].Journal of Harbin Engineering University,1992,17(4):1-7.

    [16]Khan A,Bil C,Marion K E.Ship motion prediction for launch and recovery of air vehicles[J].OCEANS,2005,Proceeding of MTS/IEEE,2005,3:2795-2801.

    [17]Weng Zhenping,Gu Min,Liu Changde.Extreme short-term prediction of ship motion based on second-order adaptive Volterra series[J].Journal of Ship Mechanics,2010,14(7):732-740.

    [18]Gu Min,Liu Changde,Zhang Jinfeng.Extreme short-term prediction of ship motion based on chaotic theory and RBF neural network[J].Journal of Ship Mechanics,2013,17(10):1147-1152.

    [19]Huang N E,Shen Z,Long S,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.

    [20]Zhoubo,Shi Aiguo.Empirical mode decomposition based LSSVM for ship motion prediction[J].Advance in Neural Networks.Lecture Notes in Computer Science.2013,7951:319-325.

    [21]Hou Jianjun,Qi Yansheng.On the prediction in time domain of ship non-stationary swaying motions[C]//Proceedings of International Conference on Information Technology and Computer Science.New York,2011:230-234.

    [22]Duan Wenyang,Huang Limin,et al.EMD-AR based short-term prediction model for non-stationary ship motions[J].Journal of Harbin Engineering University,2014.(Submitted)

    成人国产av品久久久| 精品久久久精品久久久| 99热这里只有精品一区| 亚洲精品一二三| 亚洲电影在线观看av| 日本午夜av视频| 噜噜噜噜噜久久久久久91| 精品久久久精品久久久| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | 国产av码专区亚洲av| 国产亚洲5aaaaa淫片| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 91成人精品电影| 麻豆成人av视频| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 一本久久精品| 国产色婷婷99| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 美女xxoo啪啪120秒动态图| 欧美精品亚洲一区二区| 午夜免费观看性视频| 精品熟女少妇av免费看| 国产精品免费大片| 水蜜桃什么品种好| 亚洲精华国产精华液的使用体验| 国产亚洲5aaaaa淫片| 狂野欧美激情性xxxx在线观看| 国产精品一区www在线观看| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 精品一区二区免费观看| 国产精品熟女久久久久浪| tube8黄色片| 欧美日韩综合久久久久久| 国内揄拍国产精品人妻在线| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久丰满| 国产黄片美女视频| 亚洲国产av新网站| 欧美 亚洲 国产 日韩一| 日日啪夜夜爽| 国产精品一区二区性色av| 大码成人一级视频| 最近的中文字幕免费完整| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 国产亚洲最大av| 久久精品夜色国产| 国产又色又爽无遮挡免| 哪个播放器可以免费观看大片| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 精品酒店卫生间| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 晚上一个人看的免费电影| 国产探花极品一区二区| 一区二区av电影网| av不卡在线播放| 一级爰片在线观看| 男人舔奶头视频| 国产视频首页在线观看| 婷婷色av中文字幕| 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 亚洲精品第二区| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 美女视频免费永久观看网站| 九九在线视频观看精品| 一边亲一边摸免费视频| 国产乱来视频区| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 极品教师在线视频| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 久久久久精品性色| 人人妻人人爽人人添夜夜欢视频 | 狂野欧美白嫩少妇大欣赏| 少妇被粗大的猛进出69影院 | 亚洲人成网站在线观看播放| av播播在线观看一区| 在线观看美女被高潮喷水网站| 超碰97精品在线观看| 日本黄色日本黄色录像| 99热网站在线观看| 简卡轻食公司| 国产精品人妻久久久久久| 天堂中文最新版在线下载| 2022亚洲国产成人精品| 日韩中文字幕视频在线看片| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区国产| 丝袜在线中文字幕| 丁香六月天网| 黑人巨大精品欧美一区二区蜜桃 | 一级毛片电影观看| 一级毛片电影观看| 在线观看免费高清a一片| 简卡轻食公司| 欧美日韩亚洲高清精品| 国产高清三级在线| 高清视频免费观看一区二区| 精品国产一区二区三区久久久樱花| 人妻夜夜爽99麻豆av| 亚洲激情五月婷婷啪啪| 国产精品成人在线| 亚洲精品色激情综合| 一区二区三区四区激情视频| 国产精品一区www在线观看| av视频免费观看在线观看| 国产亚洲5aaaaa淫片| 久久99热这里只频精品6学生| 久久久久久人妻| 日本免费在线观看一区| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 国产视频首页在线观看| 高清毛片免费看| 国产高清不卡午夜福利| 久久ye,这里只有精品| 亚洲av综合色区一区| 男人添女人高潮全过程视频| 交换朋友夫妻互换小说| 国产综合精华液| 国内精品宾馆在线| 美女中出高潮动态图| 国产亚洲5aaaaa淫片| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 丁香六月天网| 中文欧美无线码| 嫩草影院入口| 人人妻人人看人人澡| 久久久久视频综合| 人妻系列 视频| 亚洲国产日韩一区二区| 少妇的逼好多水| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 亚洲综合色惰| 国产视频内射| 久久久国产精品麻豆| 黑人高潮一二区| 亚洲精品第二区| 国产精品一区二区三区四区免费观看| 免费久久久久久久精品成人欧美视频 | 80岁老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看| 97在线视频观看| 久热久热在线精品观看| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 少妇熟女欧美另类| 熟女电影av网| 国产高清国产精品国产三级| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜| 精品一区二区三卡| 中文欧美无线码| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 国产色爽女视频免费观看| 伦理电影大哥的女人| 天天操日日干夜夜撸| 国产免费一级a男人的天堂| 黄片无遮挡物在线观看| 日韩大片免费观看网站| 中文字幕av电影在线播放| 97精品久久久久久久久久精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美日韩卡通动漫| 成年人午夜在线观看视频| 欧美 日韩 精品 国产| 欧美变态另类bdsm刘玥| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 久久97久久精品| 欧美一级a爱片免费观看看| 日本av免费视频播放| 性色avwww在线观看| 在线播放无遮挡| www.色视频.com| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 天堂8中文在线网| av黄色大香蕉| 精华霜和精华液先用哪个| 免费观看的影片在线观看| 国产毛片在线视频| 有码 亚洲区| 久久久久久久大尺度免费视频| 永久网站在线| 嫩草影院入口| 亚洲性久久影院| 久久久久视频综合| 特大巨黑吊av在线直播| 日韩av在线免费看完整版不卡| 六月丁香七月| 尾随美女入室| 一级片'在线观看视频| 美女视频免费永久观看网站| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| 内射极品少妇av片p| 黑人高潮一二区| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 亚洲欧美成人精品一区二区| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线 | 亚洲精品国产成人久久av| 伊人久久国产一区二区| 欧美亚洲 丝袜 人妻 在线| 性色avwww在线观看| 国产精品99久久久久久久久| 亚洲精品国产色婷婷电影| av黄色大香蕉| 国内揄拍国产精品人妻在线| 国产一级毛片在线| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站| 永久网站在线| 午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 我要看日韩黄色一级片| 久久久精品免费免费高清| 草草在线视频免费看| 亚洲欧美日韩另类电影网站| 伊人亚洲综合成人网| 六月丁香七月| 国产在线免费精品| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 男人和女人高潮做爰伦理| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 一个人免费看片子| 九九久久精品国产亚洲av麻豆| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 麻豆成人av视频| 国产男女内射视频| 日本欧美视频一区| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 两个人的视频大全免费| av不卡在线播放| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 一区在线观看完整版| 黄色视频在线播放观看不卡| 久久99一区二区三区| videossex国产| 精品人妻熟女毛片av久久网站| 日本猛色少妇xxxxx猛交久久| 又爽又黄a免费视频| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 国产精品成人在线| 色视频www国产| 久久99一区二区三区| 黄色怎么调成土黄色| 在线免费观看不下载黄p国产| 午夜福利视频精品| 晚上一个人看的免费电影| 欧美日本中文国产一区发布| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久久久免| 中文天堂在线官网| 一区二区三区免费毛片| 97超碰精品成人国产| 99久久精品一区二区三区| 亚洲av成人精品一二三区| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 十八禁高潮呻吟视频 | 美女视频免费永久观看网站| 最近中文字幕2019免费版| 国产成人精品婷婷| 最近2019中文字幕mv第一页| 麻豆成人av视频| 精华霜和精华液先用哪个| av国产久精品久网站免费入址| 狠狠精品人妻久久久久久综合| 国产精品不卡视频一区二区| 国产精品成人在线| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院 | 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 黄色欧美视频在线观看| 欧美精品人与动牲交sv欧美| 欧美性感艳星| 人妻系列 视频| 日本黄色日本黄色录像| 精品一区二区免费观看| 亚洲av免费高清在线观看| 久久精品熟女亚洲av麻豆精品| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 男人狂女人下面高潮的视频| 久久女婷五月综合色啪小说| 亚州av有码| 人妻系列 视频| 国产精品一区二区在线观看99| 精品久久久久久久久av| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 国模一区二区三区四区视频| 在线天堂最新版资源| 精品卡一卡二卡四卡免费| 欧美日本中文国产一区发布| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 人妻制服诱惑在线中文字幕| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看 | 丰满乱子伦码专区| 18+在线观看网站| 97在线视频观看| 国产欧美日韩精品一区二区| 欧美另类一区| 在线播放无遮挡| 成人影院久久| 国产成人一区二区在线| 日本av手机在线免费观看| 欧美+日韩+精品| 一级毛片电影观看| 久久久国产欧美日韩av| 亚洲精品第二区| 91精品一卡2卡3卡4卡| 亚洲美女视频黄频| 美女内射精品一级片tv| 在线观看人妻少妇| 国产真实伦视频高清在线观看| 亚洲国产色片| 欧美老熟妇乱子伦牲交| 久久精品国产自在天天线| 99久国产av精品国产电影| 国产一区有黄有色的免费视频| 国产永久视频网站| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 日本与韩国留学比较| 一本久久精品| 久久av网站| 国产成人免费观看mmmm| 最近的中文字幕免费完整| 黄色日韩在线| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 久久99精品国语久久久| 一级毛片我不卡| 在线精品无人区一区二区三| 黑人高潮一二区| 国产精品蜜桃在线观看| 91久久精品电影网| 秋霞在线观看毛片| 日本色播在线视频| 内地一区二区视频在线| 99久久精品热视频| 日本欧美视频一区| 伦理电影免费视频| 欧美激情国产日韩精品一区| 黄色毛片三级朝国网站 | 日本爱情动作片www.在线观看| 亚洲欧美日韩东京热| av国产精品久久久久影院| 国产精品一区二区三区四区免费观看| 丰满少妇做爰视频| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 欧美日韩精品成人综合77777| 国产爽快片一区二区三区| 精品国产一区二区久久| 少妇精品久久久久久久| 高清av免费在线| 另类亚洲欧美激情| 在线观看美女被高潮喷水网站| 久久久久国产网址| 欧美日韩国产mv在线观看视频| 高清午夜精品一区二区三区| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 欧美丝袜亚洲另类| 搡女人真爽免费视频火全软件| 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片| 欧美一级a爱片免费观看看| 有码 亚洲区| 日韩在线高清观看一区二区三区| 国产黄片视频在线免费观看| 国产av精品麻豆| 2021少妇久久久久久久久久久| 中文天堂在线官网| 另类精品久久| 亚洲伊人久久精品综合| 日韩电影二区| 美女xxoo啪啪120秒动态图| 看免费成人av毛片| 欧美日韩国产mv在线观看视频| 成年美女黄网站色视频大全免费 | 午夜视频国产福利| 99九九线精品视频在线观看视频| 久久久国产精品麻豆| 美女cb高潮喷水在线观看| 中文天堂在线官网| 建设人人有责人人尽责人人享有的| 五月伊人婷婷丁香| 丝袜喷水一区| 久久久精品94久久精品| 日本黄色日本黄色录像| 亚洲综合精品二区| 男女啪啪激烈高潮av片| 亚洲av综合色区一区| 久久国产乱子免费精品| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| √禁漫天堂资源中文www| 狂野欧美白嫩少妇大欣赏| av.在线天堂| 日日摸夜夜添夜夜爱| 国产精品人妻久久久久久| a级毛片免费高清观看在线播放| 亚洲精品视频女| 免费黄色在线免费观看| 亚洲精品视频女| 熟女人妻精品中文字幕| 久久久久国产网址| 天堂8中文在线网| 精品人妻熟女毛片av久久网站| 高清av免费在线| h视频一区二区三区| 在线观看三级黄色| 韩国av在线不卡| 日韩一本色道免费dvd| 女性被躁到高潮视频| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区在线不卡| 少妇的逼水好多| 大片电影免费在线观看免费| 久久精品国产鲁丝片午夜精品| 草草在线视频免费看| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 97精品久久久久久久久久精品| 久久免费观看电影| 青春草国产在线视频| 欧美日韩在线观看h| 亚洲精品第二区| 午夜福利在线观看免费完整高清在| 丰满迷人的少妇在线观看| 91精品一卡2卡3卡4卡| 色吧在线观看| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 亚洲精品国产成人久久av| av线在线观看网站| 69精品国产乱码久久久| 丰满少妇做爰视频| 五月开心婷婷网| 噜噜噜噜噜久久久久久91| 日韩精品免费视频一区二区三区 | 高清不卡的av网站| 国产伦理片在线播放av一区| 国产综合精华液| 18+在线观看网站| 成人18禁高潮啪啪吃奶动态图 | 亚洲美女黄色视频免费看| 少妇的逼好多水| 97在线人人人人妻| 成人黄色视频免费在线看| 国产美女午夜福利| 国产成人精品久久久久久| 精品卡一卡二卡四卡免费| 精品人妻熟女毛片av久久网站| av天堂久久9| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 国产黄片美女视频| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| xxx大片免费视频| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 亚洲成人一二三区av| 欧美日韩在线观看h| 99热6这里只有精品| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 免费观看在线日韩| 亚洲国产色片| 国产欧美日韩综合在线一区二区 | 亚洲av.av天堂| 国产在线男女| 欧美日韩国产mv在线观看视频| 婷婷色麻豆天堂久久| 亚洲av在线观看美女高潮| 男女国产视频网站| 欧美日韩综合久久久久久| 人妻系列 视频| 99久久中文字幕三级久久日本| 亚洲无线观看免费| 大香蕉97超碰在线| 精华霜和精华液先用哪个| 青春草视频在线免费观看| 亚洲色图综合在线观看| 成人毛片a级毛片在线播放| 成年av动漫网址| 欧美少妇被猛烈插入视频| 久久女婷五月综合色啪小说| 国产日韩欧美视频二区| 国产成人免费观看mmmm| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 久久国产精品男人的天堂亚洲 | 中国国产av一级| 全区人妻精品视频| 免费看日本二区| 一边亲一边摸免费视频| h日本视频在线播放| 少妇熟女欧美另类| 一本—道久久a久久精品蜜桃钙片| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看 | 日韩人妻高清精品专区| 99久久人妻综合| 国产日韩一区二区三区精品不卡 | 国产精品偷伦视频观看了| 又黄又爽又刺激的免费视频.| 黄色怎么调成土黄色| 日韩欧美 国产精品| av线在线观看网站| 欧美性感艳星| 我的老师免费观看完整版| 亚洲美女搞黄在线观看| 国产日韩一区二区三区精品不卡 | 国产午夜精品久久久久久一区二区三区| 成人美女网站在线观看视频| 91久久精品国产一区二区成人| 亚洲av国产av综合av卡| 亚洲国产毛片av蜜桃av| 亚洲,一卡二卡三卡| 久久免费观看电影| 丁香六月天网| av国产精品久久久久影院| 日韩一本色道免费dvd| 91成人精品电影| 久久精品久久精品一区二区三区| 久久久久久久久久久久大奶| 99久久人妻综合| 欧美日韩视频高清一区二区三区二| 亚洲精品aⅴ在线观看| 亚洲国产精品国产精品| 色视频在线一区二区三区| 欧美精品人与动牲交sv欧美| 极品少妇高潮喷水抽搐| 国产黄片视频在线免费观看| 日韩一本色道免费dvd| 观看免费一级毛片| 亚洲欧美日韩卡通动漫| 2022亚洲国产成人精品| 久久国产精品男人的天堂亚洲 | 天美传媒精品一区二区| 天天躁夜夜躁狠狠久久av| 中文在线观看免费www的网站| 免费观看性生交大片5| 亚洲激情五月婷婷啪啪| 一级爰片在线观看| 男男h啪啪无遮挡| 国产午夜精品久久久久久一区二区三区| 亚洲丝袜综合中文字幕|