• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional Numerical Simulation of Cryogenic Cavitating Flows of Liquid Nitrogen Around Hydrofoil

    2014-03-16 08:14:06SUNTiezhiWEIYingjieWANGCongZHAOChenggong
    船舶力學 2014年12期

    SUN Tie-zhi,WEI Ying-jie,WANG Cong,ZHAO Cheng-gong

    (School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)

    1 Introduction

    Cavitation occurs in the local thermodynamic state when the fluid pressure is lower than the vapor pressure[1-2].Usually occurring in the fluid machinery such as the turbine pump,nozzle and ship propeller,cavitation can bring mechanical vibrations,noise,material erosion,and severely affect the performance of fluid machinery.The research on cavitating flow is very complicated due to the performance of turbulence,phase change,multiple timescales and interfacial dynamic etc.

    There are fewer studies on the cryogenic liquid cavitating flow compared to the numerical and experimental research on fluid at normal temperature[3-6].During the past few decades,some significant efforts have been made about the cavitating flow of thermodynamic effect.As early as 1956,Stahl and Stepanoff[7]introduced a ‘B-factor’ theory to estimate the appraise head depression due to the thermodynamic effect during the cryogenic evaporation process.Sarosdy and Acosta[8]investigated the cavitation experiments of water and Freon,while the water cavities are relatively clear and well defined,the Freon cavities are always indistinct and frothy.Using liquid nitrogen and liquid hydrogen,Hord[9-11]carried out the systemic cryogenic cavitation experiments with the support of NASA.Pressure and temperature data are measured under different temperature and inlet velocities in the experiment model.The experimental data has been employed in numerical validation for thermodynamic effects in cavitating flow.Yuka et al[12]observed that the cavitation intensity of water was larger than that of the liquid nitrogen,and the restrain degree was more serious with the inlet fluid temperature increasing in cryogenic conditions.Recently,Hosangadi et al[13]used the Merkle cavitation model to simulate the cryogenic cavitating flow,and they suggested lower parameters value for cavitation model compared to their previous results.Tseng and Shyy[14]did sensitivity analysis on the transport based on cryogenic model parameters.Ma et al[15]investigated the temperature effect on the unsteady cavitating flow with liquid hydrogen around hydrofoil.

    The objective of this work is to investigate the cavitating flows in liquid nitrogen around a three-dimensional hydrofoil.The aims are to(1)Study the characteristic of cavitating flows in cryogenic environment,(2)Conduct the analysis to assess the applicability of the response to the cavitation model parameters,(3)Assess the numerical method over a range of conditions.The numerical simulations are performed by implanting the cavitation model,the energy source and the thermodynamic physical properties of liquid nitrogen to the CFX code via the CFX Expression Language.

    This paper is organized as follows:Section 2 presents the numerical methodology and setup.In Section 3,the cavitating flows comparisons under cryogenic and isothermal conditions are first presented,followed by the optimization model parameters and analysis of cavitation characteristic,and then a range wide of conditions are conducted with the numerical method.Finally,in Section 4 we present conclusions and some perspectives.

    2 Numerical methodology

    2.1 Governing equations

    The continuity(mass conservation)equation:

    2.2 Turbulence mode

    The Shear Stress Transport(SST)turbulence model is used in this paper,which solves the transport problem of the turbulence shear force by adding the eddy viscosity limited equation to the Baseline k-ω turbulence model,and it can perform more accurate prediction for the flow separation problem under the condition of adverse pressure gradient,the Baseline turbulence model is:

    The eddy viscosity limited equation is added to the SST turbulence model:

    where Pkbis the turbulent kinetic energy generation formula caused by the buoyancy;Pkis the turbulent kinetic energy generation formula caused by the viscosity force;α1=5/9 is a constant;F1and F2are the mixture function;S is the invariant measure under the strain rate.

    2.3 Cavitation model

    A representative transport-equation based Kubota cavitation model is shown below,which has strong applicability for estimating the volume change transformation during the growth and development process of the cavitation,the equation is expressed as:

    where default parameters RB=1 μm, αnuc=5e-4,Fvap=50,Fcond=0.01.The default Fvapand Fcondare based on the assumption of isothermal liquid.

    Turbulence has significant effect on cavitating flow by many experiments investigations[16-17].Ref.[18]accounted the effects of turbulent fluctuations,which is expressed as:

    then the saturation pressure is:

    where k is the turbulence kinetic energy,pturbis the turbulence pressure fluctuation.

    2.4 Computational model and mesh

    The numerical cases are consistent with the experimental measurements of hydrofoil in cryogenic cavitating flow which are investigated by Hord[10].The experimental geometry was mounted in a steady flow of cryogenic tunnel,the numerical domain length is 135 mm,both the width and the height of the pipeline are 12.7 mm,the length of the hydrofoil is 63.5 mm,leading edge radius is 3.96 mm.Five pressure monitor points and five temperature monitor points were tested during the experimental process.The data monitor points P1~P5and T1~T5are shown in Fig.1.

    Fig.2 shows the grids of the computational domain and the hydrofoil,the H-type and C-type grids are used in the simulation model,the grids size in the leading edge regions and near the hydrofoil are diminutive.

    Fig.1 The tunnel geometry and hydrofoil

    Fig.2 Grids of computational domain and hydrofoil

    The boundary conditions set in this simulations include inlet,outlet and wall.The velocity is fixed at the domain inlet and the pressure opening is imposed at the outlet.An adiabatic wall boundary condition is used at the hydrofoil and the upper,lower,left and right walls.

    3 Results and discussion

    3.1 Thermodynamic effect on cavitating flows

    For the fluids such as water,the thermal effect can be neglected due to large density ratio between liquid and vapor.Whereas for the cryogenic fluids,the density ratio are not very high,and the saturation pressure demonstrates a much steeper slope v/s temperature,such as the nitrogen is expected to show great sensitivity to temperature changes.The other physical properties such as thermal conductivity and latent heat also can influence the thermal field more substantially than water.Representative values and curves of the physical properties are shown in Fig.3 and Fig.4.

    Fig.3 Density ratio(liquid/vapor)of nitrogen and water[19]

    Fig.4 Saturation pressure of nitrogen and water[19]

    Based on the analysis above,the thermal effect should be taken into account during the cavitation process.To investigate the thermal effect on cavitating flow of liquid nitrogen,the 290C case from the experimental data reported by Hord is simulated under isothermal condition and cryogenic condition randomly.The original Kubota cavitation model are used in both simulations.The simulation conditions are as follows:T∞=83.06 K,σ∞=1.7 and Re=9.1×106.

    Fig.5(a)shows the 3D cavity shape around the hydrofoil.It is clear that the cavity length under cryogenic condition is shorter than that under isothermal condition.Fig.5(b)shows the vapor volume fraction on the midplane.It can be seen that the vapor volume fraction along the hydrofoil surface under cryogenic condition is lower than that under isothermal condition.It is obvious that the thermal field has significant effect on the cavity structures.This can be explained that the thermal effect causes the temperature drop inside the cavity as shown in Fig.5(c),which results in the decrease of local vapor pressure and increase of the local cavitation number.Therefore,weaker cavitation intensity and lower vapor volume fraction in the cavity are expected as shown in Fig.5(b).The pressure distribution inside the cavity is shown in Fig.5(d).For cryogenic case in the cavitation region,the pressure profile is steeper rather than keep the constant value of saturation pressure at the isothermal condition.

    Fig.5 Comparison for case 290C under the isothermal and cryogenic conditions

    According to the numerical results above,the pressure profile and temperature drops show better agreement with the experimental data under the cryogenic conditions than the isothermal case.However,the numerical results of temperature along the hydrofoil surface still have obvious departure from the experimental data.Goel et al[20]demonstrated that the cavitation model parameters such as the evaporation coefficient and condensation coefficient significantly impact on prediction,more detail analysis of the model parameters which consider the latent heat of evaporation under cryogenic condition will be discussed later.

    3.2 Effect of cavitation model parameters

    Fig.6 shows the three-dimensional cavity shape around the hydrofoil and the two-dimensional volume fraction distribution on the midplane.It clearly shows that the three dimensional cavity length grows longer with the increasing of Fvap,and there is no significant difference with the Fcondwhen Fvapis fixed.The two-dimensional volume fraction shows that the interface of the liquid-vapor is not clear,as well as the volume fraction distribution inside of the cavity is not uniform.

    Fig.6 Cavity shape for the cryogenics case of 290C under different parameters

    The numerical results of cavity length are listed in Tab.1.With the modified coefficients Fvap=3 and Fcond=0.000 5,the simulation results of the cavity length(L=23.0 mm)accord better with the experimental data(22.96 mm).

    Tab.1 Cavity length under different coefficients

    To further explore the characteristic inside the cavity and explain the volume fraction distribution in Fig.6.The nitrogen liquid volume fraction curves under different coefficients of Fvapand Fcondare shown in the Fig.7.It clearly shows the volume fraction is different under different vaporization coefficients.The values are almost the same at the uniform Fvapwhen the coordinate x<0.01 m.When the Fvapis fixed,the smaller the Fcondis,the lager slope of the curve is at the cavity closure region.The reason is that,when vapor nitrogen condenses into liquid nitrogen,its condensation rate becomes smaller as the condensation coefficient decreases,and the velocity of the process is also accelerated,which results in the condensation intensity decreased rapidly.

    There is,in addition,one further point to make.The minimum value of the liquid nitrogen fraction volume inside the cavity is 0.27 among the numerical results,which means that the vapor is not occupied completely inside the cavity,and the high value of the volume fraction also reflects the cavity is cloudy.The experiment of liquid nitrogen investigated by Hord[11]in Fig.7 has shown that the vapor-liquid interface is not clear,and presented bubble mist.

    Fig.7 The nitrogen fraction volume around the hydrofoil

    Fig.8 shows the mixture density distribution in the cavitation region around the hydrofoil,and the values are range of 218 kg/m3~776 kg/m3,which are much larger than the vapor nitrogen density(6.13 kg/m3)at the temperature 83.06 K.According to the analysis of Fig.6 and Fig.7,the main reasons for the not clear vapor-liquid nitrogen interface are the high volume fraction of nitrogen and the high density inside the cavity,which results in a smaller gradient of phase change around the vapor-liquid interface.And the analysis of the cavity characteristic agrees with the guess of Hosangadi[17].

    Fig.8 The mixture density distribution in the cavitation region

    3.3 Assessment of the numerical method applicability over a wide range of conditions

    Based on the analysis of thermal effect and model parameters above,in order to investigate the assessment of the modified cavitation model over a wide range of conditions,the simulation cases of cryogenic cavitating flow around the hydrofoil are randomly selected besides of the 290C case and simulated with the boundary conditions listed in Tab.2.The same turbu-lence model,model parameters,boundary conditions and discretization method are selected based on analysis of the effects of cavitation model.Two empirical constants are taken as the results of Fvap=3 and Fcond=0.000 5.

    Tab.2 Simulation cases and boundary conditions

    Fig.8 Comparison of temperature and pressure depressions to the experiment’s results

    Fig.8 shows quantitative comparison of pressure and temperature depression in liquid nitrogen with the experimental results at the three cases given in Tab.2.The general trend of variations around the hydrofoil is similar to the results shown in Section 3.1.The pressure and temperature drop inside the cavity during the evaporation process,and both values show gra-dient variation along the surface.With the vapor volume fraction increasing,the pressure and the temperature depressions are larger.Take the 290C case as an example,the leading edge pressure depression is evidently relative to the free-stream vapor pressure.This indicates that the thermodynamic effect plays an important role in the cryogenic cavitating flow.Overall,better reasonable agreements are observed in Fig.8 between the predicted and measured data for the three cases.

    4 Summary and conclusions

    In this paper,three-dimensional cavitating flow of cryogenic liquid nitrogen around hydrofoil is investigated.Analysis of the cavitating flow characteristic and assessment of the applicability of the numerical method are carried out.The primary findings and conclusions are as follows:

    (1)The thermodynamic effect during the cavitation process has significantly affected the cavitation dynamics characteristics,including the cavity structures,the vapor pressure and temperature.The cryogenic case yields a substantially shorter cavity around the hydrofoil,the predicted pressure and temperature inside the cavity are steeper than those under the isothermal conditions.

    (2)The empirical values of the cavitation model parameters based on the normal temperature liquids are not applicable in cryogenic conditions.The coefficients have considerable effects on the temperature depression and pressure distribution by comparison between different model coefficients.Better prediction results are obtained with the recommended coefficients of Fvap=3 and Fcond=0.000 5.

    (3)An effective computational procedure is formulated to simulate cavitating flow under cryogenic conditions.The modified cavitation model which takes into account the thermodynamic effects with the recommended coefficients is applicable for cavitating flow prediction in cryogenics fluids.

    [1]Batchelor G K.An introduction to fluid dynamics[M].New York:Cambridge University Press,1968.

    [2]Joseph D D.Cavitation in a flowing liquid[J].Physical Review E,1995,51(3):R1649.

    [3]Callenaere M,Franc J P,Michel J,et al.The cavitation instability induced by the development of a re-entrant jet[J].Journal of Fluid Mechanics,2001,444:223-256.

    [4]Saito Y,Takami R,Nakamori I,et al.Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil[J].Computational Mechanics,2007,40(1):85-96.

    [5]Ji B,Luo X,Wu Y,et al.Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J].International Journal of Multiphase Flow,2012,51:33-43.

    [6]Ducoin A,Young Y L.Hydroelastic response and stability of a hydrofoil in viscous flow[J].Journal of Fluids and Structures,2013,38:40-57.

    [7]Stahl H A,Stepanoff A J.Thermodynamic aspects of cavitation in centrifugal pumps[J].Trans.ASME,1956,78(8):1691-1693.

    [8]Sarosdy L R,Acosta A J.Note on observations of cavitation in different fluids[J].Journal of Basic Engineering,1961,83:399-400.

    [9]Hord J,Anderson L M,Hall W J.Cavitation in liquid cryogens I-venturi[R].NASA CR-2045,1972.

    [10]Hord J.Cavitation in liquid cryogens II-hydrofoil[R].NASA CR-2156,1973.

    [11]Hord J.Cavitation in liquid cryogens III-ogives[R].NASA CR-2242,1973.

    [12]Yuka I,Naoya O,Yoshiki Y,et al.Numerical invetigation of thermodynamic effect on unsteady cavitation in cascade[C].Proceedings of the 7th International Symposium on Cavitation,2009.

    [13]Hosangadi A,Ahuja V.Numerical study of cavitation in cryogenic fluids[J].Journal of Fluids Engineering,2005,127(2):267-281.

    [14]Tseng C C,Shyy W.Modeling for isothermal and cryogenic cavitation[J].International Journal of Heat and Mass Transfer,2010,53(1):513-525.

    [15]Ma Xiangfu,Wei Yingjie,Wang Cong,Huang Wenhu.Numerical investigation of temperature effect on unsteady cavitating flow of liquid hydrogen around hydrofoil[J].Chinese Journal of Hydrodynamics,2013,28(2):190-196.

    [16]Keller A P,Rott H K.The effect of flow turbulence on cavitation inception[J].ASME Fluids Eng.Div.Publ FED,1997,4(3).

    [17]Stoffel B,Schuller W.Investigations concerning the influence of pressure distribution and cavity length on the hydrodynamic cavitation intensity[J].ASME-PUBLICATIONS-FED,1995,226:51-58.

    [18]Singhal A K,Athavale M M,Li H,et al.Mathematical basis and validation of the full cavitation model[J].Journal of Fluids Engineering,2002,124(3):617-624.

    [19]Lemmon E W,McLinden M O,Huber M L.REFPROP:Reference fluid thermodynamic and transport properties[K].NIST Standard Database 23,version 7.0,2002.

    [20]Goel T,Thakur S,Haftka R T,et al.Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation[J].International Journal for Numerical Methods in Fluids,2008,58(9):969-1007.

    久久久久久久久久黄片| 亚洲成人久久性| 嫩草影视91久久| 国产av一区二区精品久久| or卡值多少钱| 在线观看免费午夜福利视频| www.精华液| 国产熟女xx| 日韩欧美 国产精品| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 午夜老司机福利片| 精品卡一卡二卡四卡免费| 999精品在线视频| 亚洲男人天堂网一区| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 91麻豆av在线| 欧美日韩瑟瑟在线播放| 亚洲国产看品久久| 满18在线观看网站| 法律面前人人平等表现在哪些方面| 香蕉久久夜色| 国产精品久久久av美女十八| 99国产精品一区二区蜜桃av| 在线播放国产精品三级| 久久香蕉精品热| 在线视频色国产色| 国产精品精品国产色婷婷| 人人妻人人澡人人看| 看免费av毛片| 久久久久亚洲av毛片大全| 变态另类丝袜制服| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 悠悠久久av| 免费高清视频大片| 国产精品美女特级片免费视频播放器 | svipshipincom国产片| 99久久99久久久精品蜜桃| 午夜福利高清视频| 国产亚洲欧美在线一区二区| 一级作爱视频免费观看| 精品一区二区三区av网在线观看| 丝袜在线中文字幕| a级毛片a级免费在线| 啪啪无遮挡十八禁网站| 嫁个100分男人电影在线观看| aaaaa片日本免费| 校园春色视频在线观看| 精品午夜福利视频在线观看一区| 天堂影院成人在线观看| 国产成人av激情在线播放| 99久久99久久久精品蜜桃| 久热爱精品视频在线9| 久久婷婷成人综合色麻豆| 波多野结衣高清无吗| 亚洲片人在线观看| 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 国产成人影院久久av| 日本撒尿小便嘘嘘汇集6| 成人18禁在线播放| 黑人欧美特级aaaaaa片| 韩国av一区二区三区四区| 777久久人妻少妇嫩草av网站| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦免费观看视频1| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲成av片中文字幕在线观看| 18禁裸乳无遮挡免费网站照片 | 日韩欧美国产一区二区入口| 一二三四社区在线视频社区8| 欧美成人性av电影在线观看| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 久久人人精品亚洲av| 99在线人妻在线中文字幕| 91国产中文字幕| 法律面前人人平等表现在哪些方面| 国产亚洲精品综合一区在线观看 | 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| 免费高清在线观看日韩| 国产成人av教育| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 久久性视频一级片| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 国产三级在线视频| 国产精品爽爽va在线观看网站 | 国产激情欧美一区二区| 亚洲最大成人中文| 午夜影院日韩av| 99在线人妻在线中文字幕| 青草久久国产| 国产精品永久免费网站| 搡老熟女国产l中国老女人| 精品一区二区三区视频在线观看免费| 国产一区在线观看成人免费| 天天添夜夜摸| 最近最新免费中文字幕在线| 欧美色欧美亚洲另类二区| 黄片播放在线免费| 日本熟妇午夜| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡免费网站照片 | 亚洲最大成人中文| 午夜影院日韩av| 午夜福利免费观看在线| 欧美成人一区二区免费高清观看 | 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| www.www免费av| www.精华液| 欧美绝顶高潮抽搐喷水| 此物有八面人人有两片| 19禁男女啪啪无遮挡网站| 久久久国产成人免费| 我的亚洲天堂| 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 淫妇啪啪啪对白视频| 成人特级黄色片久久久久久久| 精品国产一区二区三区四区第35| 天天添夜夜摸| 99久久国产精品久久久| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| 午夜福利欧美成人| 国产精品精品国产色婷婷| 露出奶头的视频| 两性夫妻黄色片| 久久九九热精品免费| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 亚洲全国av大片| 日韩欧美三级三区| cao死你这个sao货| 欧美色欧美亚洲另类二区| 黄片播放在线免费| 婷婷亚洲欧美| 久久欧美精品欧美久久欧美| 国产主播在线观看一区二区| 亚洲九九香蕉| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品综合一区在线观看 | 黑人欧美特级aaaaaa片| 国产黄片美女视频| 国产精品影院久久| www.熟女人妻精品国产| 亚洲av片天天在线观看| 老汉色∧v一级毛片| 少妇被粗大的猛进出69影院| 18禁美女被吸乳视频| 国产精品美女特级片免费视频播放器 | 一进一出抽搐gif免费好疼| 欧美av亚洲av综合av国产av| 国产精品一区二区三区四区久久 | 亚洲久久久国产精品| 99精品欧美一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 亚洲精品在线观看二区| 天堂√8在线中文| 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 国产精品爽爽va在线观看网站 | 可以在线观看毛片的网站| 国产午夜福利久久久久久| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 欧美黄色淫秽网站| 亚洲专区字幕在线| 欧美日本亚洲视频在线播放| 久久久久久大精品| 精品午夜福利视频在线观看一区| 精品电影一区二区在线| 久久亚洲真实| 一本综合久久免费| 天堂√8在线中文| 国产成人欧美在线观看| 亚洲国产欧美日韩在线播放| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 岛国视频午夜一区免费看| 日韩一卡2卡3卡4卡2021年| 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 性欧美人与动物交配| 欧美成人午夜精品| 18禁美女被吸乳视频| 中文字幕久久专区| 精品国产美女av久久久久小说| 久久这里只有精品19| 久热爱精品视频在线9| 亚洲无线在线观看| 久久久久精品国产欧美久久久| 大型黄色视频在线免费观看| 十八禁人妻一区二区| 9191精品国产免费久久| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 欧美最黄视频在线播放免费| 精品国产一区二区三区四区第35| 后天国语完整版免费观看| 无限看片的www在线观看| 99热只有精品国产| 国产精品亚洲av一区麻豆| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| 亚洲片人在线观看| 少妇的丰满在线观看| 老汉色∧v一级毛片| 91av网站免费观看| 国产精品野战在线观看| 国产91精品成人一区二区三区| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 日本一本二区三区精品| av欧美777| 午夜激情福利司机影院| 欧美三级亚洲精品| 欧美黑人巨大hd| 国产亚洲精品综合一区在线观看 | 午夜福利视频1000在线观看| 国语自产精品视频在线第100页| 亚洲av日韩精品久久久久久密| 久久久久精品国产欧美久久久| 国产三级在线视频| 热99re8久久精品国产| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品久久二区二区免费| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看| av天堂在线播放| 大香蕉久久成人网| 亚洲色图av天堂| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 欧美黑人巨大hd| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲| 成年女人毛片免费观看观看9| 国产高清视频在线播放一区| 桃红色精品国产亚洲av| 婷婷精品国产亚洲av| 黑丝袜美女国产一区| 久久人妻av系列| 欧美在线黄色| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站 | 18美女黄网站色大片免费观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 搡老岳熟女国产| 美女 人体艺术 gogo| 亚洲熟女毛片儿| av视频在线观看入口| 人人妻人人看人人澡| 亚洲精品色激情综合| 日本三级黄在线观看| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 国内毛片毛片毛片毛片毛片| 在线观看舔阴道视频| 88av欧美| 最近最新中文字幕大全电影3 | 亚洲成人久久爱视频| 少妇 在线观看| 久久中文字幕一级| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 日本一本二区三区精品| 免费电影在线观看免费观看| 黄色丝袜av网址大全| www日本黄色视频网| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 久久久国产成人免费| 婷婷精品国产亚洲av| 性色av乱码一区二区三区2| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 国产日本99.免费观看| 成人av一区二区三区在线看| 在线观看午夜福利视频| 亚洲色图av天堂| 男女之事视频高清在线观看| 中文资源天堂在线| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 亚洲,欧美精品.| 黄色丝袜av网址大全| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久,| 欧美色欧美亚洲另类二区| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 国产av又大| 日本黄色视频三级网站网址| 欧美乱妇无乱码| 亚洲人成网站在线播放欧美日韩| 一本久久中文字幕| 国产99白浆流出| 免费看十八禁软件| 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 免费无遮挡裸体视频| 免费女性裸体啪啪无遮挡网站| 久久久久免费精品人妻一区二区 | 国产成人av激情在线播放| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久 | avwww免费| 少妇的丰满在线观看| 亚洲自拍偷在线| 成年免费大片在线观看| 村上凉子中文字幕在线| 精品欧美一区二区三区在线| 男人舔女人下体高潮全视频| 久久伊人香网站| 男女下面进入的视频免费午夜 | 午夜影院日韩av| 免费在线观看成人毛片| 久久久国产欧美日韩av| 精品欧美一区二区三区在线| 国内揄拍国产精品人妻在线 | 久久久国产欧美日韩av| 91麻豆av在线| 日韩欧美一区视频在线观看| 国产精品永久免费网站| 亚洲第一青青草原| 欧美久久黑人一区二区| 亚洲精品色激情综合| 制服人妻中文乱码| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久久久99蜜臀| 九色国产91popny在线| 欧美激情 高清一区二区三区| 午夜久久久久精精品| 免费av毛片视频| 级片在线观看| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 国产精品自产拍在线观看55亚洲| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情久久久久久爽电影| 夜夜爽天天搞| 国产乱人伦免费视频| 亚洲黑人精品在线| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 欧美亚洲日本最大视频资源| 99久久国产精品久久久| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 中文字幕最新亚洲高清| 在线天堂中文资源库| 日日爽夜夜爽网站| 天天添夜夜摸| www日本在线高清视频| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 人人妻,人人澡人人爽秒播| 欧美黄色淫秽网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 国产成人精品久久二区二区91| 国产黄片美女视频| 成年人黄色毛片网站| 99久久久亚洲精品蜜臀av| 无人区码免费观看不卡| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 久久99热这里只有精品18| 91在线观看av| 国产在线观看jvid| 首页视频小说图片口味搜索| 一区福利在线观看| 久久国产精品人妻蜜桃| av有码第一页| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人综合色| 精品福利观看| 亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| 亚洲一区高清亚洲精品| 国产精品香港三级国产av潘金莲| 国产高清videossex| 久久久久久久久久黄片| 精品高清国产在线一区| 久久中文字幕一级| av免费在线观看网站| 久久亚洲真实| 久久精品91蜜桃| 免费在线观看黄色视频的| 韩国精品一区二区三区| 女人被狂操c到高潮| 午夜福利欧美成人| 欧美久久黑人一区二区| 91成年电影在线观看| 99国产精品一区二区三区| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 嫩草影视91久久| 久久草成人影院| 久久亚洲精品不卡| 午夜成年电影在线免费观看| 一二三四社区在线视频社区8| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 久久久国产成人免费| 国产av在哪里看| 欧美成人免费av一区二区三区| 国产高清激情床上av| 日韩大尺度精品在线看网址| 免费高清在线观看日韩| 精品福利观看| 中文字幕人妻熟女乱码| 免费看a级黄色片| 国产成人啪精品午夜网站| 免费在线观看完整版高清| 成人欧美大片| 国产高清有码在线观看视频 | 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 黄色丝袜av网址大全| 搡老岳熟女国产| 成人三级做爰电影| 日韩av在线大香蕉| 一级毛片高清免费大全| 国产午夜精品久久久久久| 精品高清国产在线一区| 男女视频在线观看网站免费 | 亚洲精品国产精品久久久不卡| 欧美乱色亚洲激情| 十八禁人妻一区二区| 97碰自拍视频| √禁漫天堂资源中文www| 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 午夜福利高清视频| 美女扒开内裤让男人捅视频| 变态另类丝袜制服| 老司机深夜福利视频在线观看| 久久久久九九精品影院| 午夜免费成人在线视频| 级片在线观看| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡| 中文字幕人妻熟女乱码| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 国产视频一区二区在线看| 精品一区二区三区四区五区乱码| 国内揄拍国产精品人妻在线 | 久久精品国产清高在天天线| 看片在线看免费视频| 亚洲黑人精品在线| 亚洲全国av大片| 亚洲avbb在线观看| 变态另类丝袜制服| 岛国在线观看网站| 久久香蕉激情| 精品国产一区二区三区四区第35| 中文字幕久久专区| 一夜夜www| 亚洲av五月六月丁香网| 国产精品久久视频播放| 精品福利观看| 国产高清激情床上av| 大香蕉久久成人网| 999精品在线视频| 午夜老司机福利片| 嫩草影视91久久| 精品一区二区三区四区五区乱码| 18禁观看日本| 中文字幕人妻熟女乱码| 18禁观看日本| 日本撒尿小便嘘嘘汇集6| 午夜福利18| av片东京热男人的天堂| 国产精品久久久av美女十八| 国产v大片淫在线免费观看| 搡老岳熟女国产| 精品欧美一区二区三区在线| 国产一区在线观看成人免费| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 深夜精品福利| 亚洲国产毛片av蜜桃av| 成人手机av| 日日夜夜操网爽| 天堂√8在线中文| 天堂影院成人在线观看| 国产精品,欧美在线| 性欧美人与动物交配| 在线观看66精品国产| 男女视频在线观看网站免费 | 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 国产熟女xx| 欧美zozozo另类| 中文资源天堂在线| а√天堂www在线а√下载| 亚洲一区中文字幕在线| or卡值多少钱| 国产免费男女视频| 美女高潮到喷水免费观看| 欧美日本视频| 国产av不卡久久| 午夜日韩欧美国产| 日韩欧美三级三区| 一级毛片精品| 男女床上黄色一级片免费看| 久久青草综合色| 精品久久久久久久毛片微露脸| 丁香六月欧美| 一夜夜www| 在线观看66精品国产| 夜夜夜夜夜久久久久| 啦啦啦免费观看视频1| 亚洲在线自拍视频| 啪啪无遮挡十八禁网站| 亚洲熟女毛片儿| xxxwww97欧美| 男女下面进入的视频免费午夜 | 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 久久中文看片网| 天天一区二区日本电影三级| 中国美女看黄片| 亚洲国产精品999在线| 91麻豆av在线| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 制服诱惑二区| 91字幕亚洲| 国产人伦9x9x在线观看| 深夜精品福利| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 男女下面进入的视频免费午夜 | 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 久久久久久大精品| 美国免费a级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇被粗大的猛进出69影院| 国产精品电影一区二区三区| 又大又爽又粗| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| 亚洲精品粉嫩美女一区| 亚洲专区国产一区二区| 欧美人与性动交α欧美精品济南到| 国产主播在线观看一区二区|