• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Optical System QTM in the Towing Tank Tests for Two Ship Models

    2014-03-16 08:14:06XIAOWenbinDONGWencaiWUHao
    船舶力學(xué) 2014年12期

    XIAO Wen-bin,DONG Wen-cai,WU Hao

    (Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China)

    1 Introduction

    Six-degree motion response of ship model in waves is one of the important measuring items for the seakeeping test.In the towing tank,the linear displacements,such as the surge,sway and heave motions,are early measured by the potentiometers,whose resistance values are changed through the cordages linking the potentiometers to the ship model with oscillatory motion.According to the resistance data,ship model’s linear displacements at three degree of freedom can then be calculated and acquired.For angular displacements of ship model,the mechanical gyroscope is a kind of common measurement device in the early stage[1].Based on the double integration algorithm for the acceleration to displacement,the acceleration motionmeasuring apparatus is developed and gradually applied to the ship model test[2].The spatial displacements of ship model are directly resolved by the acceleration signals in this apparatus,whose test accuracy mainly depends on the integral error with the accumulative time.The motion-measuring instrument in the mechanical style is also a kind of measurement means for the model’s motion responses at six degree of freedom in the towing tank.The oscillating motion of ship model would move the units of the mechanical instrument,which is connected with the model to get the dynamic data.However,the inertia of this mechanical instrument poses the interaction to the model measurement for the small amplitude or high frequency motion to a certain extent[3].The facilities mentioned above are all installed or linked on the ship model,which can be inducted as the on-board or contact measurement method.

    For the wake of developments in the computer vision and digital image technologies,foreign and domestic institutions design and invent many contactless motion-measuring products for towing ship model[4-7].Based on the optical principles,the representative products are the RODYM-DMM of KRYPTON in Belgium and the QTM of QUALISYS in Sweden.The RODYMDMM is mainly made up of the CCD component and the infrared emitting diode,whose measurement error in length is about±0.3 mm for the 6 m range[8].However,the emitter of infrared rays in the QTM,whose full name is Qualisys Tracker Manager,is located in the lens of high-speed camera.Within the scope of the camera view,the detailed motion information of ship model is achieved by the infrared reflection of the reflective targets,which are mounted on the ship model.The calibration test indicates that the measurement uncertainty of optical system QTM is at the similar level with the contact facilities such as gyroscope and string pot[9].Compared with the contact measurement method,the optical contactless motion-measuring system has big superiority in the experimental convenience and data reliability for it can effectively remove the constrict influence of mounted facilities to the ship model.Currently,this kind of contactless system is gradually extended to the odd experiments for the offshore platform model with dynamic positioning performance[10].

    In the respect of hydrodynamic interaction exploring for two ships in close proximity,the experimental research now is still not sufficient for its technological complexity in engineering.The main difficulties are as follows:(1)Different from the normal tank,the towing carriage for two-model test should be equipped with another auxiliary towing apparatus[11],which may add to the experimental cost greatly.(2)The transversal and longitudinal separations between two models should be adjustable according to different test conditions.The enlargement of the separations may intensify the difficulty for the setup design of testing device.(3)Various parameters are needed to measure such as the multi degree motion response of every model and the relative motion of two models.If the interface and protocol of all kinds of testing instruments are not unified,the real-time motion measurement is hard to realize for the multichannel data acquisition.In present paper,the optical contactless system QTM is introduced to the motion measurement of two-model test in the towing tank.The spatial layout for the infrared reflective targets and the motion-sensitive cameras is probed based on the limited mounting space in the carriage.Additionally,the acquired testing signals are analyzed by comparing them with the data from the contact instruments.It is expected to provide the model-test technology for the behaviors of two ships advancing under the complex sea condition.

    2 Fundamental principle of motion measurement for two ship models

    To probe into the hydrodynamic interaction of two ship models in quantity,the optical system QTM is utilized to capture the pose variation in calm water and dynamic motion response in waves.In the towing tank,the two models with certain degree of freedom are moving by the cable traction.Fig.1 illustrates the operating principle of the motion measurement in the two-model test.The QTM system here is mainly composed of the infrared reflective targets,calibration device and motion-sensitive cameras.

    Four infrared reflective targets are mounted on each ship model,one of which is on the plumb line with the gravity center of ship model and the other ones are arranged evenly around the center.The location of every target must be the fixed point on ship model and the relative positions of target and model should not be changed in the experimental process.By the coordinates of four infrared reflective targets,a rigid body can be defined in the three dimensional space,which is then to represent the model’s motion at multi degree of freedom.

    In the pre-test condition or if the test environment changes significantly,the calibration is needed for the QTM system,which is essentially the process of definition of spatial coordinates,confirmation of motion-sensitive cameras and initialization of working parameters.Within the visible scope of cameras system,the XOY plane of calibration frame should be parallel to the undisturbed free surface and the positive direction of the OX axis is pointing to the advancing speed of ship models.In the calibration process,the dynamic data of calibration bar in different location is automatically logged.For the condition that the calibrating error is within the predefined error range,the current calibration is recognized as a valid.However,the system calibration must be carried out again if the calibrating error is beyond the set value.

    The cameras system is made up of several high-speed cameras,which are installed at the fixed positions of the towing carriage.Care must be taken to ensure that each camera can capture the motion response of ship model in every test condition.The front lens of high-speed camera is furnished with an infrared ray emitter,which can project infrared light into the space immediately.By the infrared reflection,the spherical targets are always traced in the calibration coordinates.Combined with the definition of rigid body and the digital image processing technology,the optical system QTM can decouple the each model’s motion at six degree of freedom,which is inclusive of the linear displacement,the angular displacement and the velocity and acceleration signals.

    3 Spatial arrangement of the targets and cameras

    Aiming at the performance of different advancing speed,transversal and longitudinal separations,towing tank test is carried out to explore the hydrodynamic interaction of two ship models in close proximity.If there is a long distance between the two models,the motion-sensitive cameras are still required to capture the dynamic parameters of infrared reflective targets.For the test is involved the front and back position alternation of models and the limiting condition of spatial construction in the carriage,spatial arrangement of the targets and cameras is difficult to design properly.

    3.1 Mathematical description of the arrangement problem

    Supposing the model A is located on the port side of model B,a moving coordinate system is set up in Fig.2.The xoy place with the positive ox axis pointing to the model speed coincides with the undisturbed water surface and oz axis is oriented positively upward.The origin o is defined at the central lateral plane of model A.Transversal and longitudinal separations between two models are denoted by Dyand Dxrespectively.For Dx>0,model B is ahead of model A.

    Fig.2 Three dimensional arrangement of Marker targets and cameras

    For the camera a,the field of view,FOV for short,is assumed as θ,the spatial coordinate of its fixed position isand the orientation angles to the three coordinate axes are αa,βaand γa.By the space geometry,the visible scope of the camera is a cone in the three dimensional space,whose intersection with the horizontal plane is a circle or ellipse.Supposing the axial direction vector of camera a is)is on the conical surface formed by its view field,the spatial surface equation for M can be expressed as follows:

    Additionally,the spatial coordinates of infrared reflective targets areOn account of the fact that the targets’heights above the water surface are much smaller than the cameras’vertical scales,all the targets can be assumed on the xoy plane,that is to say zi=0.Further,the intersection between the water surface and the spatial conical surface presented in Eq.(1)can be derived as below:

    The equation above is generally corresponding to an elliptic equation,which can be rewritten asIn order to meet the requirement that the targets mounted on models are in the visual field of camera a,this kind of elliptic equation can be treated as the discriminant representation.By substituting the coordinates into the elliptic equation,the No.i target can be captured by the camera a ifHowever,some spatial parameters of camera a should be modified if

    Similarly,the discriminant representations of other cameras can be derived asIf all the targets are within the view field of the cameras system,the expression below must be satisfied.

    The locations of mounted targets in the coordinate system and their limits of variation can be generally determined because the relative position between two models is up to the experimental conditions.Therefore,the orientation angles and position scales of camera(s)should be adjusted if Eq.(3)is not true.The ultimate goal is that all the targets are viewed by all the cameras.

    3.2 Instance analyses

    According to the theoretical description above,some analysis results are given below for a two-model test in the Ref.[12].The restricted region of carriage in the towing tank here is 5.5 m×6.5 m for the cameras’mounting,which is illustrated in Fig.3.In order to make the uniform distribution of cameras system and the large field of their views,each corner in the carriage should be fully utilized.The infrared reflective targets are mounted near the gravity center of ship model.In terms of the requirement of test condition and the movement redundancy in waves,the distribution ranges of targets in the ox and oy axis are at least 4.5 m and 0.5 m respectively.

    Fig.3 Location range of Marker targets and mounting region of cameras

    For the rectangular region in the horizontal water plane of-3.25 m≤x≤3.25 m and-4 m≤x≤1.5 m,Eq.(3)is put to numerically discriminate whether the targets are within the visual field of cameras.In accordance with the structural characteristic of carriage,the horizontal mounting region of cameras is presented in Fig.3,whose heights above the water surface are all set as 1.2 m and FOV as 58°[13].A discrimination result is given in Fig.4 for the three motion-sensitive cameras.In the rectangular region,the red zone indicates that the infrared reflective targets are captured into the visual field of corresponding camera and the black zone shows the targets are beyond the field of view.Compared with cameras a and c,the adjustable range of camera b’s orientation angle is relatively small,which demonstrates that great focus should be taken on the installation of camera b in the testing process.For each ship model,the targets mounted on the models are all within the fields of cameras no matter how the transversal and longitudinal separations change.In this instance of two-model test,the orientation angles of cameras are listed as follows.

    Fig.4 Capture zones of the cameras at z=0 plane

    4 Performance analyses of tested signals

    4.1 Motion signals of two models at multi degree of freedom

    In the moving coordinate system,the high-speed camera directly obtains the displacement signals of the infrared reflective targets.By the definition of rigid body,the optical system QTM can automatically calculate the motion response of ship model at six degree of freedom.During the whole test period,human touch to the mounted cameras should be avoided to prevent the invalidation of calibration coordinate system.However,the accumulative position change of camera may be caused by various objective reasons such as motor rotating,equipment vibration,and carriage shaking over a long time.In the wave test,large amplitude motion of ship model may make some targets being shadowed.If the missing data of target is relatively little in the signal collection,the QTM system can effectively integrate the gathered data to reconstruct the full motion information for the rigid body,which shows the powerful computing performance of the embedded algorithm in this optical system.

    Fig.5 illustrates the time history of the heave,roll and pitch motions,which are of particular concern in the regular waves for two ship models.From this figure,the stable harmonic characteristics of the two-model motion modes are demonstrated if t>17 s.Numerous test conditions and collected data indicate that the optical system QTM is advantageous to realize the real-time synchronous measurement for the dynamic interaction and relative motion between two ship models.

    Fig.5 Time history of the motion responses for two ship models

    Fig.6 Comparison of the measured pitch-motion signals by attitude indicator and QTM

    4.2 Comparison of the pitch signals

    To analyze the performance of the QTM and contact measuring device in the dynamic motion measurement of ship model,a contrast test is carried out for the pitch signals in regular waves.The WS-601 attitude indicator,a kind of contact device,is adopted to gather the pitch angles,which is fixed near the bow of ship model.Fig.6 gives the time history of pitch-motion signals by the attitude indicator and QTM.The stable data with t∈[1,1 ]6 is extracted and the amplitude of pitch angle is statistically treated.Results show that the average amplitudes of the signals from the indicator and QTM are 1.722 2°and 1.717 2°,respectively,whose relative error is only 3‰.For the two kinds of pitch signals,numerical characteristics at the peak or valley during the cyclic changes over time show good agreement with each other.Based on the analysis above,the fast response and testing performance of QTM are similar to those of the attitude indicator in the pitch-motion model test.

    4.3 Comparison of the acceleration signals

    Besides the motion response at multi degree of freedom,the acceleration data at the special positions of ship models is paid great attention in the two-model tank test.In the optical system QTM,the vertical acceleration signal at the gravity center can be obtained from the single target,which is arranged on the plumb line with the gravity center of ship model.For a test condition in regular waves,the vertical acceleration at gravity center is simultaneously measured by the means of acceleration transducer and QTM,which is shown in Fig.7.The acceleration transducer here is attached to the DH5922 donghua dynamic system.The acceleration signal from QTM is the numerical result of quadratic differential to the displacement signal.Therefore,there are many noise components mixed in the acceleration signal,which is mainly the high-frequency noise caused by the numerical operation.Fig.7 also gives the processing result of vertical acceleration signal by the low-pass filtering[14].The average amplitudes of gathered signals are extracted,which are 1.507 5 m/s2and 1.529 9 m/s2for the transducer and QTM,respectively.And the relative error between the two amplitude values is about 1.5%.In this sense,the acceleration signal collected by the optical system QTM is inclusive of many noise components with the high frequency,which puts forward a higher demand for the processing method of digital signal and effective extraction of characteristic quantity.

    Fig.7 Acceleration signals and their low-pass filtering results

    5 Conclusions

    (1)In the seakeeping test of towing tank,optical system QTM is an effective facility to measure the motion response of ship model at six degree of freedom.By the motion-sensitive cameras installed in the carriage of towing tank,the QTM can accurately capture the motion information of the infrared reflective targets mounted on ship model.The significant advantage of QTM system is that it can directly eliminate the contact interference on the tested model.Compared with the contact measuring instruments,the test error is further constricted by the introduction of QTM.

    (2)The spatial position and orientation angle of motion-sensitive camera are directly relative to the problem whether the infrared reflective targets are within the cameras’view fields.Combined with the instance of a two-model test,a mathematical model of spatial arrangement is proposed for the targets and cameras.In the existing structure of carriage,the optical system QTM is available to the motion measurement for the two models in complex test conditions.

    (3)Performance analysis of the tested signals indicates that QTM possesses the high position resolution and fast response properties.However,the acceleration signals of QTM are mixed with the high-frequency noise,which is mainly the numerical component due to the quadratic differential to the displacement signal.

    For the powerful capabilities of optical system QTM,it would be extensively applied in the experimental measurement for the model performance of ship and marine platform.

    [1]Bertram V.Practical ship hydrodynamics[M].Butterworth Heinemann,UK,2000.

    [2]Xie N,Qian G L,Gao H Q,et al.A measurement system of ship motions during model tests and full scale seakeeping trials[J].Journal of Ship Research,2001,5(3):26-32.

    [3]Meng X W,Gao X P.Contact measurement of six freedom for naval tank[J].Journal of Ship Mechanics,2010,14(4):379-384.(in Chinese)

    [4]Greg H,Ahmed D A,Peter H.Uncertainty analysis-preliminary data error estimation for ship model experiments[C]//Proceedings of 6th Canadian Marine Hydro-mechanics and Structures Conference.Vancouver,Canada,2001:1-19.

    [5]Abyn H,Maimun A,Jaswar,et al.TPL motion effect on semisubmersible motion[C]//Proceedings of the Offshore Technology Conference Asia.Kuala Lumpur,Malaysia,2014:1-11.

    [6]Yang J M,Gu H S,Yao M W,et al.A non-contacted method for measuring and analyzing 6D motions of model[J].The Ocean Engineering,1999,17(2):17-21.(in Chinese)

    [7]Zhou D C,Yan M J,Kuang X F,et al.Test simulation and measurement technique of the ship-to-ship operation system[J].Journal of Ship Mechanics,2007,11(5):664-673.(in Chinese)

    [8]Martin I J,Joseph Longo,Frederick Stern.Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves[J].Journal of Ship Research,2008,52(2):146-163.

    [9]Joel T P,Andrew L S,Richard C B.6 degree of freedom motion analysis of surface ship models[C]//Proceedings of the ASME-Joint Fluids Engineering Conference.Shizuoka,Japan,2011:1-9.

    [10]Wu B C.Design and analysis of model test for dynamic position system of deepwater semi-submersible[D].Master Degree Dissertation of Harbin Engineering University,China,2012.(in Chinese)

    [11]Evert L,Marc V,Guillaume D.Captive model testing for ship to ship operations[C]//Proceedings of International Conference on Marine Simulation and Ship Maneuverability.Panama,2009:1-10.

    [12]Xu Y,Dong W C.Numerical study on wave loads and motions of two ships advancing in waves by using 3-D translatingpulsating source[J].Acta Mechanica Sinica,2013,29(4):494-502.

    [13]Specification of Qualisys Track Manager[EB/OL].http://www.qualisys.com/products/software/qtm,2014-7-27.

    [14]Xu Y,Ou Y P,Dong W C.Study on the measured signal analysis method based on low-pass filtering and EMD for ship seakeeping test[J].Journal of Ship Mechanics,2009,13(5):712-717.(in Chinese)

    精品久久久久久久毛片微露脸| 国产单亲对白刺激| 久久久精品大字幕| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 久久中文字幕人妻熟女| 成人av在线播放网站| 国产av一区在线观看免费| 两性午夜刺激爽爽歪歪视频在线观看 | avwww免费| 国内毛片毛片毛片毛片毛片| 亚洲免费av在线视频| 免费在线观看日本一区| 欧美三级亚洲精品| 国产欧美日韩精品亚洲av| 久久久久国内视频| 欧美大码av| 老司机在亚洲福利影院| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 首页视频小说图片口味搜索| 日韩国内少妇激情av| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 人人妻人人看人人澡| 身体一侧抽搐| 中文字幕人妻丝袜一区二区| 制服诱惑二区| 麻豆一二三区av精品| 亚洲电影在线观看av| 久久天堂一区二区三区四区| 亚洲中文av在线| 亚洲精品国产精品久久久不卡| 亚洲专区国产一区二区| 熟女电影av网| 999久久久国产精品视频| 天堂动漫精品| 一进一出抽搐动态| 亚洲av片天天在线观看| 色在线成人网| 香蕉丝袜av| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 亚洲乱码一区二区免费版| 国产精品爽爽va在线观看网站| 国产真实乱freesex| 99热这里只有是精品50| 一区二区三区高清视频在线| 天天添夜夜摸| 国内精品久久久久久久电影| 亚洲国产欧美网| 嫩草影视91久久| 亚洲精品国产精品久久久不卡| 别揉我奶头~嗯~啊~动态视频| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 久久久久久大精品| 久久草成人影院| 国产精品亚洲美女久久久| 免费看a级黄色片| 一个人免费在线观看的高清视频| 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看| 在线视频色国产色| 午夜福利在线观看吧| 国产高清videossex| 老司机在亚洲福利影院| 十八禁网站免费在线| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 国产精品综合久久久久久久免费| 国产精品精品国产色婷婷| 免费在线观看亚洲国产| 国产精品国产高清国产av| avwww免费| 在线观看午夜福利视频| 国产99久久九九免费精品| 日韩欧美 国产精品| 亚洲精品美女久久久久99蜜臀| cao死你这个sao货| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 久久天躁狠狠躁夜夜2o2o| 91国产中文字幕| 在线看三级毛片| 欧美成人免费av一区二区三区| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| 香蕉久久夜色| 欧美不卡视频在线免费观看 | 亚洲中文av在线| 人成视频在线观看免费观看| 国产69精品久久久久777片 | 国产亚洲精品一区二区www| 免费看a级黄色片| а√天堂www在线а√下载| 老司机福利观看| 婷婷精品国产亚洲av| 免费av毛片视频| 久久久久九九精品影院| 国产1区2区3区精品| 两个人的视频大全免费| 久久中文字幕人妻熟女| 黄色丝袜av网址大全| 最新美女视频免费是黄的| 久久精品91蜜桃| 亚洲av成人av| 国产视频内射| 老司机在亚洲福利影院| 亚洲18禁久久av| 精品欧美国产一区二区三| 国产1区2区3区精品| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 亚洲avbb在线观看| 日本黄大片高清| 一二三四社区在线视频社区8| 操出白浆在线播放| 在线观看舔阴道视频| 午夜福利18| 亚洲av熟女| 亚洲第一电影网av| 日本免费一区二区三区高清不卡| 51午夜福利影视在线观看| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 国产精品精品国产色婷婷| 精品日产1卡2卡| 精品不卡国产一区二区三区| a级毛片a级免费在线| 欧美一级毛片孕妇| 国产一区二区三区视频了| 国产三级黄色录像| 国产成人欧美在线观看| 久久婷婷成人综合色麻豆| 欧美日韩中文字幕国产精品一区二区三区| 欧美黄色淫秽网站| 亚洲 欧美 日韩 在线 免费| 免费看美女性在线毛片视频| 制服人妻中文乱码| 亚洲真实伦在线观看| 两个人视频免费观看高清| 国内久久婷婷六月综合欲色啪| 亚洲一区二区三区色噜噜| 国产精品九九99| 97超级碰碰碰精品色视频在线观看| 天天一区二区日本电影三级| 黄片小视频在线播放| 国产成人av教育| 99国产精品一区二区三区| 男女做爰动态图高潮gif福利片| 欧美成狂野欧美在线观看| 正在播放国产对白刺激| 麻豆一二三区av精品| 两性夫妻黄色片| 精品无人区乱码1区二区| 国产片内射在线| 欧美乱码精品一区二区三区| 在线a可以看的网站| 999久久久国产精品视频| 男女午夜视频在线观看| 午夜福利欧美成人| 国产真人三级小视频在线观看| 男女下面进入的视频免费午夜| 欧美一区二区国产精品久久精品 | 最新在线观看一区二区三区| 观看免费一级毛片| 亚洲专区国产一区二区| 色噜噜av男人的天堂激情| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 日韩欧美一区二区三区在线观看| 欧美色欧美亚洲另类二区| 婷婷亚洲欧美| 亚洲无线在线观看| 中文字幕最新亚洲高清| 精品久久久久久,| 在线观看午夜福利视频| 亚洲一区二区三区不卡视频| 国产蜜桃级精品一区二区三区| 亚洲成人久久爱视频| 欧美 亚洲 国产 日韩一| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 婷婷亚洲欧美| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 亚洲中文av在线| 99热这里只有精品一区 | 久久久国产欧美日韩av| 欧美乱妇无乱码| 一本综合久久免费| 九色成人免费人妻av| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕日韩| а√天堂www在线а√下载| 精品第一国产精品| 国产又色又爽无遮挡免费看| 久久这里只有精品19| 欧美日韩精品网址| 一个人免费在线观看电影 | 亚洲电影在线观看av| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 日韩欧美精品v在线| 男插女下体视频免费在线播放| 亚洲av成人一区二区三| 长腿黑丝高跟| 中文字幕最新亚洲高清| 国产三级在线视频| av福利片在线| 午夜两性在线视频| 男女之事视频高清在线观看| 成人18禁高潮啪啪吃奶动态图| 国产三级中文精品| 两性夫妻黄色片| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| av天堂在线播放| 免费看十八禁软件| 国内精品一区二区在线观看| 麻豆国产97在线/欧美 | 欧美在线黄色| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 又大又爽又粗| 国语自产精品视频在线第100页| 九色成人免费人妻av| 日韩欧美在线二视频| 日韩精品青青久久久久久| 国模一区二区三区四区视频 | 久久国产乱子伦精品免费另类| 亚洲五月婷婷丁香| 老熟妇乱子伦视频在线观看| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 黄片小视频在线播放| 国产v大片淫在线免费观看| 午夜福利高清视频| 一本一本综合久久| 熟女电影av网| 色精品久久人妻99蜜桃| 国产精品久久久av美女十八| 日韩有码中文字幕| 女同久久另类99精品国产91| 国产成人精品无人区| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 1024手机看黄色片| 白带黄色成豆腐渣| 一个人免费在线观看电影 | 男人舔奶头视频| 成人手机av| 亚洲一区中文字幕在线| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添小说| 亚洲美女视频黄频| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 午夜亚洲福利在线播放| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 国产探花在线观看一区二区| 老司机靠b影院| 深夜精品福利| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 欧美av亚洲av综合av国产av| 最近最新免费中文字幕在线| 制服人妻中文乱码| 午夜福利高清视频| 国产亚洲精品久久久久5区| 校园春色视频在线观看| 亚洲欧美日韩东京热| 中文字幕人成人乱码亚洲影| 一个人免费在线观看电影 | x7x7x7水蜜桃| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 露出奶头的视频| 夜夜夜夜夜久久久久| 黄色成人免费大全| 在线永久观看黄色视频| 在线观看午夜福利视频| 观看免费一级毛片| 999久久久国产精品视频| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 国语自产精品视频在线第100页| 免费高清视频大片| 欧美色欧美亚洲另类二区| 日本黄大片高清| 又大又爽又粗| 国产视频一区二区在线看| 免费人成视频x8x8入口观看| 亚洲最大成人中文| 欧美日韩乱码在线| 亚洲自偷自拍图片 自拍| 欧美日韩中文字幕国产精品一区二区三区| 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 国产99久久九九免费精品| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 丁香欧美五月| 又爽又黄无遮挡网站| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 亚洲国产精品成人综合色| 日本熟妇午夜| 日韩欧美免费精品| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 99久久综合精品五月天人人| 91字幕亚洲| 一个人免费在线观看电影 | 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 久久人人精品亚洲av| 免费在线观看亚洲国产| 国产野战对白在线观看| www国产在线视频色| 欧美又色又爽又黄视频| x7x7x7水蜜桃| 午夜影院日韩av| 美女 人体艺术 gogo| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 午夜免费成人在线视频| xxxwww97欧美| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| 亚洲国产精品999在线| 欧美黄色淫秽网站| 五月伊人婷婷丁香| 欧美黄色淫秽网站| 美女午夜性视频免费| 欧美丝袜亚洲另类 | 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 曰老女人黄片| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| svipshipincom国产片| av在线播放免费不卡| 欧美一级毛片孕妇| 草草在线视频免费看| 国产激情久久老熟女| 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 午夜免费观看网址| 人妻丰满熟妇av一区二区三区| 亚洲18禁久久av| 欧美一级a爱片免费观看看 | 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 国产精品一区二区三区四区免费观看 | 国产精品影院久久| 成年免费大片在线观看| 五月伊人婷婷丁香| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 看片在线看免费视频| 久久久国产精品麻豆| 真人做人爱边吃奶动态| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 国产伦人伦偷精品视频| 成人国产综合亚洲| 俺也久久电影网| 国产一区二区三区视频了| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| 很黄的视频免费| 神马国产精品三级电影在线观看 | 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 在线永久观看黄色视频| 午夜精品一区二区三区免费看| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 国内毛片毛片毛片毛片毛片| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 日韩免费av在线播放| 美女 人体艺术 gogo| 久久人人精品亚洲av| 99久久综合精品五月天人人| 丰满的人妻完整版| 看免费av毛片| 淫秽高清视频在线观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久人妻精品电影| 午夜激情av网站| 久久久久九九精品影院| 午夜福利高清视频| 国产成人欧美在线观看| 国产av一区二区精品久久| 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放 | 国产一级毛片七仙女欲春2| 亚洲成av人片免费观看| 日韩免费av在线播放| 国产视频内射| 亚洲片人在线观看| 91老司机精品| 欧美性猛交黑人性爽| 国产伦一二天堂av在线观看| cao死你这个sao货| 精品一区二区三区视频在线观看免费| 99精品久久久久人妻精品| av天堂在线播放| 亚洲欧美精品综合久久99| 日本 av在线| 亚洲天堂国产精品一区在线| 国产精品九九99| 香蕉久久夜色| 色精品久久人妻99蜜桃| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 日韩欧美精品v在线| 亚洲男人的天堂狠狠| 香蕉av资源在线| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜理论影院| 亚洲黑人精品在线| 老汉色∧v一级毛片| 亚洲人与动物交配视频| 亚洲国产精品sss在线观看| 色尼玛亚洲综合影院| 天堂动漫精品| 91在线观看av| 母亲3免费完整高清在线观看| 动漫黄色视频在线观看| aaaaa片日本免费| 美女午夜性视频免费| 91大片在线观看| 久久久久久久午夜电影| 老司机午夜十八禁免费视频| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3| 久久香蕉国产精品| 99国产精品一区二区三区| 久久久久国内视频| 男人舔奶头视频| 人妻久久中文字幕网| 亚洲,欧美精品.| 中文字幕高清在线视频| 欧美zozozo另类| 国产99白浆流出| 老司机午夜十八禁免费视频| 久久婷婷人人爽人人干人人爱| 免费观看精品视频网站| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩无卡精品| 最新美女视频免费是黄的| 久久久国产精品麻豆| 国产精品国产高清国产av| 给我免费播放毛片高清在线观看| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 亚洲av成人av| 日本熟妇午夜| 成年人黄色毛片网站| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 亚洲熟妇熟女久久| 757午夜福利合集在线观看| 十八禁人妻一区二区| 国产一级毛片七仙女欲春2| av片东京热男人的天堂| 91麻豆精品激情在线观看国产| 免费一级毛片在线播放高清视频| 亚洲av熟女| 色哟哟哟哟哟哟| 欧美色欧美亚洲另类二区| 日韩精品免费视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 少妇裸体淫交视频免费看高清 | 亚洲aⅴ乱码一区二区在线播放 | 人妻久久中文字幕网| 国产高清视频在线观看网站| 国产午夜精品论理片| 国产精品久久视频播放| 国产爱豆传媒在线观看 | 国产精品免费一区二区三区在线| 中文字幕av在线有码专区| cao死你这个sao货| 国内少妇人妻偷人精品xxx网站 | 久热爱精品视频在线9| 99在线视频只有这里精品首页| 国产精品久久久av美女十八| 夜夜躁狠狠躁天天躁| 黄频高清免费视频| 999精品在线视频| 欧美一级毛片孕妇| 亚洲熟妇熟女久久| 成人国产综合亚洲| 女警被强在线播放| 99久久精品热视频| 亚洲午夜理论影院| 久久久久九九精品影院| 亚洲自拍偷在线| 91老司机精品| 国产高清有码在线观看视频 | 色精品久久人妻99蜜桃| 国产精品久久久久久亚洲av鲁大| 国产高清videossex| 久久久精品欧美日韩精品| 国产精品一区二区精品视频观看| 操出白浆在线播放| 久久精品国产亚洲av香蕉五月| 波多野结衣巨乳人妻| 色播亚洲综合网| 国产爱豆传媒在线观看 | 亚洲精品国产精品久久久不卡| 成人国产综合亚洲| 国产成人av教育| 他把我摸到了高潮在线观看| 91九色精品人成在线观看| 男插女下体视频免费在线播放| 亚洲乱码一区二区免费版| 国产在线精品亚洲第一网站| 亚洲七黄色美女视频| 一区二区三区高清视频在线| 午夜成年电影在线免费观看| or卡值多少钱| 黑人巨大精品欧美一区二区mp4| 久久久精品国产亚洲av高清涩受| 亚洲激情在线av| 女人爽到高潮嗷嗷叫在线视频| a在线观看视频网站| 亚洲成人精品中文字幕电影| 中文字幕久久专区| 成人午夜高清在线视频| 日韩欧美 国产精品| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女| 亚洲成人免费电影在线观看| 久久精品国产99精品国产亚洲性色| 88av欧美| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图 男人天堂 中文字幕| 国产一区在线观看成人免费| 一级毛片高清免费大全| 国产精品久久视频播放| 色在线成人网| 成人一区二区视频在线观看| 亚洲精华国产精华精| 男女午夜视频在线观看| 怎么达到女性高潮| 日本 欧美在线| 神马国产精品三级电影在线观看 | 国产精品精品国产色婷婷| 久久久久久免费高清国产稀缺| 可以免费在线观看a视频的电影网站| 国产av不卡久久| 亚洲欧美精品综合一区二区三区| e午夜精品久久久久久久| 亚洲,欧美精品.| 岛国在线观看网站| 中文字幕精品亚洲无线码一区| 色综合亚洲欧美另类图片| 亚洲专区字幕在线| 欧美色视频一区免费| av国产免费在线观看| 99国产精品99久久久久| 午夜免费激情av| 午夜福利欧美成人| 99久久99久久久精品蜜桃| 午夜精品在线福利| 久久精品国产亚洲av香蕉五月| 国产熟女xx| 一本一本综合久久| 两个人免费观看高清视频| 搡老熟女国产l中国老女人| 给我免费播放毛片高清在线观看| 午夜a级毛片| 香蕉久久夜色| av福利片在线| 亚洲成人国产一区在线观看| 国内精品一区二区在线观看| 99热6这里只有精品| 国产精品一区二区三区四区久久| 婷婷精品国产亚洲av| 久久久国产成人精品二区| 国产亚洲欧美在线一区二区|