鄭學(xué)偉
(遼寧廣播電視大學(xué) 遼寧 沈陽 110034)
現(xiàn)代電子設(shè)備高速、高頻、小型化的發(fā)展趨勢使得電路板信號(hào)完整性問題日漸突出。信號(hào)在電路板的微帶線內(nèi)傳輸時(shí),其周圍會(huì)有電場與磁場的存在,通常稱之為邊緣場。如果另一條微帶線與此條微帶線相鄰較近,將會(huì)受到此邊緣場的影響進(jìn)而發(fā)生串?dāng)_現(xiàn)象。
針對(duì)微帶線間串?dāng)_問題,已有許多學(xué)者采用多種方法來降低串?dāng)_的影響。其中最常用的是在微帶線間加入不同形狀的接地防護(hù)線的方法。這些形狀包括傳統(tǒng)型防護(hù)線、帶接地過孔的防護(hù)線、彎曲性防護(hù)線等。比如Lee等人[1]將不加防護(hù)線、普通防護(hù)線、帶過孔防護(hù)線以及彎曲型防護(hù)線進(jìn)行比較,得到的結(jié)論是彎曲型防護(hù)線可以更好的降低遠(yuǎn)端串?dāng)_的影響;李麗平等[2]研究了在防護(hù)線上每隔一定距離添加接地過孔的情形,研究中指出孔間距離應(yīng)小于信號(hào)RT/2(RT為傳輸信號(hào)的上升時(shí)間)時(shí)間內(nèi)的傳輸距離,同時(shí)加大防護(hù)線的寬度也會(huì)使耦合噪聲降低;Li等[3]提出了一種新的布線方法,從文中結(jié)果分析可知對(duì)于降低遠(yuǎn)端噪聲而言,這種布線方法的效果要優(yōu)于加入彎曲型防護(hù)線的效果;李學(xué)峰等[4]分析了隔離帶寬度,介質(zhì)層厚度等參數(shù)對(duì)串?dāng)_的影響。曹海舟[5]與黎淑蘭等[6]提到采用將干擾線兩側(cè)添加帶過孔防護(hù)線的措施來降低串?dāng)_的影響。黎淑蘭等人的研究結(jié)果表明,過孔與攻擊線間距離越近越有利于減小跡線間的串?dāng)_,過孔直徑越大串?dāng)_越?。话察o等[7]采用FDTD方法,對(duì)防護(hù)線的高度、孔間距、孔徑以及保護(hù)帶與強(qiáng)信號(hào)線間距等因素對(duì)防護(hù)線的性能的影響展開研究。Yuki Kitsunai[8]與Yang Guang[9]等對(duì)不完整參考平面的情況下串?dāng)_的情況進(jìn)行了分析;白雪等[10]利用三維電磁仿真工具對(duì)具有不同介電常數(shù)和襯底材料進(jìn)行了仿真和分析,得出了不同襯底下電場分布及近端與遠(yuǎn)端串?dāng)_隨頻率、襯底介電常數(shù)和厚度的變化曲線,研究表明隨著襯底介電常數(shù)和厚度的增加,串?dāng)_呈現(xiàn)正弦上升趨勢。
本文將基于Ansoft HFSS軟件仿真平臺(tái),通過建立微帶線模型,對(duì)比不同保護(hù)線情形下串?dāng)_的影響,對(duì)RSR結(jié)構(gòu)與添加介質(zhì)層的方法展開具體研究。通過得到的S41參數(shù)變化曲線,討論RSR結(jié)構(gòu)中金屬貼片的幾何參數(shù)數(shù)量對(duì)降低遠(yuǎn)端串?dāng)_的影響。另外討論了在微帶線上方添加介質(zhì)層的厚度以及材料的相對(duì)介電常數(shù)對(duì)降低遠(yuǎn)端串?dāng)_的影響。
S參量是建立在入射波與反射波關(guān)系基礎(chǔ)上的網(wǎng)絡(luò)參數(shù),如圖1為N端口網(wǎng)絡(luò)示意圖。與端口i相關(guān)聯(lián)的入射功率與反射功率可被定義為:
其中,Vi與Ii分別是第i個(gè)端口的電壓和流入電流,Zi為從端口向外看的阻抗,Z*i是Zi的共軛復(fù)數(shù)。
圖1 N端口網(wǎng)絡(luò)示意Fig.1 diagram of N port network
對(duì)于微波電路來講,Zi通常是實(shí)數(shù)并且等于50Ω,因此S參數(shù)矩陣可寫為
用Smn來定義相關(guān)端口的散射參數(shù),m為輸出端口,n為輸入端口。假設(shè)只有n端口為激勵(lì)端口,其他端口接匹配負(fù)載,則輸出端口的輸出功率為bm,輸入端口輸入功率an,則有
所研究的雙微帶線模型如圖2所示。
圖2 雙微帶模型示意圖Fig.2 model of doublemicrostrip
兩微帶線間的距離用B表示。微帶線材質(zhì)為銅,相對(duì)介電常數(shù)為0.999 991,電導(dǎo)率為5.8×107s/m。微帶線物理尺寸為:線寬W=3mm,厚度T=0.035mm,長度L=50mm。基板材料為FR4,相對(duì)介電常數(shù)εr=4.4,厚度H=1.6mm。端口1為激勵(lì)端口,其他端口接50Ω匹配負(fù)載。
目前,降低遠(yuǎn)端串?dāng)_的方法有很多種,較為普遍是增大線間距、添加防護(hù)線等。圖3為不同線間距下遠(yuǎn)端串?dāng)_的變化曲線。
圖3 微帶線間遠(yuǎn)端串?dāng)_的變化Fig.3 The far-end crosstalk change withmicrostrip lines
從圖3可以看出,遠(yuǎn)端串?dāng)_隨著線間距地增加而減小。在B=3W時(shí),S41的幅度相對(duì)于B=W/3時(shí)減小了約20 dB左右,并且隨著頻率的增大,其差距更大。因此增大線間距是降低遠(yuǎn)端串?dāng)_的非常有效的方法,但是此種方法對(duì)電路板的體積提出了更高的要求,在電路板體積有所限制的條件下,此種方法難以實(shí)施。
RSR結(jié)構(gòu)防護(hù)線與帶過孔的防護(hù)線相比具有更好的降低遠(yuǎn)端串?dāng)_的效果。在微帶線上方添加一定厚度的覆蓋介質(zhì)層也能起到較好的降低遠(yuǎn)端串?dāng)_的效果。文獻(xiàn)[11]中提到用RSR結(jié)構(gòu)防護(hù)線如圖4所示。金屬貼片在微帶線間均勻排布,分別將其編號(hào)為,其兩端與干擾線和受擾線的間距相等。分別用k、m、n來表示金屬貼片的長、寬、高;用dm表示貼片間距離。
為研究金屬貼片長度變化對(duì)微帶線間遠(yuǎn)端串?dāng)_噪聲的影響,取金屬貼片的材質(zhì)為銅,數(shù)量為25片,m=1mm,dm=1mm,n=0.035 mm,改變k的值,得到如圖5所示在不同k值下S41變化曲線對(duì)比圖。
從圖5中可以看出,在金屬貼片長度從3~7.4 mm變化時(shí),長度的增加伴隨著遠(yuǎn)端串?dāng)_的減??;當(dāng)長度k=8 mm時(shí),此時(shí)頻率在0~5.2 GHz范圍內(nèi),S41的幅度相比于k=3mm時(shí)已大大減小,減小幅度最高達(dá)到35 dB左右;頻率在5.2~7GHz范圍內(nèi),此時(shí)S41的值會(huì)增加,大于k=7.4mm時(shí)的值;k=8.2mm時(shí),在0~3.1 GHz頻段內(nèi)所對(duì)應(yīng)的S41值已小于-50 dB。當(dāng)長度繼續(xù)增大到8.4mm時(shí),S41的幅度又有所回升,并且在2.5~7 GHz頻段內(nèi),其值迅速增加。因此,在設(shè)計(jì)RSR結(jié)構(gòu)防護(hù)線時(shí),為盡可能大幅度的降低遠(yuǎn)端串?dāng)_的影響,在相對(duì)較低頻段,盡量增大金屬貼片的長度來達(dá)到降低遠(yuǎn)端串?dāng)_,而且此時(shí)會(huì)存在最佳長度值。在相對(duì)較高的頻率段,金屬貼片的長度不宜過大。
圖4 RSR結(jié)構(gòu)示意圖Fig.4 The diagram of RSR
圖5 S41幅度變化對(duì)比Fig.5 Variation of the amplitude comparison chartof S41
將編號(hào)為2,4,…,24的金屬貼片剔除,剩余13片。然后再將編號(hào)為 3,7,…,23 剔除,剩余 7 片;再將編號(hào)為 5,13,21的金屬貼片剔除,剩余4片。最后得到對(duì)比曲線如圖6所示。從圖6中可以看出,隨著微金屬貼片數(shù)量的減少,S41的幅度會(huì)有所上升。而且在低頻段內(nèi),通過增加金屬貼片的數(shù)量,可以大大降低遠(yuǎn)端串?dāng)_的影響。
圖6 S41的變化關(guān)系Fig.6 Variation diagrams of S41
分別取k=7mm與k=8mm,金屬貼片數(shù)量為25片,改變金屬貼片的厚度n,其他參數(shù)不變。得到的S41幅度隨頻率的變化曲線如圖7所示。從圖7(a)中,可以看出,當(dāng)貼片厚度n=T=0.035 mm時(shí),此時(shí)S41的幅度最小。從圖7(b)中可以看出,在0~3.5 GHz頻段內(nèi),n=0.035 mm所對(duì)應(yīng)的S41的幅度最小,在4~7 GHz頻段內(nèi)n=0.01mm所對(duì)應(yīng)的S41值最小。綜上圖7中的兩幅圖可以說明,如果選擇的金屬貼片的材質(zhì)與微帶線相同,那么在RSR結(jié)構(gòu)防護(hù)線線中,在一定頻段內(nèi),要盡量將金屬貼片的厚度等同于微帶線的厚度,這樣可以降低遠(yuǎn)端串?dāng)_的影響。
圖7 不同金屬貼片厚度對(duì)應(yīng)的S41變化關(guān)系圖Fig.7 Variation diagrams of S41 between differentmetal coating thickness
降低遠(yuǎn)端串?dāng)_影響的另外一種方法是在微帶線上方覆蓋介質(zhì)層,其結(jié)構(gòu)如圖8所示。
圖8 微帶線示意圖Fig.8 model ofmicrostrip
圖9(a)為覆蓋介質(zhì)層相對(duì)介電常數(shù)為5.5時(shí),不同厚度的覆蓋層所對(duì)應(yīng)的S41變化關(guān)系曲線。由圖中可以看出,當(dāng)覆蓋層介質(zhì)的厚度小于0.5mm時(shí),此時(shí)的S41幅度要大于沒有介質(zhì)層時(shí)的所對(duì)應(yīng)的S41幅度;當(dāng)介質(zhì)層厚度為2mm時(shí),此時(shí)S41的幅度降低超過5 dB。因此,在條件允許的情況下,將覆蓋介質(zhì)增加的盡量厚可以降低遠(yuǎn)端串?dāng)_的影響。圖9(b)為覆蓋介質(zhì)層厚度為1mm時(shí),相對(duì)介電常數(shù)變化時(shí)S41幅度的變化曲線,從圖中可以清晰看出,S41的幅度隨著覆蓋介質(zhì)層的相對(duì)介電常數(shù)的增大而減小,S41幅度值降低超過10 dB左右。
圖9 S41的變化曲線Fig.9 Change curve of S41
通過對(duì)RSR防護(hù)線結(jié)構(gòu)尺寸以及覆蓋介質(zhì)層厚度對(duì)微帶線遠(yuǎn)端串?dāng)_影響的仿真研究,發(fā)現(xiàn)在微帶線間加入防護(hù)線以及覆蓋介質(zhì)層的方法都可以有效的降低遠(yuǎn)端串?dāng)_的影響。在所設(shè)置的結(jié)構(gòu)參數(shù)下,當(dāng)頻率處于0~3 GHz時(shí),增加RSR結(jié)構(gòu)中金屬貼片的長度、數(shù)量以及覆蓋介質(zhì)層的厚度及相對(duì)介電常數(shù)都會(huì)降低遠(yuǎn)端串?dāng)_產(chǎn)生的影響。在其它頻段,需要根據(jù)信號(hào)的具體頻率決定參數(shù)的最優(yōu)設(shè)置。在PCB設(shè)計(jì)中,如果使用RSR防護(hù)線,要盡量增加金屬貼片的數(shù)量,選擇適宜的長度,這樣會(huì)達(dá)到較好的降低遠(yuǎn)端串?dāng)_的效果。本文的研究成果對(duì)于高頻電路板設(shè)計(jì)和布線具有一定的指導(dǎo)借鑒意義。
[1]Kyoungho LEE,Hyun-Bae LEE,Hae-Kang JUNG,et al.A Serprntine Guard Trace to Reduce the Far-End Crosstalk Voltage and the Crosstalk Induced Timing Jitter of Parallel Microstrip Lines [J].IEEE Transactions on advanced packaging,2008, 31(4):809-817.
[2]李麗平,李玉山,王崇劍.防護(hù)線減小微帶線間串?dāng)_的FDTD分析[J].電子與信息學(xué)報(bào),2006,28(3):574-576.LILi-ping,LIYu-shan,WANG Chong-jian.FDTD analysis of the crosstalk reductionwith guard tracebetweenmicrostrips[J].Journal of Electronics&Information Technology,2006, 28(3):574-576.
[3]LI Huan-huan,GUO Chen-jiang,ZHANG Yu.Research of Crosstalk Reduction between Microstrip Lines Based on High-Speed PCBs[C]//Antennas Propagation and EM Theory.Guangzhou,2010:994-997.
[4]李學(xué)鋒,權(quán)赫.基于隔離帶方法的兩平行微帶線間串?dāng)_抑制分析[J].計(jì)算機(jī)測量與控制,2011,19(9):2237-2240.LI Xue-feng,QUAN He.Analysis and suppression of crosstalk for two parallelmicrostrip by using isolationstrip[J].Computer Measurement&Control,2011,19(9):2237-2240.
[5]曹海舟.減小PCB微帶線間串?dāng)_方法分析[J].電子質(zhì)量,2008,(1):73-75.CAO Hai-zhou.Analysis of approach for reducing crosstalk between coupledmicrostrip lines[J].ElectronicsQuality,2008,(1):73-75.
[6]安靜,武俊峰,吳一輝.防護(hù)帶結(jié)構(gòu)參數(shù)對(duì)耦合微帶線間串?dāng)_的影響[J].武漢理工大學(xué)學(xué)報(bào),2010,32(23):81-84.AN Jing,WU Jun-feng,WU Yi-hui.Influence of the structural parameters of via fences on reducing the crosstalk between coupled microstrip Lines[J].Journal of Wuhan University of Technology,2010,32(23):81-84.
[7]Yuki K,Teruo T,Takayuki S,et al.Time Domain Analysis of Crosstalk between Microstrip Lines Placed along Slot with VariousWidths and Lengths[C]//Proceedings of APMC 2012.Kaohs-iung, Taiwan,2012:274-276.
[8]YANG Guang,LU Ying-hua.Crosstalk analysis of high speed digitalmicrostrip traces over a slotted ground plane using the non-uniform FDTD method[C]//International Symposium on Electromagnetic Compatibility.Qingdao,2007:118-121.
[9]LIN Ding-bing,WANG Chen-kuang,LU Chi-hao,et al.Using rectangular-shape resonators to improve the far-end crosstalk of the coupled microstrip lines[C]//PIERS Proceed-ings,2011:1612-1616.
[10]ATEF Z.ELSHERBENI,VEYSEL DEMIR.The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulation[M].SciTech Publishing,Inc.2009.