田廣 張長(zhǎng)青 彭惠娟 周云滿(mǎn) 李建榮 張星培 胡明月TIAN Guang, ZHANG ChangQing*, PENG HuiJuan, ZHOU YunMan, LI JianRong, ZHANG XingPei and HU MingYue
1. 中國(guó)地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 1000832. 中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所,國(guó)土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 1000373. 云南黃金礦業(yè)集團(tuán)股份有限公司,昆明 6502244. 國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心,北京 1000371. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037 China3. Yunnan Gold Group Co. Ltd, Kunming 650000 China4. National Research Center for Geoanalysis, Beijing 100037 China2013-09-01 收稿, 2013-12-09 改回.
印度與歐亞大陸碰撞引發(fā)西南三江地區(qū)在新生代時(shí)期發(fā)生了強(qiáng)烈的陸內(nèi)變形,形成了一系列NW-NNW走向的深大斷裂帶,如哀牢山-紅河斷裂帶(Wangetal., 2001);與之相伴出露大面積的富堿侵入巖體,形成了長(zhǎng)達(dá)千余千米,寬50~80km的富堿侵入巖帶(張玉泉等,1997;王登紅等, 2004; Zhangetal., 2009)。該富堿侵入巖帶內(nèi)發(fā)育有一系列大中型金、銅、鉬等金屬礦床,如北衙金多金屬礦、馬廠(chǎng)菁銅鉬金礦、大坪金礦、鎮(zhèn)沅金礦、銅廠(chǎng)銅鉬金礦、長(zhǎng)安沖銅鉬金礦、長(zhǎng)安金礦等,成為中國(guó)重要的斑巖銅-鉬-金成礦省和成礦遠(yuǎn)景區(qū)之一。該成礦省中,金礦床與喜馬拉雅山期富堿斑巖在時(shí)空和成因上的密切關(guān)系及其獨(dú)具特色的新生代富堿斑巖型金多金屬成礦系統(tǒng)引起了大量學(xué)者的關(guān)注(毛景文等,2005;Geetal., 2009; 鄧軍等,2010b;Dengetal., 2010;Maoetal., 2013; Tranetal., 2013)。
隨著地質(zhì)科學(xué)的不斷發(fā)展,礦物的微量元素組成、特征對(duì)于提供成礦流體、成礦物質(zhì)來(lái)源、成礦物理化學(xué)條件及礦床成因等科學(xué)信息的報(bào)道越來(lái)越多。激光剝蝕電感耦合等離子質(zhì)譜(LA-ICP-MS)作為新的測(cè)試技術(shù),以其抗干擾能力強(qiáng)、檢出限低、靈敏度高等優(yōu)勢(shì),受到學(xué)者們的廣泛關(guān)注(Cooketal., 2009; Koglinetal., 2010; Nadoll and Koening, 2011; 胡明月等, 2008;周濤發(fā)等, 2010;段超等, 2012)。黃鐵礦作為地殼中分布最廣的硫化物,它不僅能在沉積巖、巖漿巖和變質(zhì)巖中形成,而且是重要的載金礦物;其地球化學(xué)成分的變化特征是一個(gè)重要的礦物成因指示(Braliaetal., 1979; Henkelman, 2004),通過(guò)黃鐵礦微量元素含量和比值,可以推斷黃鐵礦的類(lèi)型與成因,提供成礦物質(zhì)來(lái)源、成礦流體來(lái)源、礦床成因等信息。黃鐵礦微區(qū)微量元素研究雖然仍處于起步階段,但目前已獲得的一些重要的科研成果,表明它為金礦成礦作用研究提供了一個(gè)新的途徑(Largeetal., 2009; Gregoryetal., 2013)。
長(zhǎng)安金礦是云南省地質(zhì)調(diào)查院第二地質(zhì)礦產(chǎn)調(diào)查所于2001年間進(jìn)行金銅礦資源調(diào)查時(shí)發(fā)現(xiàn)的具有經(jīng)濟(jì)意義的礦床。該礦位于東經(jīng)103°02′00″,北緯22°48′30″,隸屬于金平縣銅廠(chǎng)鄉(xiāng),金屬量達(dá)30t,是哀牢山-紅河斷裂南段的一個(gè)大型金礦床,且與銅廠(chǎng)銅鉬金礦床,長(zhǎng)安沖銅鉬金礦床相鄰產(chǎn)出。作為哀牢山成礦帶的重要組成部分之一,長(zhǎng)安金礦的成因類(lèi)型受到了廣泛的關(guān)注,礦區(qū)內(nèi)脈巖廣布,金成礦與新生代富堿斑巖之間的關(guān)系成為眾多學(xué)者研究方向之一。前人的研究表明,長(zhǎng)安金礦的形成受到了深部幔源物質(zhì)的影響,成礦流體具有巖漿水與地層變質(zhì)水混合的特征(應(yīng)漢龍等,2006;和中華等,2008;郭春影等,2009;張靜等,2010;Chenetal., 2010; 李士輝等,2011;Tranetal., 2013)。哀牢山成礦帶內(nèi)大多數(shù)斑巖型礦床,巖漿巖呈多期次(17~55Ma)活動(dòng)的特點(diǎn),并且觀察到有多期成礦事件的存在(曾普勝等,2006)。因此長(zhǎng)安金礦區(qū)中脈巖的成巖年代以及金成礦與新生代富堿斑巖之間的關(guān)系都有待進(jìn)一步的研究。為此本文以與長(zhǎng)安金礦礦體密切共生的脈巖年齡及黃鐵礦微量元素的化學(xué)組成為切入點(diǎn),來(lái)探討長(zhǎng)安金礦的成礦機(jī)制過(guò)程及動(dòng)力學(xué)背景,為進(jìn)一步的完善富堿斑巖金多金屬成礦系統(tǒng)提供新的信息。
長(zhǎng)安金礦為與哀牢山逆沖推覆構(gòu)造帶金平推覆體的中南部,金平推覆體呈楔形夾持于綠春推覆體和哀牢山基底推覆體之間。構(gòu)造帶內(nèi)發(fā)育了三條主要斷裂,它們沿走向向北西收斂。帶內(nèi)出露的地層由這三條深大斷裂所挾持(圖1)。以中部的哀牢山深大斷裂為界,東部位深變質(zhì)帶(古元古界哀牢山群),變質(zhì)程度達(dá)角閃巖相;西部為淺變質(zhì)帶(局部為中生界未變質(zhì)地層所覆蓋),地層是低綠片巖相古生界及上三疊統(tǒng),哀牢山群沿金沙江-哀牢山斷裂向南西推覆到上三疊統(tǒng)之上;兩條變質(zhì)帶共同組成“雙變質(zhì)帶”,變質(zhì)帶向北隨3條斷裂帶合并而消失。在九甲-安定深大斷裂以西出露的地層則主要為中生界未變質(zhì)地層。斷裂帶內(nèi)巖漿巖特別發(fā)育,巖漿據(jù)有多旋回、多樣性的特點(diǎn),沿?cái)嗔研纬扇齻€(gè)主要巖漿帶,即哀牢山斷裂兩側(cè)的超基性巖帶,九甲-安定斷裂東側(cè)的基性巖帶和哀牢山斷裂兩側(cè)的富堿侵入巖帶。
圖1 哀牢山推覆構(gòu)造分帶圖(據(jù)李定謀等,1998修改)Fig.1 Zoning map for nappe structure of the Ailaoshan region (modified after Li et al., 1998)
長(zhǎng)安金礦床位于金平推覆體中的NW向推覆構(gòu)造滑脫面內(nèi)的脆性破碎帶中,與銅廠(chǎng)、長(zhǎng)安沖銅鉬金礦床相伴產(chǎn)出(圖1),礦區(qū)范圍內(nèi)出露的地層由北至南呈現(xiàn)從老至新分布,依次為下奧陶統(tǒng)向陽(yáng)組粉砂巖(O1x)、中上志留統(tǒng)康廊組白云巖(S2-3k)、下泥盆統(tǒng)青山組白云質(zhì)灰?guī)r(D1q)、中泥盆統(tǒng)爛泥箐組灰?guī)r(D2ln)、上泥盆統(tǒng)干溝組灰?guī)r(D3gg)及石炭系尖山營(yíng)組灰?guī)r與白云質(zhì)灰?guī)r(Cj)(圖2),其中向陽(yáng)組粉砂巖為主要含礦地層與康廊組白云巖呈假整合接觸。
圖2 礦區(qū)地質(zhì)簡(jiǎn)圖(據(jù)和中華等,2008修改)Fig.2 Geological sketch map of the Chang’an gold deposit (modified after He et al., 2008)
區(qū)域構(gòu)造線(xiàn)的主導(dǎo)方向受NW向的哀牢山深斷裂和藤條河斷裂控制,使礦區(qū)內(nèi)的多數(shù)次級(jí)斷裂呈NW向展布。甘河斷裂(F5):走向北西,貫穿礦區(qū)。總體傾向南,地表局部?jī)A向北,傾角80°。破碎帶寬度100~200m,內(nèi)含10.8m厚的糜棱巖。巖性為碎裂白云巖和灰質(zhì)糜棱巖,部分地段具黃鐵礦化和金礦化,斷層泥內(nèi)含金品位大于3g/t,為主要的含金斷裂。F6斷裂走向北西,與F5平行,在銅廠(chǎng)街附近與S2-3/O1界面耦合,F(xiàn)6早期為壓扭性斷裂,后期為張性斷裂。對(duì)長(zhǎng)安金礦成礦起著重要作用,長(zhǎng)安金礦最主要的V5礦體就產(chǎn)于F6斷裂與不整合面共同控制的構(gòu)造破碎帶中。F7斷裂走向北東。以西的S2-3地層走向北西,以東的地層走向北東,分布巖株式正長(zhǎng)斑巖,錯(cuò)切S2-3/O1界線(xiàn)。F8斷裂走向北東,傾向南東,傾角40°~60°,下盤(pán)地層S2-3,上盤(pán)D1q,大部分地段缺D1底部的石英礫巖層。部分地段的破碎帶寬10~50m,構(gòu)造巖由碎裂白云巖、糜棱巖和角礫巖組成,斷層性質(zhì)為壓扭性。
礦區(qū)內(nèi)發(fā)育多種類(lèi)型的巖漿巖,主要包括基性巖類(lèi)、中-基性堿性脈巖類(lèi)。基性巖類(lèi)主要為輝綠巖和輝長(zhǎng)巖,呈脈狀產(chǎn)出,侵位于上述沉積地層中,走向與地層走向基本一致,礦物成分為斜長(zhǎng)石、單斜輝石、橄欖石、石英等,發(fā)育有黏土化、絹云母化,碳酸鹽化,蛇紋石化。堿性脈巖類(lèi)主要包括煌斑巖和正長(zhǎng)巖類(lèi)。正長(zhǎng)巖類(lèi)包括正長(zhǎng)斑巖、正長(zhǎng)巖、細(xì)晶正長(zhǎng)巖,呈脈狀產(chǎn)出,寬約2~3m(圖3)。由鉀長(zhǎng)石、微斜長(zhǎng)石、環(huán)帶斜長(zhǎng)石、黑云母、角閃石、少量石英組成,副礦物為磷灰石、檐石、獨(dú)居石、鉆石、磷憶礦。
圖3 脈巖產(chǎn)出及鏡下照片(a)-侵入到V5礦體中的細(xì)晶正長(zhǎng)巖脈;(b)-細(xì)晶正長(zhǎng)巖脈和煌斑巖脈(V5礦體剖面);(c)-細(xì)晶正長(zhǎng)巖手標(biāo)本;(d)-正長(zhǎng)斑巖手標(biāo)本;(e)-細(xì)晶正長(zhǎng)巖(CA034,正交偏光);(f)-正長(zhǎng)斑巖(Zk805,正交偏光)Fig.3 Petrography of the magmatites of Chang’an gold deposit
煌斑巖在礦區(qū)普遍產(chǎn)出,呈脈狀。多數(shù)煌斑巖脈體邊緣與圍巖接觸帶風(fēng)化后常形成殘積型金礦。少量脈體外接觸帶發(fā)現(xiàn)有斑點(diǎn)浸染狀雄黃。巖石由斑晶和基質(zhì)組成,基質(zhì)具顯微粉晶結(jié)構(gòu),斑晶為云母、鉀長(zhǎng)石和少量石英?;|(zhì)以微粒正長(zhǎng)石、石英為主,并有少量云母和鐵質(zhì)星點(diǎn)分布。(云南地礦資源股份有限公司,2002*云南地礦資源股份有限公司. 2002. 云南省金平縣長(zhǎng)安金礦詳查地質(zhì)報(bào)告)。
長(zhǎng)安金礦床由V1-V9礦體組成,其中僅V5礦體達(dá)到詳查程度,其估算的資源量占礦區(qū)資源總量的95%以上。V5礦體產(chǎn)于F6斷裂與志留系、奧陶系之間發(fā)育的不整合面重合部位,受構(gòu)造破碎帶的控制,礦體整體產(chǎn)狀與F6斷層一致。礦體總長(zhǎng)度約1800m,礦體厚度為0.86~39.49m,整體為較大透鏡狀,走向340°,傾向北東東,傾角20°~90°,礦體上緩下陡、1600m標(biāo)高以上傾角20°~60°,1600m標(biāo)高以下礦體近于直立、局部出現(xiàn)反傾(傾向南西西)、呈倒“S”型,沿傾向延伸最大達(dá)510m。礦體在走向及傾向上具有膨大縮小及舒緩波狀變化特征,礦體淺部品位高、厚度大、連續(xù)性好,深部呈品位變低、局部不連續(xù)。含礦巖石主要為下奧陶統(tǒng)向陽(yáng)組炭質(zhì)泥巖、破碎的粉砂巖、石英細(xì)砂巖、石英礫巖等。礦石礦物主要有黃鐵礦、毒砂,少量黃銅礦、閃鋅礦、方鉛礦、辰砂、自然金、銀金礦、自然銀。脈石礦物主要為石英、長(zhǎng)石、白云石、絹云母等,次為方解石、白云石、白云母、伊利水云母、蒙脫石、高嶺石等,少量綠泥石、黝簾石、沸石、葡萄石等。礦石具自形-半自形晶結(jié)構(gòu)、它形晶結(jié)構(gòu)、鑲嵌結(jié)構(gòu)、包含結(jié)構(gòu)等;礦石構(gòu)造主要有碎裂狀構(gòu)造、角礫狀構(gòu)造、浸染狀構(gòu)造、細(xì)網(wǎng)脈狀構(gòu)造、團(tuán)塊狀構(gòu)造等。成礦階段可分為:黃鐵礦-石英階段、黃鐵礦-石英-絹云母階段、黃鐵礦-方解石-石英階段及后期硅化階段。與金礦化有關(guān)的蝕變有:硅化、黃鐵礦化、碳酸鹽化、石英細(xì)脈化、毒砂化、絹英巖化、局部有閃鋅礦、方鉛礦化。
鋯石U-Pb定年的樣品采自長(zhǎng)安金礦V5礦體中與金礦體密切共生的細(xì)晶正長(zhǎng)巖及礦區(qū)8勘探線(xiàn)鉆孔內(nèi)的正長(zhǎng)斑巖。
黃鐵礦微量元素分析的樣品選自長(zhǎng)安金礦區(qū)礦石、圍巖及細(xì)晶正長(zhǎng)巖中的黃鐵礦和銅廠(chǎng)銅鉬金礦斑巖體、長(zhǎng)安沖銅鉬金礦斑巖體中的黃鐵礦。
圖4 不同樣品中黃鐵礦的鏡下照片F(xiàn)ig.4 Photomicrographs of pyrite from different samples
銅廠(chǎng)銅鉬金礦斑巖中的黃鐵礦(簡(jiǎn)稱(chēng)PyⅠ)和長(zhǎng)安沖銅鉬金礦礦石中的黃鐵礦(簡(jiǎn)稱(chēng)PyⅡ),均呈淺黃色,晶體形態(tài)為自形-半自形,粒狀結(jié)構(gòu),自形程度較好,與黃銅礦緊密共生;長(zhǎng)安金礦細(xì)晶正長(zhǎng)巖中的黃鐵礦(簡(jiǎn)稱(chēng)PyⅢ),呈黃色,晶體形態(tài)半自形-自形,粒狀結(jié)構(gòu)。長(zhǎng)安金礦圍巖-O1x粉砂巖中的黃鐵礦(簡(jiǎn)稱(chēng)PyⅣ),這類(lèi)黃鐵礦周?chē)植贾罅课⑿∏驙铧S鐵礦,從黃鐵礦的形態(tài)和分布來(lái)看,受到了后期熱液疊加作用而成。角礫巖型礦石中的黃體礦(簡(jiǎn)稱(chēng)PyⅤ)呈淺黃色,自形程度差,膠狀構(gòu)造,為低溫?zé)嵋旱漠a(chǎn)物,與毒砂共生(圖4)。
鋯石U-Pb定年在中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所激光多接收等離子質(zhì)譜LA-MC-ICP-MS實(shí)驗(yàn)室完成。所用測(cè)試儀器為Finnigan Neptune型MC-ICP-MS及與之配套的New Wave UP-213 激光剝蝕系統(tǒng)。測(cè)試時(shí)激光束斑直徑為30μm,剝蝕深度20~40μm,激光脈沖10Hz,能量34~40mJ;電感耦合等離子體質(zhì)譜(ICP-MS)系統(tǒng)為Agilent 7500a。鋯石的同位素組成以鋯石91500為外標(biāo)進(jìn)行校正,微量元素組成以玻璃標(biāo)樣NIST610做外標(biāo),SiO2含量為內(nèi)標(biāo)進(jìn)行校正(Yuanetal., 2004)。鋯石微量和同位素?cái)?shù)據(jù)采用GLITTER程序,普通鉛校正采用Andersen(2002)的方法,年齡計(jì)算使用Isoplot(ver3.00)完成(Ludwig, 2003)。詳細(xì)實(shí)驗(yàn)測(cè)試過(guò)程可參見(jiàn)侯可軍等(2009)。
黃鐵礦激光剝蝕等離子質(zhì)譜實(shí)驗(yàn)在國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。使用儀器為T(mén)hermo ElementⅡ等離子質(zhì)譜儀,激光剝蝕系統(tǒng)為New Wave UP-213。實(shí)驗(yàn)采用He作為剝蝕物質(zhì)的載氣,激光波長(zhǎng)213nm、束斑40μm、脈沖頻率10Hz、能量0.176mJ、密度23~25J/m2,測(cè)試過(guò)程中首先遮擋激光束進(jìn)行空白背景采集15s,然后進(jìn)行樣品連續(xù)剝蝕采集45s,停止剝蝕后繼續(xù)吹掃15s清洗進(jìn)樣系統(tǒng),單點(diǎn)測(cè)試分析時(shí)間75s。等離子質(zhì)譜測(cè)試參數(shù)為冷卻氣流速(Ar)15.55L/min; 輔助氣流速(Ar)0.67L/min; 載氣流速(He)0.58L/min; 樣品氣流速0.819L/min,射頻發(fā)生器功率1205W。測(cè)試數(shù)據(jù)采外標(biāo)法,標(biāo)樣使用NIST-612,MASS-1。
細(xì)晶正長(zhǎng)巖(CA005)、正長(zhǎng)斑巖(zk805)測(cè)試樣品中鋯石均為半自形-自形晶,無(wú)色透明,粒徑一般為100~200μm,呈短柱狀,長(zhǎng)寬比約2:1,鋯石陰極發(fā)光(CL)圖像(圖5)中振蕩環(huán)帶發(fā)育,應(yīng)為典型的巖漿結(jié)晶鋯石。選取其中裂紋不發(fā)育的20顆鋯石進(jìn)行U-Pb年齡分析,LA-ICP-MS鋯石測(cè)年數(shù)據(jù)見(jiàn)表1,諧和圖見(jiàn)圖5。由表1可以看出所選鋯石的Th/U均大于0.1,顯示典型的巖漿鋯石Th/U值特征(Rowleyetal., 1997; Crofuetal., 2003)。其中細(xì)晶正長(zhǎng)巖樣品(CA005)中17個(gè)數(shù)據(jù)點(diǎn)的206Pb/238U年齡測(cè)定得出加權(quán)平均年齡:32.5±0.1Ma, MSWD=0.11。正長(zhǎng)斑巖ZK805的17個(gè)數(shù)據(jù)點(diǎn)的206Pb/238U 年齡測(cè)定得出加權(quán)平均年齡:33.0±0.1Ma, MSWD=1.18(圖5)。上述年齡可以代表這兩脈巖鋯石的結(jié)晶年齡。
由于Co、Ni、As、Sb、Se是黃鐵礦中最常見(jiàn)的元素,Co、Ni可以類(lèi)質(zhì)同象的形式替換黃鐵礦中的Fe;As、Sb、Se可以取代S。因此選取Co、Ni、As、Sb、Se及成礦元素進(jìn)行分析(表2、圖6)。
PyⅠ以富Co、Se,貧Ni、As等元素為特征。其中Co的含量最高,為215×10-6~30542×10-6,平均為13713×10-6,Se含量為19.7×10-6~85.78×10-6,平均為43.7×10-6,Ni含量為18.59×10-6~241.5×10-6,平均為65.6×10-6,As含量為0.028×10-6~30.42×10-6,平均為8.08×10-6,Au含量值較低0×10-6~0.878×10-6,平均為0.473×10-6。
相對(duì)PyI黃鐵礦,PyⅡ黃鐵礦的Co含量有所減少,Ni、As、Se的含量相當(dāng),仍是以富Co貧Ni、As等元素為特征。其中Co的含量為100.2×10-6~1208×10-6,平均為513.8×10-6,Se含量為19.86×10-6~66.91×10-6,平均為48.2×10-6,Ni含量為5.694×10-6~52.79×10-6,平均為24.32×10-6,As含量為1.663×10-6~25.12×10-6,平均為9.15×10-6,Au含量值較低,為0×10-6~0.86×10-6,平均為0.228×10-6。
PyⅢ與PyⅠ、PyⅡ比較,Co含量略有減少,Se含量明顯降低,As、Ni含量則顯著增加,Cu、Pb、Au、Ag等成礦元素的含量也有所增加。其中Co含量為55.82×10-6~942.7×10-6,平均為421.8×10-6, Se含量為0.037×10-6~34.31×10-6,平均為4.96×10-6,Ni的含量為15.49×10-6~382.7×10-6,平均為173.7×10-6,As的含量為2147×10-6~15144×10-6,平均為8722.5×10-6,Au含量為0.771×10-6~20.45×10-6,平均為11.27×10-6;Cu平均為12.5×10-6;Pb平均為32.86×10-6;Ag平均為1.89×10-6。
表1長(zhǎng)安金礦鋯石LA-ICP-MS測(cè)年結(jié)果
Table 1 Zircon LA- ICP-MS U-Pb dating results of the Chang’an gold deposit
測(cè)點(diǎn)號(hào)232Th238UTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U(×10-6)RatioRatio1sigmaRatio1sigmaRatio1sigmaAge(Ma)1sigmaAge(Ma)1sigmaAge(Ma)1sigmaCA005-1238.3599.20.400.04820.00060.03370.00060.00510.0000109.431.533.70.632.50.2CA005-278.5242.60.320.04750.00100.03300.00070.00510.000072.351.833.00.732.50.2CA005-3174.0446.50.390.04880.00070.03400.00050.00510.0000139.033.334.00.532.50.2CA005-4310.4592.70.520.04720.00050.03300.00040.00510.000057.525.932.90.432.60.2CA005-5223.2354.70.630.04690.00080.03270.00050.00510.000055.738.932.70.532.50.2CA005-7236.7534.20.440.04830.00170.03360.00100.00510.0001122.381.533.61.032.50.4CA005-887.7172.00.510.04890.00220.03390.00150.00510.0001142.7110.233.91.532.50.4CA005-960.5254.80.240.04650.00110.03210.00080.00500.000020.559.332.10.832.40.3CA005-10181.9359.90.510.04780.00070.03330.00050.00510.000087.133.333.30.532.50.2CA005-12107.9304.40.350.04820.00090.03350.00060.00510.0000109.444.433.50.632.50.3CA005-13215.9401.50.540.04720.00060.03300.00040.00510.000057.529.633.00.432.70.2CA005-14108.2324.60.330.04790.00090.03330.00070.00500.000094.541.733.30.732.50.3CA005-15250.4540.50.460.04730.00060.03290.00040.00510.000064.932.432.90.432.50.2CA005-16327.8756.40.430.04850.00060.03370.00040.00500.0000124.227.833.60.432.40.3CA005-18188.0597.00.310.04830.00050.03360.00040.00500.0000122.325.933.50.432.40.2CA005-19430.9634.60.680.04790.00050.03340.00040.00510.000094.521.333.30.432.50.2CA005-20102.9275.70.370.04810.00290.03360.00220.00510.0001101.9137.033.52.232.50.6zk805-1123.2116.21.060.05450.00180.03840.00130.00510.0000394.574.138.21.232.90.2zk805-298.8114.30.860.05300.00160.03700.00110.00510.0000327.868.536.91.132.80.2zk805-388.698.20.900.05320.00220.03680.00150.00500.0000344.594.436.71.532.40.2zk805-447.464.10.740.05780.00270.04070.00190.00510.0000524.1100.040.51.832.90.3zk805-5121.2140.40.860.05130.00130.03650.00090.00520.0000253.863.936.40.933.30.2zk805-699.7104.80.950.05210.00200.03650.00140.00510.0000287.188.936.41.432.80.2zk805-788.1105.80.830.05270.00200.03710.00140.00510.0000316.7119.437.01.433.00.3zk805-8106.799.41.070.04920.00200.03480.00140.00510.0000166.892.634.71.333.00.3zk805-9102.7111.90.920.05160.00180.03690.00130.00520.0000333.479.636.71.333.20.3zk805-10101.8111.40.910.05160.00170.03680.00120.00520.0000333.475.936.71.233.30.3zk805-11136.799.51.370.05220.00190.03680.00140.00510.0000294.583.336.71.333.00.3zk805-1297.0112.10.860.05310.00190.03780.00140.00520.0000331.578.737.71.433.30.2zk805-13154.1136.01.130.04760.00150.03410.00110.00520.000079.7-123.134.11.033.50.3zk805-16190.8179.31.060.05040.00120.03570.00090.00510.0000213.083.335.60.933.10.3zk805-17146.5155.20.940.05050.00130.03590.00090.00520.0000216.754.635.80.933.20.3zk805-19297.9328.00.910.05800.00180.04140.00160.00520.0001527.870.441.21.533.10.3zk805-20194.3240.70.810.04740.00100.03320.00080.00510.000177.950.033.20.732.80.3
圖5 鋯石背散射照片及LA-ICP-MS U- Pb諧和圖Fig.5 Back scattering electron images and LA-ICP-MS U-Pb concordia diagram of zircons
PyⅣ中Co含量與PyⅡ、PyⅢ相當(dāng),低于PyⅠ;Se含量低于PyⅠ、PyⅡ,高于PyⅢ;Au、As含量高于PyⅠ、PyⅡ,低于PyⅢ;Ni、Cu、Zn、Pb、Ag等含量較PyⅠ、PyⅡ、PyⅢ顯著增加;以含Tl為特征。Co為17.37×10-6~649.6×10-6,平均為410.0×10-6,Se含量為0.075×10-6~21.55×10-6,平均為9.1×10-6,Ni含量為286.6×10-6~1877×10-6,平均為1203×10-6;As含量為558.4×10-6~5619×10-6,平均為2323×10-6,Au含量為0×10-6~7.665×10-6,平均為2.73×10-6;Cu平均為355.2×10-6;Pb平均為620.7×10-6;Zn平均為48.99×10-6;Ag平均為30.2×10-6。
PyⅤ與PyⅣ中Co、Ni、Cu、Pb、Zn、Ag含量均有所降低,As、Au含量顯著升高,Co含量為9.044×10-6~63×10-6,平均為38×10-6,Se含量為0×10-6~33.41×10-6,平均為5.8×10-6,Ni含量為122.7×10-6~651.4×10-6,平均為344.8×10-6,As含量為7121×10-6~46492×10-6,平均為22075×10-6,Au含量為45.71×10-6~375.2×10-6;平均為156.1×10-6,Cu平均為166.2×10-6;Pb平均為588.7×10-6;Zn平均為20.4×10-6;Ag平均為7.12×10-6。
長(zhǎng)安金礦及相鄰礦區(qū)已有的年代學(xué)資料顯示,長(zhǎng)安金礦區(qū)煌斑巖中黑云母39Ar-40Ar年齡坪年齡為35.62±0.16Ma,等時(shí)線(xiàn)年齡為35.27±0.74Ma(王勇,2008)。金平銅廠(chǎng)銅鉬金礦床賦礦巖體二長(zhǎng)花崗斑巖的形成年代為35.1±0.3Ma(黃波等,2009);銅廠(chǎng)輝鉬礦Re-Os等時(shí)線(xiàn)年齡34.4±0.5Ma(王登紅等,2004);長(zhǎng)安沖輝鉬礦等時(shí)線(xiàn)年齡為34.5±0.7Ma(胥磊落等,2010)。
礦床地球化學(xué)研究表明,長(zhǎng)安金礦礦石206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值分別為:18.998~19.575、15.711~15.784、39.494~40.200,與富堿斑巖的同位素比值基本相同(Tranetal., 2013),流體包裹體中的δ13C、δD、δ18O分別為:-3.5‰~8.749‰、-118‰~-78.383‰、10.527‰~13.565‰,暗示礦區(qū)內(nèi)巖漿活動(dòng)帶來(lái)的巖漿熱液參與了成礦作用(李士輝等,2011)。銅廠(chǎng)銅鉬金礦石英正長(zhǎng)斑巖中硫化物的δ34S為-1.1‰~0.9‰,矽卡巖中硫化物的δ34S為-0.1‰~1.3‰,長(zhǎng)安金礦中的細(xì)晶正長(zhǎng)巖δ34S為-3.5‰~-1.6‰,礦石δ34S為-13‰~3.6‰,主要集中在-0.1‰~1.3‰ (表3、圖7)。幔源或者源于深部與巖漿作用有關(guān)硫化物的硫同位素組成特征δ34S約為0‰(Ohmoto,1972),斑巖型礦床中硫化物δ34S一般介于-3.5‰~1.0‰之間(Rollinson,1993),上述巖石、礦石中的黃鐵礦δ34S值均符合這一特征,可以認(rèn)為兩個(gè)礦床中的成礦熱液基本來(lái)源于已基本均一化的深源硫,而兩個(gè)礦床又受同一構(gòu)造-熱事件的控制,表明礦石和圍巖中的黃鐵礦形成的硫源主要為巖漿熱液,且與銅廠(chǎng)、長(zhǎng)安沖銅鉬金礦中硫化物的形成是一個(gè)連續(xù)的巖漿熱過(guò)程。
表2長(zhǎng)安金礦黃鐵礦微量元素(×10-6)
Table 2 Trace element analysis for pyrite from Tongchang Chang’anchong and Chang’an deposit (×10-6)
樣品測(cè)點(diǎn)號(hào)CoNiCo/NiCuZnAsSeAgAuTlPbBiSbPyⅠTC007_13054277.25395.371.534.4712.51564.60.075000.0460.0520TC007_210020241.541.491.6255.0966.10165.680.03200.01800.1160.079TC007_31353023.14584.701.4716.1625.74361.260.3660.8780.0520.130.0370.186TC007_41153829.24394.601407.85213.0219.71.23300.0653.29800.325TC007_51754686.57202.680.9983.4450.02885.780.012000.0360.0080.019TC007_61494626.49564.214.1772.2077.73224.70.25100.066000.074TC007_71115418.59600.00167317.3830.4221.53.40200.05626.160.710.739TC007_81393331.64440.361.5657.826.17324.980.0150.0690000TC007_9215.456.143.84226.0121.00425.020.106000.3481.0780.018PyⅡCAC006_1557.711.6447.912.7022.8381.97221.740.0350.6860.0278.5716.1780.089CAC006_2868.747.7118.21161.721.2612.1157.6900.1680.03712.74.220.001CAC006_3902.852.7917.100.7783.7877.32458.560000.6660.3070.028CAC006_4120844.926.900.8826.18125.1255.910.08200.0195.7070.6740CAC006_5644.443.5714.790.6477.32612.8463.250.026000.3030.1560CAC006_645116.3527.580.9364.2019.91851.430.11600.0170.1010.0220.103CAC006_7138.55.71424.240.0056.3256.63834.720.0050.56100.030.0040CAC006_8109.75.81418.871.0536.7368.93266.910.09100.0071.45700.037CAC006_9157.15.69427.594.9579.7791.66319.860.67200.02215.1629.50.322CAC006_10100.29.01211.120.2164.9034.96752.320.1210.860.0283.6560.0070.165PyⅢCA9-3_495.9842.672.257.7476.08579730.3970.43714.020.26716.885.0884.181CA9-3_6389.5176.42.2129.929.97328521.9685.6961.6741.10896.1177.8816.73CA9-3_81465334.24.3815.137.30559800.7382.7895.4740.39352.826.089.748CA9-2_4161.755.042.946.4076.06195462.7690.46314.440.3910.752.7473.657CA9-2_5186.281.692.284.9584.816117002.0360.51715.240.0627.4950.7671.44CA9-2_8225.2109.62.054.8085.473129113.8470.75520.450.09410.151.4741.943CA9-2_9942.7323.32.9231.035.39957772.1894.9945.4130.2467.9218.0516.78CA032_2286.2215.41.3315.144.5791319534.310.52219.920.0515.80.0322.201CA032_3409.9382.71.076.3915.678151441.3721.11315.30.00325.860.0451.538CA032_755.8215.493.603.5094.25421470.0371.0760.7710.12324.820.0341.851PyⅣCA8-5_1589.412920.46317.210.9619198.81359.062.938188.7594.32.099352.1CA8-5_2362286.61.26164.160.7558.413.096.80805.735265.70.24726.57CA8-5_376413930.55301.4234.121988.80954.773.698187.1605.32.292304.8CA8-5_4634.318770.34140.324.24172414.3123.51.39997853.10.656349.4CA8-5_541.07949.50.04951.613.2445152.0755.3537.6655.256490.49.324196.1CA8-5_617.3717210.01999.915.2756190.0757.8074.8517.4025997.194219.9CA8-5_7649.614100.4640.85105.7170921.557.7080.01480.4616340.211393.6CA8-5_8255.9975.60.26175.57.171174913.740.392.521702940.53353.5CA8-5_9470.69790.48205.49.64715672.0634.221.746126.9505.40.587290.4CA8-5_10315.411460.28256.48.92316686.1462.372.437202.5365.91.2363.9PyⅤCA1-5_114.16259.30.05351.445.314649212.617.27317.96.51740702.964198.4CA1-5_29.0441580.0612013.66359313.8766.219145.26.9724320.6772.47CA1-5_325.65428.90.06131.68.931734104.31864.447.16279.550.42671.21CA1-5_434.54617.60.06165.410.12425033.416.29145.719.003203.40.897143.3CA1-5_543.19651.40.07166.812.3424674011.0363.95.312269.83.15782.44CA1-5_643.09555.70.08318.918.28268692.93210.58375.28.791283.42.785108.3CA1-2_148.84303.20.16188.216.572194004.313119.127159.52.94547.13CA1-2_257.951940.3091.5762.4376363.0835.47486.626.06198.14.946135.1CA1-2_346.15122.70.3860.349.58971211.6312.99969.518.7293.411.711106.1CA1-2_463.01156.90.4067.56.756850502.73481.4113.4597.571.34391.14
圖6 黃鐵礦LA-ICP-MS 測(cè)試過(guò)程中典型電感耦合等離子質(zhì)譜輸出信號(hào)圖譜Fig.6 Typical ICP-MS counts output for pyrite analysis by laser ablation
圖7 長(zhǎng)安金礦、銅廠(chǎng)銅鉬金礦硫化物硫同位素分布直方圖Fig.7 δ34S histogram of metal sulfides in the Chang’an and Tongchang deposit
前人對(duì)哀牢山成礦帶富堿斑巖金多金屬礦床的成巖成礦年齡的統(tǒng)計(jì)顯示,與成礦相關(guān)的富堿斑巖成巖年齡范圍為37.9~31.3Ma(李勇等,2011),成礦年齡集中分布在32~36Ma,34±2Ma為主要的成巖成礦期(鄧軍等,2010b)。由于金礦化缺乏高精度測(cè)年數(shù)據(jù),只能通過(guò)侵入巖的成巖年齡來(lái)推測(cè)成礦年齡,與金礦成因密切相關(guān)的細(xì)晶正長(zhǎng)巖的結(jié)晶年齡為32.5±0.1Ma,王登紅等(2004)認(rèn)為巖漿期后熱液礦床的成礦時(shí)代晚于成巖時(shí)代0.5~3Myr左右。通過(guò)對(duì)比發(fā)現(xiàn),其成巖作用與成礦作用與哀牢山的新生代富堿斑巖金多金屬礦床的成巖成礦高峰期一致。表明長(zhǎng)安金礦、銅廠(chǎng)銅鉬金礦與長(zhǎng)安沖銅鉬金礦的形成受同一構(gòu)造-熱事件的控制。因此長(zhǎng)安金礦床大規(guī)模的成礦作用應(yīng)該發(fā)生在32Ma左右,確切的成礦時(shí)代仍有待證實(shí)。
表3長(zhǎng)安金礦及銅廠(chǎng)銅鉬金礦硫化物硫同位素測(cè)試結(jié)果
Table 3 Sulfur isotope values of the sulfide in the Tongchang and Chang’an deposit
樣品號(hào)巖性礦物δ34S(‰)資料來(lái)源長(zhǎng)安金礦T06平硐礦石黃鐵礦2.3T16平硐礦石黃鐵礦0.5T15平硐礦石黃鐵礦0.3T13平硐礦石黃鐵礦3.1T17平硐礦石黃鐵礦2.8T14巖芯礦石黃鐵礦1.0T1巖芯礦石黃鐵礦2.7應(yīng)漢龍,2006CA-6含黃鐵礦細(xì)脈糜棱巖黃鐵礦2.0CA-14浸染狀原生礦石黃鐵礦3.0CA-15粉砂巖原生礦石黃鐵礦1.1李士輝,2011CA01-3角礫巖型礦石黃鐵礦-1.7CD201-2角礫巖型礦石黃鐵礦1.7CA01-4硅化礦石黃鐵礦1.42-1含石英細(xì)脈礦石黃鐵礦1.93-4含石英細(xì)脈礦石黃鐵礦2.47-2含石英細(xì)脈礦石黃鐵礦-7.4AL08154-1含石英細(xì)脈礦石黃鐵礦0.9CD001-8含石英細(xì)脈礦石黃鐵礦2.5AL08154-10含石英細(xì)脈礦石黃鐵礦3.6CD201-5含石英細(xì)脈礦石黃鐵礦2.8CD201-6含石英細(xì)脈礦石黃鐵礦2.71633CD305-3含石英細(xì)脈礦石黃鐵礦0.51633CD101-3含石英細(xì)脈礦石黃鐵礦2.3CD301-1硅化礦石黃鐵礦-7.6CD301-2硅化礦石黃鐵礦-12.0CD301-3硅化礦石黃鐵礦-13.03-5硅化礦石黃鐵礦-2.15-1硅化礦石黃鐵礦2.91-4正長(zhǎng)巖黃鐵礦-3.52-5正長(zhǎng)巖黃鐵礦-1.6Chenetal.,2010銅廠(chǎng)銅鉬金礦T02石英正長(zhǎng)斑巖黃鐵礦-1.1T12石英正長(zhǎng)斑巖黃鐵礦-0.2應(yīng)漢龍,2006TM-21矽卡巖黃鐵礦-0.1TM-17矽卡巖黃鐵礦0.3TM-19矽卡巖黃鐵礦0.4ch-7矽卡巖黃鐵礦1.0TM-17矽卡巖輝鉬礦1.3ch-7矽卡巖輝鉬礦0.4TM-21矽卡巖黃銅礦1.3TM-7石英正長(zhǎng)斑巖黃鐵礦0.9TM-12石英正長(zhǎng)斑巖黃鐵礦-0.1TM-16石英正長(zhǎng)斑巖黃鐵礦0.4TM-27-3石英正長(zhǎng)斑巖黃鐵礦0.5TM27-1石英正長(zhǎng)斑巖黃鐵礦0.6TM-16石英正長(zhǎng)斑巖輝鉬礦-0.1TM-27-1石英正長(zhǎng)斑巖輝鉬礦-0.7TM-27-2石英正長(zhǎng)斑巖輝鉬礦-0.2TM-27-3石英正長(zhǎng)斑巖輝鉬礦-0.8TM-16石英正長(zhǎng)斑巖黃銅礦0.5Tranetal.,2013
巖漿作用對(duì)于金成礦是提供了成礦流體還是僅作為熱源存在,金是來(lái)自循環(huán)流體對(duì)圍巖的汲取還是來(lái)自于深源富堿斑巖巖漿經(jīng)演化分異作用形成的流體?隨著巖漿熱液礦床研究的不斷深入,成礦物質(zhì)源自巖漿的證據(jù)逐漸增加,成礦作用經(jīng)歷了早期的巖漿熱液階段與晚期的大氣降水階段(Rombach and Newberry, 2001;Heinrich, 2005),Cu、Au主要來(lái)自深部幔源的認(rèn)識(shí)得到了廣泛的重視(Sillitoe, 1997;Mungall, 2002;Munteanetal., 2011)。在熱液金礦床中,由于各種礦化元素地球化學(xué)活動(dòng)性的不同,會(huì)導(dǎo)致礦化空間上出現(xiàn)元素分帶的現(xiàn)象。礦化元素的分帶性往往反映到相關(guān)黃鐵礦的微量元素之中。對(duì)黃鐵礦中的微量元素進(jìn)行空間分析更能顯示出成礦的地球化學(xué)空間演化規(guī)律(Коробейников等,1986)。因此,對(duì)三個(gè)礦床中黃鐵礦的微量元素進(jìn)行對(duì)比研究,有利于正確認(rèn)識(shí)礦床的成因類(lèi)型及其成礦物質(zhì)來(lái)源,對(duì)進(jìn)一步的找礦勘查工作具有指示意義。
從黃鐵礦微量元素測(cè)試分析數(shù)據(jù)(表2)中可以看出這五類(lèi)黃鐵礦中所含的微量元素特征彼此間即存在著一定的相似性、規(guī)律性,又有一些顯著的差異性。黃鐵礦的Co/Ni值是黃鐵礦微量元素中研究最多的課題之一,國(guó)內(nèi)外學(xué)者通過(guò)對(duì)大量的礦床中的黃鐵礦微量元素進(jìn)行總結(jié)分析,認(rèn)為Co、Ni和Co/Ni值對(duì)具有一定的指示意義,不同成因類(lèi)型的黃鐵礦其Co/Ni值存在變化趨勢(shì),但不能僅用黃鐵礦的Co/Ni值大于1或是小于1為分界(陳光遠(yuǎn)等,1987;Braliaetal.,1979)。盛繼福(1999)認(rèn)為一般情況下黃鐵礦的Co/Ni比值大說(shuō)明黃鐵礦的形成溫度較高。從測(cè)試結(jié)果可得,PyⅠ的Co/Ni介于3.84~600之間, PyⅡ的Co/Ni介于11.12~47.91之間,PyⅢ的Co/Ni介于1.07~4.38之間, PyⅣ的Co/Ni介于0.01~1.26之間, PyⅤ的Co/Ni介于0.05~0.4之間;從巖漿巖至沉積地層中的黃鐵礦其Co/Ni值具有一個(gè)下降的趨勢(shì),與前人總結(jié)的規(guī)律相同。
實(shí)驗(yàn)證明,平衡狀態(tài)下硫化物中Au的含量大小順序依次為:斑銅礦、黃銅礦、磁黃鐵礦、黃鐵礦(朱永峰和安芳,2010)。Jugo(1999)對(duì)磁黃鐵礦-次生固熔體Iss-花崗巖熔體-Au體系在850℃、100MPa下開(kāi)展的實(shí)驗(yàn)表明:從熔體中分離出來(lái)Au進(jìn)入Iss的量遠(yuǎn)大于進(jìn)入磁黃鐵礦中的量?;◢徺|(zhì)巖漿演化過(guò)程中,硅酸鹽礦物的結(jié)晶或溶解并不影響金的狀態(tài),金在硫游離的巖漿體系中可能以不相容元素存在,趨向于在殘余熔體中富集(朱永峰和安芳,2010)。細(xì)晶巖為殘余巖漿沿巖體及附近圍巖中的裂隙充填形成(路鳳香和桑隆康,2006),因此PyⅢ的金含量要高于PyⅠ、PyⅡ的金含量。
熱液體系中的Au沉淀是由流體地球化學(xué)、溫度、壓力及氧逸度等諸多因素導(dǎo)致的。在高溫體系中金主要存在及運(yùn)移方式是以氯化物-AuCl2-形式(>500℃),導(dǎo)致金沉淀的主要機(jī)制是溫度的下降。當(dāng)溫度的降低(<350℃),金在熱液中的存在及運(yùn)移方式則以Au(HS)2-為主(Gammons and Williams-Jones, 1997),二者之間的轉(zhuǎn)化取決于初始流體的pH和HS/Cl比值,及不混溶性,溫度約為350~460℃之間。金的運(yùn)移方式的變化為斑巖型銅礦外圍遠(yuǎn)接觸帶中金的富集提供了一個(gè)合理的解釋(Rowins, 2000)。
在斑巖型銅礦中,金與銅的硫化物,如斑銅礦、黃銅礦在高溫鉀質(zhì)蝕變帶同時(shí)沉淀下來(lái),導(dǎo)致含銅硫化物成為主要的載金礦物 (Cygan and Candela, 1995; Simonetal., 2000; Kesleretal., 2002)。隨著熱液系統(tǒng)的演化,流體化學(xué)條件及蝕變礦物的變化,形成了新的蝕變帶與早期蝕變帶疊加(Sillitoe,1994;Seedorffetal., 2005)。研究表明這一過(guò)程使金重新活化、富集,而早期巖漿侵位活動(dòng)使得圍巖形成大規(guī)模、低品位的金礦化(Gammons and Williams-Jones, 1997; Kesleretal., 2002)。從地層中的黃鐵礦的PyⅣ、微量元素特征我們可以發(fā)現(xiàn),PyⅣ的Au、As略低于PyⅤ,而Se、Sb含量及Co/Ni值高于PyⅤ,認(rèn)為其形成的溫度略高于PyⅤ,推測(cè)PyⅣ可能為銅廠(chǎng)斑巖體侵位時(shí)形成的低品位的金礦化;后期細(xì)晶正長(zhǎng)巖的侵入使金重新活化富集,形成Au含量最高的PyⅤ。PyⅢ中Au、As的含量高于PyⅣ,則暗示了金可能來(lái)自巖漿。
由黃鐵礦元素的相關(guān)性圖解(圖8)中可以看出:Cu、Pb、Zn、Ag、Au、As等元素的含量隨Co/Ni比值降低而增加,表現(xiàn)出一定的負(fù)相關(guān)性。由于巖漿熱液系統(tǒng)的逐步演化,形成了PyⅠ、PyⅡ、PyⅢ、PyⅣ、PyⅤ等具不同微量元素特征的黃鐵礦。綜上所述,銅廠(chǎng)銅鉬金礦、長(zhǎng)安沖銅鉬金礦和長(zhǎng)安金礦應(yīng)為同一巖漿熱液系統(tǒng)作用的結(jié)果。長(zhǎng)安金礦應(yīng)為與富堿斑巖有關(guān)的熱液礦床。
圖8 長(zhǎng)安金礦床黃鐵礦的部分微量元素相關(guān)性圖解Fig.8 Correlation of selected trace elements in pyrite from Chang’an gold deposit
哀牢山成礦帶構(gòu)造上屬于適應(yīng)和調(diào)整印度-歐亞大陸強(qiáng)烈的碰撞和變形的過(guò)渡帶,也是中國(guó)重要的斑巖Cu-Au成礦帶。新生代以來(lái),印度-歐亞大陸發(fā)生碰撞,使得該地區(qū)先后經(jīng)歷了板塊匯聚(65~41Ma),構(gòu)造轉(zhuǎn)換(40~26Ma)、地殼伸展(<25Ma)三個(gè)階段(鄧軍等,2010b)。從時(shí)間上看,富堿斑巖應(yīng)該是形成于區(qū)域構(gòu)造動(dòng)力體制的轉(zhuǎn)換階段。此時(shí)板塊匯聚速率迅速降低,運(yùn)動(dòng)方向發(fā)生顯著變化,應(yīng)力的相對(duì)松弛導(dǎo)致富堿斑巖及剪切走滑斷裂系統(tǒng)的大量發(fā)育,為成礦流體活動(dòng)提供了通道(楊立強(qiáng)等,2010)。揚(yáng)子板塊與印支板塊邊界之間的哀牢山-紅河斷裂的切割深度可能深達(dá)巖石圈地幔,富Au、Cu等成礦物質(zhì)的地幔流體受構(gòu)造活動(dòng)的激發(fā),并沿深大斷裂上升至巖漿源區(qū),使源區(qū)巖石部分熔融形成了組分復(fù)雜的富堿巖漿流體,地幔流體與巖漿源區(qū)通過(guò)水-巖相互作用,汲取了巖漿源區(qū)內(nèi)的成礦物質(zhì),并隨巖漿一起演化上升(鄧軍等,2010a)。流體上升至淺部逐漸冷卻后,發(fā)生了氣液相分離,當(dāng)流體冷卻到400℃時(shí),銅達(dá)到過(guò)飽和狀態(tài),且SO2和H2S的不均衡,導(dǎo)致了硫化物的沉淀(Williams-Jones and Heinrich, 2005);盡管金、銀等金屬礦物沒(méi)有在熱液中達(dá)到飽和狀態(tài),但有可能和黃銅礦同時(shí)沉淀(Gammons and Williams-Jones, 1997; Simonetal., 2000; Kesleretal., 2002);形成了銅廠(chǎng)、長(zhǎng)安沖銅鉬金礦床,并于圍巖中的裂隙或?qū)娱g破碎帶中形成了早期低品位的金礦化。富堿巖漿流體演化分異形成的細(xì)晶正長(zhǎng)巖隨后侵位,成礦熱液與變質(zhì)流體混合,形成富H2S流體,金在其中可以溶解度較高的硫氫配合物形式存在(Gammons and Williams Jones, 1997)。在熱源的驅(qū)動(dòng)下,成礦流體與在圍巖的裂隙中和層間破碎帶中循環(huán),萃取Au等成礦物質(zhì)。使得早期沉淀的Au再次的活化、富集,并隨著流體運(yùn)移。在溫度、壓力的下降和水巖反應(yīng)等因素的作用下,成礦流體中的Au再次在裂隙及層間破碎帶中沉淀,并富集形成了長(zhǎng)安金礦。
根據(jù)以上地質(zhì)現(xiàn)象及數(shù)據(jù)分析,認(rèn)為長(zhǎng)安金礦、銅廠(chǎng)銅鉬金礦、長(zhǎng)安沖銅鉬金礦成巖與成礦作用是一個(gè)連續(xù)的巖漿熱液過(guò)程,受同一地質(zhì)事件制約,長(zhǎng)安金礦為銅廠(chǎng)斑巖體外圍的淺成低溫?zé)嵋盒徒鸬V。這一成礦機(jī)制與哀牢山金礦帶中的金多金屬礦床類(lèi)似(和文言等, 2012; 熊德信等, 2007),代表了哀牢山富堿斑巖金多金屬礦床的成礦特點(diǎn)。
(1)通過(guò)對(duì)長(zhǎng)安金礦床中與其成因及礦體密切共生的脈巖鋯石的LA-ICP-MS U-Pb測(cè)年,獲得了細(xì)晶正長(zhǎng)巖的成巖年齡為32.5±0.1Ma,正長(zhǎng)斑巖的成巖年齡為33.0±0.1Ma,成巖時(shí)代與哀牢山的新生代富堿斑巖金多金屬礦床的成巖成礦高峰期一致(34±2Ma),是碰撞造山走滑構(gòu)造系統(tǒng)深部殼幔相互作用的產(chǎn)物。
(2)通過(guò)對(duì)長(zhǎng)安金礦床、銅廠(chǎng)銅鉬金礦床、長(zhǎng)安沖銅鉬金礦床中黃鐵礦的LA-ICP-MS微量元素原位組成測(cè)定,黃鐵礦中成礦元素隨Co/Ni比值的下降而上升,其中金的含量為PyⅠ、PyⅡ< PyⅣ< PyⅢ< PyⅤ,可能主要來(lái)源于富堿巖漿流體,喜山期大規(guī)模的富堿巖漿上侵不僅為含礦流體的上升提供了動(dòng)力和熱能,而且還是成礦物質(zhì)和成礦流體的主要來(lái)源,這可能是本區(qū)得以形成金礦床的重要原因之一。
致謝野外工作得到了云南黃金礦業(yè)集團(tuán)股份有限公司長(zhǎng)安項(xiàng)目部的支持與幫助;鋯石測(cè)年得到了中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所激光多接收等離子質(zhì)譜實(shí)驗(yàn)室的幫助;陳懋弘副研究員和葉會(huì)壽研究員對(duì)本文提出的寶貴的修改意見(jiàn);在此一并表示真誠(chéng)的感謝。
Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chemical Geology,192: 59-79
Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3): 353-374
Chen GY, Sun DS, Yin HAetal. 1987. Genetic Mineralogy and Prospecting of Gold Deposits in Jiaodong. Chongqing: Chongqing Publishing House, 1-470 (in Chinese)
Chen Y, Liu JL, Tran MD, Li YC and Bing MM. 2010. Regional metallogenesis of the Chang’an gold ore deposit in western Yunnan: Evidences from fluid inclusions and stable isotopes. Acta Geologica Sinica, 84(6): 1401-1414
Cook NJ, Ciobanu CL and Mao JW. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121
Crofu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-495
Cygan GL and Candela PA. 1995. Preliminary study of gold partitioning among pyrrhotite, pyrite, magnetite, and chalcopyrite in the gold-saturated chloride solutions at 600~700℃, 140mpa (1,400bars). Mineralogical Association of Canada Short Course, 23: 129-137
Deng J, Wang QF, Yang LQ, Wang YR, Gong QJ and Liu H. 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105: 95-105
Deng J, Hou ZQ, Mo XX, Yang LQ, Wang QF and Wang CM. 2010a. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37-42(in Chinese with English abstract)
Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ and Wang CM. 2010b. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrologica Sinica, 26(6): 1633-1645(in Chinese with English abstract)
Duan C, Li YH, Yuan SD, Hu MY, Zhao LH, Chen XD, Zhang C and Liu JL. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257 (in Chinese with English abstract)
Gammons CH and Williams-Jones AE. 1997. Hydrothermal geochemistry of electrum: Thermodynamic constraints. Economic Geology, 90(2): 420-432
Ge LS, Deng J, Guo XD, Zou YL and Liu YC. 2009. Deep-seated structure and metallogenic dynamics of the Ailaoshan polymetallic mineralization concentration area, Yunnan Province, China. Science in China (Series D), 52(10): 1624-1640
Gregory MJ, Lang JR, Gilbert S and Hoal KO. 2013. Geometallurgy of the pebble porphyry copper-gold-molybdenum deposit, Alaska: Implications for gold distribution and paragenesis. Economic Geology, 108(3): 463-482
Guo CY, Gao BF, Liu XF and Zhang RZ. 2009. Characteristics and their geological significance of rare earth elements in Chang’an gold deposit, Yunnan Province. Gold, 30(1): 7-11(in Chinese with English abstract)
He WY, Yu XH, Mo XX, He ZH, Li Y, Huang XK and Su GS. 2012. Genetic types and the relationship between alkali-rich intrusion and mineralization of Beiya gold-polymetallic ore field, western Yunnan Province, China. Acta Petrologica Sinica, 28(5): 1401-1412 (in Chinese with English abstract)
He ZH, Wang Y, Mo XX, Zeng PS, Yu XH and Liu HL. 2008. Sources of ore-forming materials in the Chang’an gold deposit, Yunnan Province: Evidence from the contents of ore-forming elements in ore, strata and magma from ore district. Journal of East China Institute of Technology (Natural Science Edition), 31(3): 207-212 (in Chinese with English abstract)
Heinrich CA. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39(8): 864-889
Henkelman CA. 2004. Pyrite geochemistry across the Betze-post deposit, Nothern Carlin Trend, Necada. Master Degree Thesis. Las Vegas: University of Nevada, 65-86
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract)
Hu MY, He HL, Zhan XC, Fan XT, Wang G and Jia ZR. 2008. Matrix normalization for in-suit multi-element quantitative analysis of zircon in Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 36(7): 947-983(in Chinese with English abstract)
Huang B, Liang HY, Mo JH and Xie YW. 2009. Zircon LA-ICP-MS U-Pb age of the Jinping-Tongchang porphyry associated with Cu-Mo mineralization and its geological implication. Geotectonica et Metallogenia, 33(4): 598-602(in Chinese with English abstract)
Jugo PJ, Candela PA and Piccoli PM. 1999. Magmatic sulfides and Au: Cu ratios in porphyry deposits: An experimrntal study of copper and gold partitioning at 850℃, 100MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos, 46(4): 573-589
Kesler SE, Chryssoulis SL and Simon G. 2002. Gold in porphyry copper deposits: Its abundance and fate. Ore Geology Reviews, 21(1-2): 103-124
Koglin N, Frimmel HE, Minter WEL and Br?tz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3): 259-280
Коробейников АФ, Пщеничкин АЯ and Xu XM. 1986. Geochemical characteristics of pyrite in gold deposits. Global Geology, 3: 51-60 (in Chinese)
Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B and Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635-668
Li DM, Cao ZM, Tan GJ, He SX, Li BH, Wen CQ and Xu ZM. 1998. Gold Deposits in Ailaoshan Ophiolitic Mélange Zone. Beijing: Geological Publishing House, 1-137 (in Chinese with English abstract)
Li SH, Zhang J, Deng J, Wang H, Liu JT and Zhao K. 2011. The characteristics of ore-forming fluid and genetic type of the Chang’an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrologica Sinica, 27(12): 3777-3786(in Chinese with English abstract)
Li Y, Mo XX, Yu XH, Huang XK and He WY. 2011. Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan Fault Zone and geological significance. Geoscience, 25(2): 189-200(in Chinese with English abstract)
Ludwig KR. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special publication, 4:1-71
Lu FX and Sang LK. 2002. Petrology. Beijing. Geological Publishing House, 87-89 (in Chinese)
Mao JW, Li XF, Li HM, Qu XM, Zhang CQ, Xue CJ, Wang ZL, Yu JJ, Zhang ZH, Feng CY and Wang RT. 2005. Types and characteristics of endogenetic metallic deposits in organic belts in China and their metallogenic processes. Acta Geologica Sinica, 79(3): 342-372 (in Chinese with English abstract)
Mao JW, Pirajno F, Lehmann B, Mao CL and Berzina A. 2013. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79(B5): 576-584
Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918
Muntean JL, Cline JS, Simon AC and Longo AA. 2011. Magmatic-ydrothermal origin of Nevada’s Carlin-type gold deposits. Nature Geoscience, 4(2): 122-127
Nadoll P and Koening AE. 2011. LA-ICP-MS of magnetite: Methods and reference materials. Journal of Analytical Atomic Spectrometry, 26(9): 1872-1877
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551-578
Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons, 1-352
Rombach CS and Newberry RJ. 2001. Shotgun deposit: Granite porphyry-hosted gold-arsenic mineralization in southwestern Alaska, USA. Mineralium Deposita, 36(6): 607-621
Rowins SM. 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491-494
Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J and Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191-203
Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100thAnniversary Volume: 251-298
Sheng JF, Li Y and Fan SY. 1999. A study of minor elements in minerals from polymetallic deposits in the central part of the Da Hinggan Mountains. Mineral Deposits, 18(2): 153-160(in Chinese with English abstract)
Sillitoe RH. 1994. Erosion and collapse of volcanoes: Causes of telescoping in intrusion-centered ore deposits. Geology, 22(10): 945-948
Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373-388
Simon G, Kesler SE, Essene EJ and Chryssoulis SL. 2000. Gold in porphyry copper deposits: Experimental determination of the distribution of gold in the Cu-Fe-S-Au system at 400 to 700℃. Economic Geology, 95(2): 259-270
Tran MD, Liu JL, Nguyen QL, Chen Y, Tang Y, Song ZJ, Zhang ZZ and Zhao ZD. 2013. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region, southeastern Ailao Shan-Red River shear zone, southwestern China-northwestern Vietnam. Journal of Asian Earth Sciences, 79: 858-872
Wang DH, Qu WJ, Li ZW, Ying HL and Chen YC. 2005. Mineralization episode of porphyry copper deposit in the Jinshajiang-Red River mineralization belt: Re-Os dating. Science in China (Series D), 48(2): 192-198
Wang JH, Yin A, Harrison TMetal. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet. Sci. Lett., 88: 123-133
Wang Y. 2008. Geological characteristics and metallogenic model of Chang’an gold deposit, Yunan. Post-Doctor Research Report. Beijing: Chinese Academy of Geological Sciences, 1-78(in Chinese with English summary)
Williams-Jones AE and Heinrich CA. 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100(7): 1287-1312
Xiong DX, Sun XM, Zhai W, Shi GY and Wang SW. 2007. CO2-rich fluid inclusions in auriferous quartz veins from the Daping ductile shear zone hosted gold deposit in Yunnan Province, China, and its implications for gold mineralization. Acta Geologica Sinica, 81(5): 640-653 (in Chinese with English abstract)
Xu LL, Bi XW and Tang YY. 2010. The southern of Jinshajiang-Honghe metallogenic belt porphyry copper-molybdenum ore deposits Chronological characteristics and geological significance. Mineral Deposits, 29(Suppl.): 525-526 (in Chinese)
Yang LQ, Deng J and Chen Y. 2006. Numerical modelling of the crust/mantle deformation in the Tibetan Plateau. Earth Science Frontiers, 13(5): 360-373 (in Chinese with English abstract)
Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesisand metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739(in Chinese with English abstract)
Ying HL, Liu HL, Yang XZ and Li ZW. 2006. Geology and origin of Tongvhang gold deposit in Yunnan Province. Geology and Resources, 15(4): 265-271 (in Chinese with English abstract)
Yuan HL, Gao S, Liu XM, Li HM, Gunther D and Wu FY. 2004. Precise U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand. Geoanal, Res., 28: 353-370
Zeng PS, Hou ZQ, Gao YF and Du AD. 2006. The himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite. Geological Review, 52(1): 72-84(in Chinese with English abstract)
Zhang B, Zhang JJ, Zhong DLetal. 2009. Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Science in China (Series D), 52(5): 602-618
Zhang J, Deng J, Li SH, Yan N, Yang LQ, Ma N, Wang QF and Gong QJ. 2010. Petrological characteristics of magmatites and their relationship with gold mineralization in the Chang’an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrologica Sinica, 26(6): 1740-1750(in Chinese with English abstract)
Zhang YQ and Xie YW. 1997. Geocheornology of Ailaoshan-jinshajiang alkali-rich intrusive rocks and their Sr and Nd isotopic characteristics. Science in China (Series D), 27(4): 289-293 (in Chinese)
Zhou TF, Zhang LJ, Yuan F, Fan Y and Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2): 306-319 (in Chinese with English abstract)
Zhu YF and An F. 2010. Geochemistry of hydrothermal mineralization: Taking gold deposit as an example. Earth Science Frontiers, 17(2): 45-52(in Chinesewith English abstract)
附中文參考文獻(xiàn)
Коробейников АФ, Пщеничкин АЯ, 王春生. 1986. 金礦床中黃鐵礦的地球化學(xué)特征. 世界地質(zhì), 3: 51-60
陳光遠(yuǎn), 孫岱生, 殷輝安等. 1987. 膠東金礦成因礦物學(xué)與找礦. 重慶: 重慶出版社, 1-470
鄧軍,侯增謙,莫宣學(xué),楊立強(qiáng),王慶飛,王長(zhǎng)明.2010a.三江特提斯復(fù)合造山與成礦作用.礦床地質(zhì),29(1): 37-42
鄧軍, 楊立強(qiáng), 葛良勝, 袁士松, 王慶飛, 張靜, 龔慶杰, 王長(zhǎng)明. 2010b. 滇西富堿斑巖型金成礦系統(tǒng)特征與變化保存. 巖石學(xué)報(bào), 26(6): 1633-1645
段超, 李延河, 袁順達(dá), 胡明月, 趙令浩, 陳小丹, 張成, 劉佳林. 2012. 寧蕪礦集區(qū)凹山鐵礦床磁鐵礦元素地球化學(xué)特征及其對(duì)成礦作用的制約. 巖石學(xué)報(bào), 28(1): 243-257
郭春影, 高幫飛, 劉學(xué)飛, 張瑞忠. 2009. 云南金平長(zhǎng)安金礦床稀土元素特征及其地質(zhì)意義. 黃金, 30(1): 7-11
和中華, 王勇, 莫宣學(xué), 曾普勝, 喻學(xué)惠, 劉和林. 2008. 云南金平長(zhǎng)安金礦成礦物質(zhì)來(lái)源——來(lái)自礦石及地層、巖漿巖的成礦元素含量證據(jù). 東華理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 31(3): 207-212
和文言, 喻學(xué)惠, 莫宣學(xué), 和中華, 李勇, 黃行凱, 蘇綱生. 2012. 滇西北衙多金屬礦田礦床成因類(lèi)型及其與富堿斑巖關(guān)系初探. 巖石學(xué)報(bào), 28(5): 1401-1414
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術(shù). 礦床地質(zhì), 28(4): 481-492.
胡明月, 何紅蓼, 詹秀春, 樊興濤, 王廣, 賈澤榮. 2008. 基體歸一定量技術(shù)在激光燒蝕等離子體質(zhì)譜法鋯石原位多元素分析中的應(yīng)用. 分析化學(xué), 36(7): 947-983
黃波, 梁華英, 莫濟(jì)海, 謝應(yīng)雯. 2009. 金平銅廠(chǎng)銅鉬礦床賦礦巖體鋯石LA-ICP-MS U-Pb年齡及意義. 大地構(gòu)造與成礦學(xué), 33(4): 598-602
李定謀, 曹志敏, 覃功炯, 何叔欣, 李保華, 溫春齊, 徐則民. 1998. 哀牢山蛇綠混雜巖帶金礦床. 北京: 地質(zhì)出版社, 1-137
李士輝, 張靜, 鄧軍, 王歡, 劉江濤, 趙凱. 2011. 哀牢山南段長(zhǎng)安金礦床成礦流體特征及成因類(lèi)型探討. 巖石學(xué)報(bào), 27(12): 3777-3786
李勇, 莫宣學(xué), 喻學(xué)惠, 黃行凱, 和文言. 2011. 金沙江-哀牢山斷裂帶幾個(gè)富堿斑巖體的鋯石U-Pb定年及地質(zhì)意義. 現(xiàn)代地質(zhì), 25(2): 189-200
路鳳香, 桑隆康. 2002. 巖石學(xué). 北京: 地質(zhì)出版社, 87-89
毛景文,李曉峰,李厚民,曲曉明,張長(zhǎng)青, 薛春紀(jì),王志良, 余金杰, 張作衡, 豐成友, 王瑞廷.2005.中國(guó)造山帶內(nèi)生金屬礦床類(lèi)型、特點(diǎn)和成礦過(guò)程探討.地質(zhì)學(xué)報(bào),79(3):342-372
盛繼福, 李巖, 范書(shū)義. 1999. 大興安嶺中段銅多金屬礦床礦物微量元素研究. 礦床地質(zhì), 18(2): 153-160
王登紅, 屈文俊, 李志偉, 應(yīng)漢龍, 陳毓川. 2004. 金沙江-紅河成礦帶斑巖銅鉬礦的成礦集中期: Re-Os同位素定年. 中國(guó)科學(xué)(D輯), 34(4): 345-349
王勇. 2008. 云南省金平縣長(zhǎng)安金礦地質(zhì)特征及成礦模式. 博士后工作報(bào)告. 北京: 中國(guó)地質(zhì)科學(xué)院, 1-78
熊德信, 孫曉明, 翟偉, 石貴勇, 王生偉. 2007. 云南大坪韌性剪切帶型金礦富CO2流體包裹體及其成礦意義. 地質(zhì)學(xué)報(bào), 81(5): 640-653
胥磊落, 畢獻(xiàn)武, 唐永永. 2010. 金沙江-紅河成礦帶南段斑巖銅鉬礦成礦年代學(xué)特征及地質(zhì)意義. 礦床地質(zhì), 29(增刊): 525-526
楊立強(qiáng),鄧軍,陳赟.2006.青藏高原殼幔形變數(shù)值模擬研究.地學(xué)前緣,13(5): 360-373
楊立強(qiáng), 劉江濤, 張闖, 王慶飛, 葛良勝, 王中亮, 張靜, 龔慶. 2010. 哀牢山造山型金成礦系統(tǒng): 復(fù)合造山構(gòu)造演化與成礦作用初探. 巖石學(xué)報(bào), 26(6): 1723-1739
應(yīng)漢龍, 劉和林, 楊許中, 李志偉. 2006. 云南金平銅廠(chǎng)金礦床地質(zhì)特征和成礦物質(zhì)來(lái)源. 地質(zhì)與資源, 15(4): 265-271
曾普勝, 侯增謙, 高永峰, 杜安道. 2006. 印度-亞洲碰撞帶東段喜馬拉雅期銅-鉬-金礦床Re-Os年齡及成礦作用. 地質(zhì)論評(píng), 52(1): 72-84
張靜, 鄧軍, 李士輝, 燕旎, 楊立強(qiáng), 馬楠, 王慶飛, 龔慶杰. 2010. 哀牢山南段長(zhǎng)安金礦床巖漿巖的巖石學(xué)特征及其與成礦關(guān)系探討. 巖石學(xué)報(bào), 26(6): 1740-1750
張玉泉, 謝應(yīng)雯. 1997. 哀牢山-金沙江富堿侵入巖年代學(xué)和Nd-Sr同位素特征. 中國(guó)科學(xué)(D輯), 27: 289-293
周濤發(fā), 張樂(lè)俊, 袁峰, 范裕, Cook DR. 2010. 安徽銅陵新橋Cu-Au-S礦床黃鐵礦微量元素LA-ICP-MS原位測(cè)定及其對(duì)礦床成因的制約. 地學(xué)前緣, 17(2): 306-319
朱永峰, 安芳. 2010. 熱液成礦作用地球化學(xué): 以金礦為例. 地學(xué)前緣, 17(2): 45-52