劉軍 武廣 李鐵剛 王國瑞 吳昊LIU Jun, WU Guang*, LI TieGang, WANG GuoRui and WU Hao
1. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,國土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 1000372. 中國地質(zhì)大學(xué),北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institue of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. China University of Geosciences, Beijing 100083, China2013-08-20 收稿, 2013-11-30 改回.
中亞造山帶是全球顯生宙陸殼增生與改造最顯著的大陸造山帶(Jahnetal., 2000; Wuetal., 2000; Badarchetal., 2002; Xiaoetal., 2003; 何國琦和朱永峰,2006),同時(shí)也是世界上最重要的銅、金、鉬、鉛鋅及稀有稀土金屬礦產(chǎn)地之一(洪大衛(wèi)等,2003;Chenetal., 2007;楊富全等,2007;周振華等,2010; Zhouetal., 2012; 劉軍等,2013a,b,c;毛景文等,2013),是研究造山帶大陸生長、構(gòu)造演化及成礦作用過程的天然場(chǎng)所。目前,中亞造山帶最終碰撞的時(shí)間、地點(diǎn)及方式等問題仍存在爭(zhēng)議,在縫合帶位置上,存在索倫山-林西地區(qū)(Wang and Liu, 1986)、二連-賀根山地區(qū)(曹從周等,1986;eng?retal., 1993)和西拉木倫-長春-延吉一線(Wuetal., 2002)等觀點(diǎn),在縫合時(shí)間上,大多數(shù)學(xué)者認(rèn)為我國北山或包頭以西地區(qū)的縫合時(shí)代為石炭紀(jì)末,東部西拉木倫河一帶的縫合時(shí)代為二疊紀(jì)末(毛景文等,2002a,b,2005;高俊等,2006;Li, 2006;李錦軼等,2006,2013),但也有部分學(xué)者主張縫合時(shí)間為三疊紀(jì)末(Xiaoetal., 2008)。區(qū)域上發(fā)育不同時(shí)代(早古生代、晚古生代、早中生代)、不同巖石類型花崗巖類(與俯沖、碰撞有關(guān)的花崗巖類,與造山后伸展有關(guān)的A型花崗巖),已經(jīng)構(gòu)成我國重要的成礦帶(童英等,2010)。
目前,研究者更多地關(guān)注于中亞造山帶內(nèi)部的巖漿-熱液活動(dòng)及相關(guān)成礦作用(毛景文等,2002a,b,c;Yangetal., 2006, 2009;Zhangetal., 2008, 2010; Liuetal., 2012;張作衡等,2012;劉軍等,2010,2013a,b,c),但對(duì)中亞造山帶與華北克拉通結(jié)合部巖漿巖的侵位時(shí)代、地球化學(xué)屬性及源區(qū)性質(zhì)缺乏研究。內(nèi)蒙古鑲黃旗哈達(dá)廟地區(qū)中酸性侵入巖位于華北板塊北緣的溫都爾廟俯沖-增生雜巖帶內(nèi),區(qū)域內(nèi)構(gòu)造巖漿活動(dòng)頻繁,其中夾雜著眾多前寒武紀(jì)地塊、高壓變質(zhì)巖和條帶狀蛇綠巖帶,正確認(rèn)識(shí)該區(qū)域內(nèi)各期巖漿-熱液活動(dòng)的時(shí)空關(guān)系及其成因?qū)μ接懝艁喼扪笤谌A北克拉通北側(cè)的俯沖過程及其閉合時(shí)限具有重要意義。本課題組對(duì)哈達(dá)廟地區(qū)進(jìn)行了1:1萬區(qū)域地質(zhì)填圖工作,掌握了本區(qū)詳細(xì)的第一手基礎(chǔ)地質(zhì)資料。本文針對(duì)哈達(dá)廟地區(qū)的花崗斑巖和閃長巖開展了巖石學(xué)、巖石地球化學(xué)、同位素地球化學(xué)和SHRIMP鋯石U-Pb定年的工作,探討了中酸性侵入巖的地球化學(xué)性質(zhì)、成因及其形成的地球動(dòng)力學(xué)背景。
哈達(dá)廟地區(qū)位于內(nèi)蒙古中部鑲黃旗西北約20km處,大地構(gòu)造位置位于溫都爾廟俯沖-增生雜巖帶內(nèi)(圖1)。區(qū)內(nèi)出露地層較簡(jiǎn)單,主要由第四系和下二疊統(tǒng)包特格組構(gòu)成。第四系主要為砂礫、粉砂和風(fēng)成砂,分布于研究區(qū)的東部、東北部及區(qū)內(nèi)的3條沖溝內(nèi)。下二疊統(tǒng)包特格組主要為中細(xì)粒長石石英砂巖,夾少量的粉砂巖和泥巖,局部見含礫砂巖,主要分布在研究區(qū)的西南部(圖2a)。區(qū)內(nèi)巖漿巖分布廣泛,主要有閃長巖、花崗閃長巖、二長花崗巖、花崗斑巖及少量隱爆火山角礫巖脈和流紋巖脈(圖2a, b)。閃長巖在區(qū)內(nèi)大面積分布,侵入下二疊統(tǒng)包特格組。二長花崗巖和花崗閃長巖區(qū)內(nèi)少量出露,侵入閃長巖或包特格組中?;◢彴邘r脈分布較廣泛,呈近東西向侵位到閃長巖及包特格組內(nèi),延長3km左右,近直立狀產(chǎn)出,寬約10~30m,最寬處可達(dá)60m。隱爆角礫巖脈分布于西北部,主要由33條規(guī)模不等的隱爆火山角礫巖脈構(gòu)成。流紋巖脈多沿近東西向構(gòu)造斷裂分布,成群出現(xiàn)(聶鳳軍和張洪濤,1989)。本區(qū)的斷裂構(gòu)造主要受研究區(qū)南部的赤峰-白云鄂博斷裂控制,晚期遭到中生代北東向斷裂及褶皺構(gòu)造活動(dòng)的影響(聶鳳軍等,1989)。
圖1 內(nèi)蒙古中部及其鄰區(qū)區(qū)域地質(zhì)圖(底圖據(jù)魯穎淮等,2009)Fig.1 Geological map of central Inner-Mongolia and adjacent area (after Lu et al., 2009)
圖2 哈達(dá)廟地區(qū)地質(zhì)簡(jiǎn)圖(a)和采樣剖面圖(b)Fig.2 Sketch geological map (a) and sampling profile (b) of the Hadamiao area
花崗斑巖 呈斑狀結(jié)構(gòu),斑晶主要為石英(7%~9%)、鉀長石(3%~5%)和斜長石(<1%)。石英:他形粒狀,聚合晶體出現(xiàn),大小在0.5~1.0mm,有的與鉀長石組成聚合斑晶。鉀長石:自形、半自形乃至他形均見,見卡鈉復(fù)合雙晶,有的與先晶出鉀長石構(gòu)成聚斑晶,大小在0.4~1.0mm。斜長石:半自形,板狀,有聚片雙晶,見絹云母化,大小在0.4~0.6mm。基質(zhì)呈細(xì)晶結(jié)構(gòu),由微細(xì)晶粒的長石、石英他形晶組成,大小在0.04~0.10mm。巖石整體有輕微絹云母化。
閃長巖 半自形粒狀結(jié)構(gòu),主要由斜長石(65%~75%)、角閃石(15%~20%)、黑云母(5%~8%)及石英(<3%)組成。斜長石:半自形板狀,發(fā)育聚片雙晶,雙晶紋較寬,為中長石。斜長石晶體破碎,并存在不同程度的絹云母化,大小在0.9~2.7mm。角閃石:半自形柱狀、粒狀,多色性微弱,有解理,但解理紋較細(xì),聚片雙晶發(fā)育,大小在0.6~1.9mm。黑云母:片狀,多色性不明顯,解理發(fā)育,干涉色因綠泥石化和綠簾石化而顯異常藍(lán)色,大小在0.3~1.5mm。石英:他形粒狀,表面干凈,有裂紋,大小在0.3~0.8mm。
在綜合分析區(qū)域地質(zhì)背景及野外地質(zhì)調(diào)查基礎(chǔ)上,對(duì)閃長巖及花崗斑巖露頭進(jìn)行了采樣(圖2a,b),采集年代學(xué)測(cè)試樣品2件、巖石地球化學(xué)測(cè)試樣品11件。鋯石分選工作在河北省區(qū)域地質(zhì)調(diào)查隊(duì)完成,通過常規(guī)的重選和磁選進(jìn)行初選,然后在雙目鏡下挑出晶形和透明度較好的鋯石,將鋯石置于環(huán)氧樹脂中,磨制約一半大小,使鋯石內(nèi)部暴露,用于陰極發(fā)光及隨后的SHRIMP U-Pb分析,鋯石陰極發(fā)光在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所電子探針研究室完成,鋯石SHRIMP U-Pb分析在北京離子探針中心SHRIMPⅡ上完成,詳細(xì)分析流程和原理參考Williams (1998)、劉敦一等(2003)和簡(jiǎn)平等(2003)的文章,一次離子流強(qiáng)度約7.5nA,加速電壓約10kV,樣品靶上的離子束斑直徑約25~30μm。應(yīng)用澳大利亞國家地調(diào)局標(biāo)準(zhǔn)鋯石TEM(417Ma)進(jìn)行元素間的分餾校正。應(yīng)用RSES(澳大利亞國立大學(xué)地學(xué)院)標(biāo)準(zhǔn)鋯石SL13(年齡572Ma;U含量238×10-6)標(biāo)定所測(cè)鋯石的U、Th和Pb含量。數(shù)據(jù)處理采用國際標(biāo)準(zhǔn)程序ISOPLOT(ver 3.0)。表1中所列單次測(cè)量的數(shù)據(jù)點(diǎn)的誤差均為1σ。采用206Pb/238U年齡,其加權(quán)平均值具95%的置信度。
巖石主量、稀土和微量元素測(cè)試由國土資源部廊坊地球物理地球化學(xué)勘查研究所完成。其中全巖主量元素采用XRF分析,稀土和微量元素采用ICP-MS分析。主量元素分析精度優(yōu)于3%,稀土和微量元素分析精度優(yōu)于5%。Sr、Nd同位素分析在中國科學(xué)院廣州地球化學(xué)研究所超凈實(shí)驗(yàn)室進(jìn)行前處理。Sr和REE分離采用AG50-8X離子交換柱,分別收集Sr和REE解析液;REE的分離采用HDEHP交換柱,收集Nd解析液,測(cè)試工作在北京大學(xué)造山帶實(shí)驗(yàn)室完成,測(cè)試所用實(shí)驗(yàn)儀器為VG Axiom HR-MC-ICP-MS,Sr和Nd同位素比值用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219作質(zhì)量分餾校正。實(shí)驗(yàn)室對(duì)Sr標(biāo)樣NIST SRM 987測(cè)定結(jié)果為87Sr/86Sr=0.710255±15(2σ),對(duì)Nd標(biāo)樣Shin-Etsu JNdi-1測(cè)定結(jié)果為143Nd/144Nd=0.512121±9(2σ)。87Rb/86Sr和143Nd/144Nd的測(cè)試精度優(yōu)于2%和0.5%。
花崗斑巖(HK3):鋯石為無色到淺褐色,玻璃光澤,透明-半透明,無包體,呈短柱狀-長柱狀,大小150~300μm,長寬比1.2:1~3:1。從陰極發(fā)光圖像上看,所有鋯石均發(fā)育韻律環(huán)帶和明暗相間的條帶結(jié)構(gòu),顯示了巖漿成因鋯石的特征(圖3a)。鋯石U-Pb測(cè)年結(jié)果見表1,11個(gè)點(diǎn)的測(cè)試結(jié)果顯示鋯石的Th/U比值介于0.73~1.24之間,均大于0.1,屬于典型的巖漿成因鋯石。在鋯石U-Pb年齡諧和圖中(圖4a),所有分析數(shù)據(jù)都分布在諧和線上及附近,11個(gè)點(diǎn)的年齡數(shù)據(jù)在259.1~277.8Ma之間,206Pb/238U年齡的加權(quán)平均值為271±3Ma,MSWD=1.1。
圖3 哈達(dá)廟地區(qū)花崗斑巖和閃長巖中鋯石的形態(tài)及分析點(diǎn)位圖Fig.3 Cathodoluminescence (CL) images of zircons from granite porphyry and diorite from the Hadamiao areaCircles in zircon crystals indicate positions of SHRIMP U-Pb analytical sites. 3-1.1: Number of analyzed spot
閃長巖(H30-19):鋯石呈無色到淺褐色,透明-半透明,無包體發(fā)現(xiàn),為短柱狀-長柱狀,大小150~300μm,長寬比1.5:1~3:1。鋯石陰極發(fā)光顯示,鋯石均發(fā)育明暗相間的條帶結(jié)構(gòu)及韻律環(huán)帶結(jié)構(gòu),顯示鋯石為巖漿成因的鋯石(圖3b)。對(duì)該樣品測(cè)定了11個(gè)單顆粒鋯石,顯示鋯石的Th/U比值介于0.71~1.24之間,均大于0.1,為典型的巖漿成因鋯石。從表1中可以看出,11個(gè)點(diǎn)的年齡數(shù)據(jù)比較集中,分布在259.6~275.4Ma之間,206Pb/238U年齡的加權(quán)平均值為267±3Ma,MSWD=1.5(圖4b)。
表1哈達(dá)廟地區(qū)中酸性侵入巖鋯石SHRIMP U-Pb測(cè)試結(jié)果
Table 1 SHRIMP U-Pb isotopic analyses for zircons of intermediate-acidic intrusive rocks from the Hadamiao area
測(cè)點(diǎn)號(hào)206Pbc(%)U(×10-6)Th(×10-6)232Th238U206Pb*(×10-6)206Pb238U年齡(Ma)207Pb*206Pb*±%207Pb*235U±%206Pb*238U±%HK3-1.10.288649231.1031.9270.9±4.60.049462.00.29272.70.042911.7HK3-2.10.11119314751.2844.7274.8±4.70.050201.20.30142.10.043551.7HK3-3.10.436346631.0823.9275.8±4.90.04953.50.2984.00.043711.8HK3-4.10.453352740.8512.3269.6±4.80.05163.20.3043.70.042711.8HK3-5.10.333993610.9314.8272.1±5.60.04974.20.2954.70.043122.1HK3-6.10.203072760.9311.4271.5±5.20.04913.10.2913.70.043022.0HK3-7.10.202582130.859.35265.9±4.90.05012.80.29083.30.042111.9HK3-8.10.453833420.9214.6277.8±4.90.05063.70.3074.10.044031.8HK3-9.10.056576871.0823.2259.1±4.70.051431.60.29082.40.041021.8HK3-10.10.346727311.1225.0272.6±4.70.050701.70.30202.50.043201.8HK3-11.1—1851350.766.78270.6±5.00.05303.20.3133.70.042861.9H30-19-2.10.217518081.1127.6269.3±4.60.04982.20.29282.80.042661.8H30-19-3.10.007527521.0326.6260.0±4.60.052571.50.29832.30.041161.8H30-19-4.10.611831300.736.55261.9±5.00.05065.60.2895.90.041471.9H30-19-5.10.086436191.0023.1263.7±4.60.051971.70.29922.50.041761.8H30-19-6.10.442211920.898.07267.0±5.00.05004.80.2915.10.042291.9H30-19-7.10.007428121.1326.2259.6±4.50.050921.40.28862.30.041101.8H30-19-8.10.137838591.1328.7268.7±4.60.050031.80.29372.50.042571.8H30-19-9.10.414284020.9715.7268.0±4.70.04942.60.28893.20.042451.8H30-19-10.10.1691111281.2833.9273.4±4.70.050701.60.30292.40.043331.8H30-19-11.10.2088710781.2633.3274.9±4.70.050161.60.30132.40.043571.7H30-19-12.10.464935761.2118.6275.4±4.80.04862.90.2933.40.043651.8
注:誤差為1σ;Pbc和Pb*分別為普通鉛和放射成因鉛;年齡和同位素比值均為測(cè)定的204Pb校正
圖4 哈達(dá)廟地區(qū)花崗斑巖和閃長巖鋯石的SHRIMP U-Pb年齡諧和圖Fig.4 Concordia diagrams of SHRIMP U-Pb zircon dating results for the granite porphyry and diorite from the Hadamiao area
圖5 哈達(dá)廟地區(qū)花崗斑巖和閃長巖的QAP分類圖解(a, 據(jù)Streckeisen, 1976)和SiO2-K2O關(guān)系圖解(b, 據(jù)Peccerillo and Taylor, 1976)Fig.5 Diagrams of QAP (a, after Streckeisen, 1976) and K2O-SiO2 (b, after Peccerillo and Taylor, 1976) of granite porphyry and diorite from the Hadamiao area
花崗斑巖和閃長巖的鋯石U-Pb年齡在誤差范圍內(nèi)接近,花崗斑巖的年齡略大于閃長巖的年齡。我們?cè)谝巴庥^察中發(fā)現(xiàn)花崗斑巖侵位于閃長巖中并沿東西向延伸,因此兩類巖體是較短時(shí)間間隔內(nèi)巖漿活動(dòng)的產(chǎn)物,花崗斑巖的形成應(yīng)該略晚于閃長巖。
花崗斑巖的SiO2含量介于74.13%~77.61%,Al2O3含量介于12.40%~14.09%,K2O含量介于2.92%~6.25%,Na2O含量介于1.93%~2.80%,K2O/Na2O介于1.27~3.20,MgO含量介于0.11%~0.87%,Mg#介于22~46,平均值為36,鋁飽和指數(shù)介于1.11~1.92(表2)。在QAP分類圖解(圖5a)中,主要落入花崗巖區(qū)域,在SiO2-K2O圖解(圖5b)中,投影點(diǎn)全部落入高鉀鈣堿性系列區(qū)域?;◢彴邘r的Mg#平均值略低于太古代TTG(奧長花崗巖-英云閃長巖-花崗閃長巖)的平均值(平均值為43,Drummondetal., 1996; Martinetal., 2005),接近實(shí)驗(yàn)熔體的平均值(平均值為40,Martinetal., 2005)。TTG所具有的低Mg#是加厚的地殼底部含水的玄武質(zhì)巖石部分熔融的結(jié)果(Smithies, 2000; Sheppardetal., 2001; Condie, 2005),花崗斑巖的低Mg#、Ni和Cr值特征,暗示其形成可能與地殼深部巖石的部分熔融有關(guān)。
圖6 哈達(dá)廟地區(qū)花崗斑巖和閃長巖稀土元素配分曲線(a、c, 球粒隕石標(biāo)準(zhǔn)化值據(jù)Boynton, 1984)和微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(b、d,原始地幔標(biāo)準(zhǔn)化值據(jù)Taylor and McLennan, 1985)Fig.6 Chondrite-normalized REE patterns (a, c, normalization values after Boynton, 1984) and primitive mantle-normalized trace elements spidergrams (b, d, normalization values after Taylor and McLennan, 1985) of granite porphyry and diorite from the Hadamiao area
閃長巖的SiO2含量介于54.43%~60.45%,Al2O3含量介于15.61%~17.49%,K2O含量介于0.36%~2.68%,Na2O含量介于2.15%~2.66%,K2O/Na2O介于0.17~1.00。閃長巖的MgO含量和Mg#值明顯高于花崗斑巖,其MgO含量介于3.16%~8.56%,Mg#值介于48~69,平均值為58,鋁飽和指數(shù)介于0.71~1.12(表2)。在QAP分類圖解(圖5a)中,投影點(diǎn)落入閃長巖區(qū)域,在SiO2-K2O圖解(圖5b)中,投影點(diǎn)較分散,分布于低鉀系列至高鉀鈣堿性系列的廣泛區(qū)域。
花崗斑巖稀土元素總量介于79.95×10-6~169.7×10-6,(La/Yb)N介于5.24~9.97,巖石以輕稀土元素富集和重稀土元素虧損為特征(表2和圖6a),δEu介于0.39~0.60,顯示銪負(fù)異常。一般認(rèn)為銪負(fù)異常是斜長石分離結(jié)晶作用的表現(xiàn)?;◢彴邘r富集Rb、K、La、Ce和Nd等大離子親石元素及Th、Zr和 Hf等高場(chǎng)強(qiáng)元素,同時(shí)強(qiáng)烈虧損Ta、Nb、Sr、P及Ti,弱虧損Ba(表2和圖6b)。
閃長巖稀土元素總量介于34.45×10-6~89.03×10-6,(La/Yb)N介于1.90~5.59,巖石以輕稀土元素富集和重稀土元素虧損為特征(表2和圖6c),δEu介于0.90~1.11,顯示正異?;蛉踟?fù)異常,這與花崗斑巖明顯的銪負(fù)異常形成鮮明對(duì)比。從閃長巖到花崗斑巖,稀土元素總量增加,銪負(fù)異常越來越明顯,輕重稀土元素分餾程度增大,表明巖漿分異程度越來越高。閃長巖富集Rb、K、Sr和La等大離子親石元素及Zr、Hf等高場(chǎng)強(qiáng)元素,虧損Ba、Ce、Ta、Nb、P和Ti等元素 (表2和圖6d)。
本次選取2件花崗斑巖樣品(HK1、HK3)和3件閃長巖樣品(H4-186、H30-7、H30-19)進(jìn)行Sr、Nd同位素測(cè)試,結(jié)果列于表3。
花崗斑巖ISr介于0.706166~0.707025, 閃長巖ISr介于0.704803~0.706752,均低于現(xiàn)今大陸殼ISr平均值0.719?;◢彴邘r的εNd(t)介于-3.92~-2.88,對(duì)應(yīng)的Nd模式年齡為1150~1189Ma。閃長巖的εNd(t)介于-3.62~1.03,略高于花崗斑巖的εNd(t)值,Nd模式年齡介于898~1322Ma,較花崗斑巖的Nd模式年齡稍老,較中亞造山帶內(nèi)花崗巖類的Nd模式年齡(集中在600~800Ma,個(gè)別為1000Ma,洪大衛(wèi)等,2000;邵濟(jì)安等,2002)偏老。不管是花崗斑巖還是閃長巖,fSm/Nd值均為負(fù)值,變化范圍不大(-0.49~-0.30),表明源區(qū)的稀土元素Sm、Nd分餾不明顯,Nd模式年齡是有效的(Jahnetal., 2000)。
表2哈達(dá)廟地區(qū)中酸性侵入巖主量元素(wt%)、稀土元素及微量元素(×10-6)分析結(jié)果
Table 2 The analyzed data of major (wt%), rare earth and trace (×10-6) elements of intermediate-acidic intrusive rocks from the Hadamiao area
注:A/CNK=Al2O3/(CaO + Na2O + K2O)分子數(shù),Mg#= 100×[Mg2+/(Mg2++ Fe2+)]原子數(shù)
表3哈達(dá)廟地區(qū)中酸性侵入巖Sr-Nd同位素分析結(jié)果及主要參數(shù)
Table 3 The Sr-Nd isotopic determination data and some major parameters of intermediate-acidic intrusive rocks from the Hadamiao area
樣品號(hào)Rb(×10-6)Sr(×10-6)87Rb/86Sr(87Sr/86Sr)sISrεSr(t)Sm(×10-6)H4-18690.61635.200.41300.706372±90.704803±98.764.31H30-743.68329.000.38500.708149±60.706687±635.522.52H30-1956.14285.800.56950.708915±90.706752±936.443.89HK1124.18153.202.35030.716087±90.707025±940.394.73HK3114.8085.803.87940.721124±60.706166±628.183.15樣品號(hào)Nd(×10-6)147Sm/144Nd(143Nd/144Nd)s(143Nd/144Nd)iεNd(t)tDM(Ma)fSm/NdH4-18623.780.109718180.512539±50.512347±51.03898-0.44H30-711.020.138560090.512502±60.512260±6-0.671316-0.30H30-1920.100.117107890.512313±60.512109±6-3.621322-0.40HK128.570.100208640.512266±50.512088±5-3.921189-0.49HK318.270.104500630.512327±50.512142±5-2.881150-0.47
注:εNd=[(143Nd/144Nd)s/(143Nd/144Nd)CHUR-1]×10000,fSm/Nd=(147Sm/144Nd)/(147Sm/144Nd)CHUR-1,tDM=1/λ×ln{1+[(143Nd/144Nd)s-0.51315]/[(147Sm/144Nd)-0.2135]},(143Nd/144Nd)CHUR=0.512638; (147Sm/144Nd)CHUR=0.1967; (143Nd/144Nd)DM=0.51315; (147Sm/144Nd)DM=0.2135
圖7 哈達(dá)廟地區(qū)閃長巖的MgO-SiO2圖解(底圖據(jù)McCarro and Smellie, 1998)Fig.7 MgO vs. SiO2 diagram of diorite of Hadamiao area (after McCarro and Smellie, 1998)
哈達(dá)廟地區(qū)閃長巖與花崗斑巖的稀土和微量元素配分模式相似,暗示兩者具有相似的巖漿源區(qū),可能為同源巖漿不同演化階段的產(chǎn)物。在微量元素蛛網(wǎng)圖上兩者均表現(xiàn)出富集Rb、K等大離子親石元素,虧損Nb、Ta、P、Ti等高場(chǎng)強(qiáng)元素,顯示出俯沖帶巖漿巖的特征(Kelemenetal., 2003),并暗示兩類巖石經(jīng)歷了強(qiáng)烈的結(jié)晶分異作用?;◢彴邘r和閃長巖均富集Zr、Hf,強(qiáng)烈虧損Nb、Ta,表明其源巖可能來自地殼物質(zhì)或曾遭遇地殼物質(zhì)的混染,并受到與大洋板塊俯沖有關(guān)的流體交代作用(La Flècheetal., 1998;孫德有等,2004)。與正常的島弧鈣堿性安山巖相比(Pearce and Peate, 1995),哈達(dá)廟地區(qū)閃長巖具有更高的Mg#、MgO、Cr(30.80×10-6~498.3×10-6)、Ni(20.33×10-6~132.1×10-6)含量,類似于高鎂安山巖(圖7)(Yogodzinskietal., 1995; Tatsumi, 2001)。這種富鎂閃長質(zhì)巖漿的成因仍存在爭(zhēng)議,主要觀點(diǎn)有:(1)受交代的富集地幔部分熔融的產(chǎn)物(Smithies and Champion, 2000;; Zhao and Zhou, 2007);(2)由板片熔體與地幔楔反應(yīng)形成(Smithiesetal., 2007);(3)由拆沉下地殼熔融的熔體與地幔橄欖巖反應(yīng)形成(Gaoetal., 2004);(4)消減沉積物熔融以及隨后的熔體與地幔楔反應(yīng)而成(Tatsumi, 2001)。無論何種成因機(jī)制,富鎂閃長巖的形成均需要一個(gè)被交代的地幔源區(qū),而差異表現(xiàn)為交代組分來源的不同(尹繼元等,2013)。
圖8 哈達(dá)廟地區(qū)花崗斑巖(Y+Nb)-Rb圖解(a, 底圖據(jù)Pearce, 1996)和閃長巖Y-Sr/Y圖解(b, 底圖據(jù)Defant and Drummond, 1993)syn-COLG-同碰撞花崗巖;VAG-火山弧花崗巖;ORG-洋脊花崗巖;WPG-板內(nèi)花崗巖 Fig.8 (Y+Nb)vs. Rb diagram of granite porphyry (a, after Pearce, 1996) and Y vs. Sr/Y diagram of diorite (b, after Defant and Drummond, 1993) from the Hadamiao areasyn-COLG-syn-collisional granites; VAG-volcanic arc granites; ORG-oceanic ridge granites; WPG-within plate granites
通常認(rèn)為比較高的ISr值是地殼來源的標(biāo)志,而εNd(t)為負(fù)值則指示源區(qū)為地殼或富集地幔。哈達(dá)廟地區(qū)花崗斑巖和閃長巖的εNd(t)值介于-3.92~1.03,ISr值介于0.704803~0.707025,顯示出殼?;煸春托律碌貧さ奶卣?。哈達(dá)廟地區(qū)花崗斑巖和閃長巖的εNd(t)值高于Jahnetal. (1999)歸納出的華北克拉通古老下地殼的εNd(t)值(-44~-32),略小于東北地區(qū)和興蒙造山帶顯生宙花崗巖類的εNd(t)值(普遍大于0,平均值為+2.0,吳福元等,1997;洪大衛(wèi)等,2003)。中亞造山帶在晚古生代-中生代發(fā)育了大規(guī)模低ISr值,正εNd(t)以及年輕tDM模式年齡的花崗巖,它們被認(rèn)為是在成巖過程中,地幔來源的新生物質(zhì)加入的結(jié)果(趙振華等,1996;周泰禧等,1996; Jahnetal., 2000;洪大衛(wèi)等,2003;Kovalenkoetal., 2004; Wangetal., 2004;張東陽等,2010),而在一些具有前寒武紀(jì)基底的微陸塊上顯示負(fù)εNd(t)以及較老的tDM模式年齡,反映了部分前寒武紀(jì)地殼物質(zhì)在成巖過程中有比較明顯加入(Wuetal., 2000; Chenetal., 2000; 洪大衛(wèi)等,2003;Jahnetal., 2000, 2004; Kovalenkoetal., 2004)。因此,我們認(rèn)為哈達(dá)廟地區(qū)高鎂閃長巖是受俯沖板片流體交代的地幔楔部分熔融形成的熔體上升過程中受到地殼物質(zhì)混染的產(chǎn)物,而花崗斑巖很可能是閃長質(zhì)巖漿結(jié)晶分異的產(chǎn)物。
內(nèi)蒙古中部地區(qū)存在南、北兩條蛇綠巖帶,其間夾有錫林浩特古陸,其中北部賀根山蛇綠巖與南部索倫山-西拉木倫蛇綠巖分別代表兩個(gè)洋盆體系,賀根山洋閉合早于中二疊世(徐備和陳斌,1997;Robinsonetal., 1999;施光海等,2003;童英等,2010),而索倫山-西拉木倫縫合帶所代表殘留古亞洲洋在早二疊世仍處于俯沖狀態(tài)(李朋武等,2006;李錦軼等,2007;Jianetal., 2010)。哈達(dá)廟地區(qū)的閃長巖和花崗斑巖均形成于中二疊世,在(Y+Nb)-Rb圖解上,花崗斑巖均位于火山弧花崗巖區(qū)域(圖8a),在Y-Sr/Y圖解上,閃長巖則基本落入島弧火山巖區(qū)域(圖8b)。終上所述,我們認(rèn)為哈達(dá)廟地區(qū)中二疊世中酸性侵入巖形成于古亞洲洋的板塊俯沖環(huán)境。
(1)哈達(dá)廟地區(qū)花崗斑巖和閃長巖的鋯石SHRIMP U-Pb年齡分別為271±3Ma和267±3Ma,形成于中二疊世。
(2)哈達(dá)廟地區(qū)花崗斑巖具有低的Mg#、Ni和Cr值,而閃長巖顯示了高M(jìn)gO、Ni、Cr等富鎂閃長巖的特征,高鎂閃長巖是受俯沖板片流體交代的地幔楔部分熔融形成的熔體上升過程中受到地殼物質(zhì)混染的產(chǎn)物,而花崗斑巖為閃長質(zhì)巖漿結(jié)晶分異的產(chǎn)物。在中二疊世,古亞洲洋在哈達(dá)廟地區(qū)發(fā)生過板塊俯沖事件。
致謝野外工作得到了中國科學(xué)院地質(zhì)與地球物理研究所張寶林研究員的支持;鋯石SHRIMP U-Pb定年工作得到了北京離子探針中心石玉若博士、頡頏強(qiáng)博士的幫助;Sr、Nd同位素分析中,北京大學(xué)李文博副教授給予了幫助;中國科學(xué)院地質(zhì)與地球物理研究所朱明田博士參與了野外工作和室內(nèi)部分測(cè)試工作,有色金屬礦產(chǎn)地質(zhì)調(diào)查中心解洪晶博士參與了室內(nèi)部分測(cè)試工作;在此一并致以誠摯的感謝。
Badarch G, Cunningham WD and Windley BF. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Dev. Geochem., 2: 63-114
Cao CZ, Yang FL, Tian CL and Yuan Y. 1986. The ophiolite in Hegenshan district, Nei Mongol and the position of suture line between Sino-Korean and Siberian plates. In: Tang KD (ed.). Contributions to the Project of Plate Tectonics in Northern China, No. 1. Beijing: Geological Publishing House, 64-86 (in Chinese with English abstract)
Chen B, Jahn BW, Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-187
Chen YJ, Chen HY, Zaw K, Pirajno F and Zhang ZJ. 2007. Geodynamic setting and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31(1-4): 139-169
Condie KC. 2005. TTGs and adakites: Are they both slab melts. Lithos, 80(1-4): 33-44
Defant MJ and Drummond MS. 1993. Mount St Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21: 547-550
Drummond MS, Defant MJ and Kepezhinskas PK. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 205-215
Gao J, Long LL, Qian Q, Huang DZ, Su W and Klemd R. 2006. South Tianshan: A Late Paleozoic or a Triassic orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract)
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432 (7019): 892-897
He GQ and Zhu YF. 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions. Geology in China, 33 (3): 451-460 (in Chinese with English abstract)
Hong DW, Wang SG, Xie XL and Zhang JS. 2000. Genesis of positiveεNd(t) granitoids in the Da Hinggan Mts.-Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2): 441-455 (in Chinese with English abstract)
Hong DW, Wang SG, Zhang JS and Wang T. 2003. Metallogenic province derived from mantle sources: A case study of Central Asian orogenic belt. Mineral Deposits, 22(1): 41-55(in Chinese with English abstract)
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157: 119-146
Jahn BW, Wu FY and Hong DW. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from the east-central Asia. Earth Planet. Sci., 109(1): 5-20
Jahn BM, Windley B, Natalin B and Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603
Jian P, Liu DY and Sun XM. 2003. SHRIMP dating of Carboniferrous Jinshajiang ophiolite in western Yunnan and Sichuan: Geochronological constraints on the evolution of the Paleo-Tethys oceanic crust. Acta Geologica Sinica, 77(3): 317-327(in Chinese with English abstract)
Jian P, Liu DY, Kr?ner A, Windley BF, Shi YR, Zhang W, Miao LC, Zhang LQ, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190
Kelemen PB, Hanghj K and Greene AR. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 3: 593-659
Kovalenko VL, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB and Larin AM. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. Journal of Asian Earth Sciences, 23(5): 605-627
La Flèche MR, Camiré G and Jenner GA. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207-224
Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
Li JY, Gao LM, Sun GH, Li YP and Wang YB. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565-582(in Chinese with English abstract)
Li JY, Qu JF, Zhang J, Liu JF, Xu WL, Zhang SH, Guo RQ, Zhu ZX, Li YP, Li YF, Wang T, Xu XY, Li ZP, Liu YQ, Sun LX, Jian P, Zhang Y, Wang LJ, Peng SH, Feng QW, Wang Y, Wang HB and Zhao XX. 2013. New developments on the reconstruction of Phanerozoic geological history and research of metallogenic geological setting of the northern China orogenic region. Geological Bulletin of China, 32(2): 207-219 (in Chinese with English abstract)
Li PW, Gao R, Guan Y and Li QS. 2006. Palaeomagnetic constraints on the final closure time of Solonker Linxi Suture. Journal of Jilin University (Earth Science Edition), 36(5): 744-758 (in Chinese with English abstract)
Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77(3): 317-327(in Chinese with English abstract)
Liu J, Wu G, Zhong W and Zhu MT. 2010. Fluid inclusion study of the Duobaoshan porphyry Cu(Mo) deposit, Heilongjiang Province, China. Acta Petrologica Sinica, 26(5): 1450-1464(in Chinese with English abstract)
Liu J, Wu G, Li Y, Zhu MT and Zhong W. 2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49: 300-312
Liu J, Mao JW, Wu G, Luo DF, Wang F, Zhou ZH and Hu YQ. 2013a. Zircon U-Pb dating for the magmatic rocks in the Chalukou porphyry Mo deposit in the northern Great Xing’an Range, China, and its geological significance. Acta Geologica Sinica, 87(2): 208-226(in Chinese with English abstract)
Liu J, Wu G, Wang F, Luo DF, Hu YQ and Li TG. 2013b. Fluid inclusions and stable isotope characteristics of the Chalukou porphyry Mo deposit in Heilongjiang Province. Geology in China, 40(4): 1231-1251 (in Chinese with English abstract)
Liu J, Wu G, Qiu HN, Gao DZ and Yang XS. 2013c.40Ar/39Ar dating of gold-bearing quartz vein from the Shabaosi gold deposit at the northern end of the Great Xing’an Range and its tectonic significance. Acta Geologica Sinica, 87(10): 1-11 (in Chinese with English abstract)
Lu YH, Li WB and Lai Y. 2009. Time and tectonic setting of hosting porphyry of the Hadamiao gold deposit in Xianghuangqi, Inner Mongolia. Acta Petrologica Sinica, 25(10): 2615-2620(in Chinese with English abstract)
Mao JW, Yang JM, Han CM and Wang ZL. 2002a. Metallogenic systems of polymetallic copper and gold deposits and related metallogenic geodynamic model in eastern Tianshan, Xinjiang. Earth Science, 27(4): 413-424 (in Chinese with English abstract)
Mao JW, Yang JM, Qu WJ, Du AD, Han CM and Wang ZL. 2002b. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposit, 21(4): 323-330 (in Chinese with English abstract)
Mao JW, Han CM, Wang YT, Yang JM and Wang ZL. 2002c. Geological characteristics, metallogenic model and criteria for exploration of the large south Tianshan gold metallogenic belt in Central Asia. Geological Bulletin of China, 21(12): 858-868(in Chinese with English abstract)
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic setting. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CL, Li HM, Ouyang HG and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Mineral Deposits, 32(4): 715-729(in Chinese with English abstract)
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24
McCarro JJ and Smellie JL. 1998. Tectonic implication of fore-arc magnesian and generation of high-magnesian andesites: Alexander island, Antarctica. Journal of the Geological Society, 155(2): 269-280
Nie FJ and Zhang HT. 1989. Main characteristics of the Hadamiao gold-bearing intrusive complex and its origin in the Xianghuang Banner, Nei Monggol. Geological Review, 35(4): 297-306(in Chinese with English abstract)
Nie FJ, Zhang HT, Sun H and Fan JT. 1989. Geological features and origin of the Hadamiao gold deposit in Inner Mongolia. Mineral Deposits, 6(2): 51-60(in Chinese with English abstract)
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25(4): 956-983
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science Annual Review, 23(1): 251-285
Pearce JA. 1996. Source and settings of granitic rocks. Episodes, 19: 120-125
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81
Robinson PT, Zhou MF, Hua XF, Reynolds P, Bai WJ and Yang JS. 1999. Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4): 423-442
Shao JA, Hong DW and Zhang LQ. 2002. Genesis of Sr-Nd isotopic characteristics of igneous rocks in Inner Mongolia. Geological Bulletin of China, 21(12): 817-822(in Chinese with English abstract)
Sheppard S, Griffin TJ, Tyler IM and Page RW. 2001. High- and low-K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia. Journal of the Geological Society, London, 158(3): 547-560
Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR, Liu DY and Tao H. 2003. Zircon SHRIMP U-Pb geochronology and significance of the Xilinhot metamorphic complex, Inner Mongolia, China. Chinese Science Bulletin, 48(20): 2187-2192 (in Chinese)
Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1): 115-125
Smithies RH and Champion DC. 2000. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. Journal of Petrology, 41(12): 1653-1671
Smithies RH, Van-Kranendonk MJ and Champion DC. 2007. The Mesoarchean emergence of modern-style subduction. Gondwana Research, 11(1-2): 50-68
Streckeisen AL. 1976. Classification of the common igneous rocks by means of their chemical composition: A provisional attempt. Neues Jahrbuch fur Mineralogie, Monatshefte, 1: 1-15
Sun DY, Wu FY, Zhang YB and Gao S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University, 34(2): 174-181(in Chinese with English abstract)
Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouehi volcanic belt, Southwest Japan. Geology, 29: 323-326
Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 54-374
Tong Y, Hong DW, Wang T, Shi XJ, Zhang JJ and Ceng T. 2010. Spatial and temporal distribution of granitoids in the middle segment of the Sino-Mongolian border and its tectonic and metallogenic implications. Acta Geoscientica Sinica, 31(3): 395-412(in Chinese with English abstract)
Wang Q and Liu XY. 1986. Paleoplate tectonics between Cathasia and Angaraland in Inner Mongolia of China. Tectonics, 5(7): 1073-1088
Wang T, Zheng YD, Li TB and Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715-729
Williams IS. 1998. U-Th-Pb Geochronology by ion microprobe. In: Mckibben MA, Shanks WC Ⅲ and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Review in Economic Geology, 7: 1-35
Wu FY, Jahn BM and Lin Q. 1998. Isotopic characteristics of the post-orogenic granites in orogenic belt of northern China and their implications in crustal growth. Chinese Science Bulletin, 43(5): 420-424
Wu FY, Jahn BW, Wilde SA and Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113
Wu FY, Sun DY, Li HM, Jahm BM and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6), 1069
Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117
Xu B and Chen B. 1997. The structure and evolution of a Middle Paleozoic orogenic belt between the North China and Siberian blocks, northern Inner Mongolia, China. Science in China (Series D), 27(3): 227-232 (in Chinese)
Yang FQ, Mao JW, Wang YT and Bierlein PF. 2006. Geology and geochemistry of the Bulong quartz-barite vein-type gold deposit in Xinjiang Uygur Autonomous Region, China. Ore Geology Reviews, 29(1): 52-76
Yang FQ, Mao JW, Wang YT, Zhao CS, Zhang Y and Liu YL. 2007. Major types, characteristics and metallogeneses of gold deposits in southwest Tianshan Mountains, Xinjiang. Mineral Deposits, 26(4): 361-379(in Chinese with English abstract)
Yang FQ, Mao JW, Bierlein PF, Pirajno F, Xia HD, Zhao CS, Ye HS and Liu F. 2009. A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China. Ore Geology Review, 35(2): 217-234
Yin JY, Chen W, Yu S, Long XP, Yuan C, Zhang Y, Li J, Sun JB and Liu XY. 2013. Age, geochemical features and Cu-Au mineralization significance of the magnesian dioritic dykes in Baogutu area of West Junggar. Geology in China, 40(4): 1030-1043(in Chinese with English abstract)
Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV and Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505-519
Zhang DY, Zhang ZC, Xue CJ and Ai L. 2010. Petrology and geochemistry of the ore-forming porphyries in the Lamasu copper deposit, western Tianshan: Implications for petrogenesis. Acta Petrologica Sinica, 26(3): 680-694(in Chinese with English abstract)
Zhang ZH, Mao JW, Du AD, Pirajno F, Wang ZL, Yang JM, Chai FM and Zhang ZC. 2008. Re-Os dating of two Cu-Ni sulfide deposits in northern Xinjiang and its geological significance. Journal of Asian Earth Sciences, 32(2-4): 204-217
Zhang ZH, Mao JW, Wang ZL, Pirajno F and Wang YB. 2010. Geochemical and SHRIMP U-Pb age constraints on the origin of the Qingbulake mafic-ultramafic complex in the West Tianshan Mountains, Xinjiang, Northwest China. Australian Journal of Earth Sciences, 57(6): 819-837
Zhang ZH, Hong W, Jiang ZS, Duan SG, Wang ZH, Li FM, Shi FP, Zhao J and Zheng RQ. 2012. Geological features, mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tianshan Mountains of Xinjiang. Mineral Deposits, 31(5): 941-964 (in Chinese with English abstract)
Zhou JH and Zhou MF. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27-47
Zhao ZH, Wang ZG, Zou TR and Masuda A. 1996. Study on petrogenesis of alkali-rick intrusive rocks of Ulungur, Xinjiang. Geochimica, 25(3): 205-220 (in Chinese with English abstract)
Zhou TX, Chen JF and Li XM. 1996. Origin of highεNd(t) granites from Alatao Mountain, Xinjiang. Scientia Geologica Sinica, 31(1): 71-79 (in Chinese with English abstract)
Zhou ZH, Lü LS, Feng JR, Li C and Li T. 2010. Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance, Inner Mongolia. Acta Petrologica Sinica, 26(3): 667-679(in Chinese with English abstract)
Zhou ZH, Mao JW and Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Sciences, 49: 272-286
附中文參考文獻(xiàn)
曹從周, 楊芳林, 田昌烈, 袁朝. 1986. 內(nèi)蒙古賀根山地區(qū)蛇綠巖及中朝板塊和西伯利亞板塊之間的縫合帶位置. 見: 唐克東編. 中國北方板塊構(gòu)造論文集. 北京: 地質(zhì)出版社, 64-86
高俊, 龍靈利, 錢青, 黃德志, 蘇文, Klemd R. 2006. 南天山: 晚古生代還是三疊紀(jì)碰撞造山帶?巖石學(xué)報(bào), 22(5): 1049-1061
何國琦, 朱永峰. 2006. 中國新疆及其鄰區(qū)地質(zhì)礦產(chǎn)對(duì)比研究. 中國地質(zhì), 33(3): 451-460
洪大衛(wèi), 王式?jīng)? 謝錫林, 張季生. 2000. 興蒙造山帶正εNd(t) 值花崗巖的成因和大陸地殼生長. 地學(xué)前緣, 7(2): 441-455
洪大衛(wèi), 王式?jīng)? 謝錫林, 張季生, 王濤. 2003. 試析地幔來源物質(zhì)成礦域-以中亞造山帶為例. 礦床地質(zhì), 22(1): 41-55
簡(jiǎn)平, 劉敦一, 孫曉猛. 2003. 滇川西部金沙江石炭紀(jì)蛇綠巖SHRIMP測(cè)年: 古特提斯洋殼盆演化的同位素年代學(xué)制約. 地質(zhì)學(xué)報(bào), 77(2): 217-228
李錦軼, 何國琦, 徐新, 李華芹, 孫桂華, 楊天南, 高立明, 朱志新. 2006. 新疆北部及鄰區(qū)地殼構(gòu)造格架及其形成過程的初步探討. 地質(zhì)學(xué)報(bào), 80(1): 148-168
李錦軼, 高立明, 孫桂華, 李亞萍, 王彥斌. 2007. 內(nèi)蒙古東部雙井子中三疊世同碰撞殼源花崗巖的確定及其對(duì)西伯利亞與中朝古板塊碰撞時(shí)限的約束. 巖石學(xué)報(bào), 23(3): 565-582
李錦軼, 曲軍鋒, 張進(jìn), 劉建峰, 徐文良, 張拴宏, 郭瑞清, 朱志新, 李亞萍, 李永飛, 王濤, 徐學(xué)義, 李智佩, 柳永清, 孫立新, 簡(jiǎn)平, 張昱, 王勵(lì)嘉, 彭樹華, 馮乾文, 王煜, 王洪波, 趙西西. 2013. 中國北方造山區(qū)顯生宙地質(zhì)歷史重建與成礦地質(zhì)背景研究進(jìn)展. 地質(zhì)通報(bào), 32(2): 207-219
李朋武, 高銳, 管燁, 李秋生. 2006. 內(nèi)蒙古中部索倫林西縫合帶封閉時(shí)代的古地磁分析. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 36(5): 744-758
劉敦一, 簡(jiǎn)平, 張旗, 張福勤, 石玉若, 施光海, 張履橋, 陶華. 2003. 內(nèi)蒙古圖林凱蛇綠巖中埃達(dá)克巖SHRIMP測(cè)年: 早古生代洋殼消減的證據(jù). 地質(zhì)學(xué)報(bào), 77(3): 317-327
劉軍, 武廣, 鐘偉, 朱明田. 2010. 黑龍江省多寶山斑巖型銅(鉬)礦床成礦流體特征及演化. 巖石學(xué)報(bào), 26(5): 1450-1464
劉軍, 毛景文, 武廣, 羅大峰, 王峰, 周振華, 胡妍青. 2013a. 大興安嶺北部岔路口斑巖鉬礦床巖漿巖鋯石U-Pb年齡及其地質(zhì)意義. 地質(zhì)學(xué)報(bào), 87(2): 208-226
劉軍, 武廣, 王峰, 羅大鋒, 胡妍青, 李鐵剛. 2013b. 黑龍江省岔路口斑巖鉬礦床流體包裹體和穩(wěn)定同位素特征. 中國地質(zhì), 40(4): 1231-1251
劉軍, 武廣, 邱華寧, 高德柱, 楊鑫生. 2013c. 大興安嶺北部砂寶斯金礦床含金石英脈40Ar/39Ar年齡及其構(gòu)造意義. 地質(zhì)學(xué)報(bào), 87(10): 1-11
魯穎淮, 李文博, 賴勇. 2009. 內(nèi)蒙古鑲黃旗哈達(dá)廟金礦床含礦斑巖體形成時(shí)代和成礦構(gòu)造背景. 巖石學(xué)報(bào), 25(10): 2615-2620
毛景文, 楊建民, 韓春明, 王志良. 2002a. 新疆東天山銅金礦床成礦系統(tǒng)和成礦地球動(dòng)力學(xué)過程. 地球科學(xué), 27(4): 413-424
毛景文, 楊建民, 屈文俊, 杜安道, 韓春明, 王志良. 2002b. 新疆黃山東銅鎳硫化物礦床Re-Os同位素測(cè)定及其地球動(dòng)力學(xué)意義. 礦床地質(zhì), 21(4): 323-330
毛景文, 韓春明, 王義天, 楊建民, 王志良. 2002c. 中亞地區(qū)南天山大型金礦帶的地質(zhì)特征、成礦模型和勘查準(zhǔn)則. 地質(zhì)通報(bào), 21(12): 858-868
毛景文, 謝桂青, 張作衡, 李曉峰, 王義天, 張長青, 李永峰. 2005. 中國北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 21(1): 169-188
毛景文, 周振華, 武廣, 江思宏, 劉成林, 李厚民, 歐陽荷根, 劉軍. 2013. 內(nèi)蒙古及鄰區(qū)礦床成礦規(guī)律與成礦系列. 礦床地質(zhì), 32(4): 715-729
聶鳳軍, 張洪濤. 1989. 內(nèi)蒙古哈達(dá)廟含金侵入雜巖體的基本地質(zhì)特征及巖體成因問題. 地質(zhì)論評(píng), 35(4): 297-306
聶鳳軍, 張洪濤, 孫浩, 樊建廷. 1989. 內(nèi)蒙古哈達(dá)廟金礦床地質(zhì)特征及礦床成因探討. 礦床地質(zhì), 6(2): 51-60
邵濟(jì)安, 洪大衛(wèi), 張履橋. 2002. 內(nèi)蒙古火成巖Sr-Nd同位素特征及成因. 地質(zhì)通報(bào), 21(12): 817-822
施光海, 劉敦一, 張福勤, 簡(jiǎn)平, 苗來成, 石玉若, 陶華. 2003. 中國內(nèi)蒙古錫林郭勒雜巖SHRIMP鋯石U-Pb年代學(xué)及意義. 科學(xué)通報(bào), 48(20): 2187-2192
孫德有, 吳福元, 張艷斌, 高山. 2004. 西拉木倫-長春-延吉板塊縫合帶的最后閉合時(shí)間——來自吉林大玉山花崗巖體的證據(jù). 吉林大學(xué)學(xué)報(bào), 34(2): 174-181
童英, 洪大衛(wèi), 王濤, 史興俊, 張建軍, 曾濤.2010. 中蒙邊境中段花崗巖時(shí)空分布特征及構(gòu)造和找礦意義. 地球?qū)W報(bào), 31(3): 395-412
吳福元, 江博明, 林強(qiáng). 1997. 中國北方造山帶造山后花崗巖的同位素特點(diǎn)與地殼生長意義. 科學(xué)通報(bào), 42(20): 2188-2192
徐備, 陳斌. 1997. 內(nèi)蒙古北部華北板塊與西伯利亞板塊之間中古生代造山帶的結(jié)構(gòu)及演化. 中國科學(xué)(D輯), 27(3): 227-232
楊富全, 毛景文, 王義天, 趙財(cái)勝, 張巖, 劉亞玲. 2007. 新疆西南天山金礦床主要類型、特征及成礦作用. 礦床地質(zhì), 26(4): 361-379
尹繼元, 陳文, 喻順, 龍曉平, 袁超, 張彥, 李潔, 孫敬博, 劉新宇. 2013. 西準(zhǔn)噶爾包古圖富鎂閃長質(zhì)巖墻的時(shí)代、地球化學(xué)特征以及銅金成礦意義. 中國地質(zhì), 40(4): 1030-1043
張東陽, 張招崇, 薛春紀(jì), 艾羽. 2010. 西天山喇嘛蘇銅礦成礦斑巖的巖石學(xué)、地球化學(xué)特征及成因探討. 巖石學(xué)報(bào), 26(3): 680-694
張作衡, 洪為, 蔣宗勝, 段士剛, 王志華, 李鳳鳴, 石福品, 趙軍, 鄭仁喬. 2012. 新疆西天山晚古生代鐵礦床的地質(zhì)特征、礦化類型及形成環(huán)境. 礦床地質(zhì), 31(5): 941-964
趙振華, 王中剛, 鄒天人, 增田彰正. 1996. 新疆烏倫古富堿侵入巖成因探討. 地球化學(xué), 25(3): 205-220
周泰禧, 陳江峰, 李學(xué)明. 1996. 新疆阿拉套山花崗巖類高εNd值的成因探討. 地球科學(xué), 31(1): 71-79
周振華, 呂林素, 馮佳睿, 李超, 李濤. 2010. 內(nèi)蒙古黃崗矽卡巖型錫鐵礦床輝鉬礦Re-Os年齡及其地質(zhì)意義. 巖石學(xué)報(bào), 26(3): 667-679