關(guān) 月(綜述),陳 云(審校)
(1.南京醫(yī)科大學(xué)第一臨床醫(yī)學(xué)院,南京 210029; 2.南京醫(yī)科大學(xué)微生物與免疫學(xué)系,南京 210029)
鼻咽癌是一種常見的惡性腫瘤。因其發(fā)病部位較隱匿,易見早期淋巴結(jié)轉(zhuǎn)移且伴有肝、肺、骨等遠(yuǎn)處轉(zhuǎn)移[1],5年生存率較低,因此研究鼻咽癌侵襲轉(zhuǎn)移的潛在機(jī)制對診斷和治療都有著重要意義。有證據(jù)表明,上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是導(dǎo)致腫瘤侵襲與轉(zhuǎn)移的潛在機(jī)制[2],但目前EMT在鼻咽癌浸潤和轉(zhuǎn)移中的作用機(jī)制尚不明確,故本文對EMT相關(guān)的檢測方法及其發(fā)生過程進(jìn)行總結(jié),并綜合眾多研究結(jié)果闡述EMT對鼻咽癌的可能潛在作用機(jī)制,旨在為今后鼻咽癌治療研究中EMT可能發(fā)揮的相應(yīng)作用提供理論依據(jù)。
在EMT過程中,隨著細(xì)胞功能變化,其主要特征性分子的表達(dá)數(shù)量會(huì)發(fā)生一定程度的改變。其中上皮鈣黏素、角蛋白等上皮相關(guān)標(biāo)志物表達(dá)下調(diào);神經(jīng)鈣黏素、波形蛋白間質(zhì)相關(guān)標(biāo)志物表達(dá)上調(diào)[3]。有研究發(fā)現(xiàn),Twist和一些轉(zhuǎn)錄因子Snail、Slug、Smad相互作用蛋白1(Smad interacting protein 1,SIP-1)等是下調(diào)上皮鈣黏素表達(dá)的原因[4]。經(jīng)免疫組織化學(xué)方法處理的鼻咽癌患者病理切片中,可在腫瘤細(xì)胞邊緣發(fā)現(xiàn)有波形蛋白陽性的腫瘤細(xì)胞[5],Snail特征染色后結(jié)果和波形蛋白一致,即在腫瘤細(xì)胞周邊陽性細(xì)胞的數(shù)量也明顯多于中央?yún)^(qū),且染色強(qiáng)度強(qiáng)于中央?yún)^(qū),而β聯(lián)蛋白在腫瘤的周邊區(qū)不同于中央?yún)^(qū)。周邊區(qū)可見細(xì)胞間連接部位的胞膜陽性,中央?yún)^(qū)染色有向胞質(zhì)及核內(nèi)聚集現(xiàn)象。這些標(biāo)志物不僅見于鼻咽癌,也可見于肺癌、肝癌、乳腺癌、口腔鱗狀細(xì)胞癌等多種癌癥,更加有力地說明EMT通過引起腫瘤細(xì)胞形態(tài)、功能、代謝等多方面的改變而對腫瘤侵襲和轉(zhuǎn)移起重要作用。
2.1鈣黏素與EMT 鈣黏素是細(xì)胞間跨膜粘連糖蛋白分子的一種,位于上皮組織中,主要參與細(xì)胞間的連接。鈣黏素可以分為上皮鈣黏素、胎盤鈣黏素和神經(jīng)鈣黏素三種,其中上皮鈣黏素是EMT過程的關(guān)鍵分子,它可通過β聯(lián)蛋白依賴的Wnt信號通路從而介導(dǎo)EMT的發(fā)生,且其表達(dá)水平與腫瘤的侵襲能力呈負(fù)相關(guān)關(guān)系。若細(xì)胞發(fā)生染色體改變、基因突變或者發(fā)生了啟動(dòng)子的甲基化時(shí),上皮鈣黏素的表達(dá)水平可下降,從而導(dǎo)致腫瘤細(xì)胞侵襲能力增強(qiáng)[6]。
2.2轉(zhuǎn)錄因子與EMT 轉(zhuǎn)錄因子位于在蛋白激酶下游,其中對EMT起重要作用的轉(zhuǎn)錄因子有Snail、Slug、Twist、E盒結(jié)合鋅指蛋白1(zinc finger E-box binding homeobox-1,ZEB-1)、Smad、核因子κB(nuclear factor,NF-κB)等。EMT的發(fā)生也與細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)以及信號轉(zhuǎn)導(dǎo)蛋白的調(diào)控有關(guān),如細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)、促分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)、Akt、Smads、RhoB、淋巴增強(qiáng)因子、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)、β聯(lián)蛋白、Ras、c-Fos、β4-結(jié)合蛋白、α5β1結(jié)合蛋白和αvβ6結(jié)合蛋白等[7]。其中,Snail與Slug屬同一個(gè)轉(zhuǎn)錄因子家族,兩者均可與Smad相互作用蛋白競爭性結(jié)合上皮鈣黏素啟動(dòng)子區(qū)的E-box連接基序,從而抑制上皮鈣黏素的表達(dá),上調(diào)波形蛋白的表達(dá)水平,最終促進(jìn)EMT的發(fā)生[8]。Twist則是一種高度保守的轉(zhuǎn)錄因子,研究發(fā)現(xiàn)其可能與Snail和Slug的作用機(jī)制相同[9]。ZEB-1與SIP-1結(jié)構(gòu)相似,兩者均能結(jié)合轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)信號通路中的R-Smads,調(diào)節(jié)人平滑肌肌動(dòng)蛋白、p21、p15等多個(gè)與EMT相關(guān)的基因轉(zhuǎn)錄[10]。NF-κB的作用方式則是通過Akt來上調(diào)Snail的表達(dá),同時(shí)促進(jìn)Twist表達(dá),也可與波形蛋白基因啟動(dòng)子調(diào)節(jié)序列結(jié)合,誘導(dǎo)EMT,另外還可通過抑制上皮鈣黏素的表達(dá)并且上調(diào)ZEB-1、ZEB-2而增強(qiáng)EMT的發(fā)生[11-12]。多種轉(zhuǎn)錄因子通過不同的機(jī)制促進(jìn)了EMT的發(fā)生,并增強(qiáng)了腫瘤的侵襲性。
2.3生長因子與EMT 已發(fā)現(xiàn)許多生長因子在誘導(dǎo)EMT方面起重要作用,如肝細(xì)胞生長因子、成纖維細(xì)胞生長因子、表皮生長因子、TGF-β、胰島素樣生長因子等。這些生長因子與相關(guān)細(xì)胞表面不同受體結(jié)合,通過Ras/MAPK、Wnt和PI3K等多條信號轉(zhuǎn)導(dǎo)通路活化相應(yīng)轉(zhuǎn)錄因子,調(diào)節(jié)基因的表達(dá),從而促進(jìn)EMT的發(fā)生。例如,肝細(xì)胞生長因子可以通過改變細(xì)胞表面上皮鈣黏素的分布,活化PI3K與ERK-1/2信號通路而促進(jìn)腫瘤細(xì)胞的侵襲與轉(zhuǎn)移[13]。表皮生長因子可以促進(jìn)受損表皮的修復(fù)與再生,上調(diào)波形蛋白表達(dá),下調(diào)上皮鈣黏素表達(dá),作用于鱗狀上皮細(xì)胞,使細(xì)胞間連接變松散,細(xì)胞形態(tài)發(fā)生改變,細(xì)胞侵襲能力提高,由此促進(jìn)腫瘤細(xì)胞的浸潤和轉(zhuǎn)移的發(fā)生[14-15]。TGF-β通過β聯(lián)蛋白或通過p38/MAPK的信號轉(zhuǎn)導(dǎo)通路,介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路影響細(xì)胞基因表達(dá),促進(jìn)EMT過程。研究顯示,在前列腺癌中,胰島素樣生長因子1可上調(diào)ZEB-1表達(dá),抑制上皮鈣黏素的表達(dá),促進(jìn)EMT發(fā)生[16]。此外,胰島素樣生長因子2也可以通過誘導(dǎo)β聯(lián)蛋白的位置由上皮細(xì)胞表面轉(zhuǎn)移到細(xì)胞核內(nèi),同時(shí)使胞內(nèi)上皮鈣黏素的表達(dá)降低,促進(jìn)EMT的發(fā)生[17]。還有研究表明,血管內(nèi)皮生長因子也可以通過自分泌促進(jìn)腫瘤細(xì)胞EMT的發(fā)生,它主要是通過誘導(dǎo)高表達(dá)神經(jīng)鈣黏素、Snail、Slug和波形蛋白,從而引起上皮鈣黏素表達(dá)的下調(diào),最終引起EMT[18]。
2.4炎癥與EMT 近年來,EMT已經(jīng)作為炎癥和癌癥間的銜接點(diǎn)成為研究熱點(diǎn),炎癥被認(rèn)為很可能是關(guān)鍵的EMT病理學(xué)誘導(dǎo)因子并且EMT被認(rèn)為是連接炎癥和癌癥的橋梁[19]。例如,Snail可上調(diào)白細(xì)胞介素(interleukin,IL)1,IL-6和IL-8促炎性因子的表達(dá)。并且,炎癥微環(huán)境中的TGF-β和低氧誘導(dǎo)因子1(hypoxia-inducible factor-1,HIF-1)誘導(dǎo)Twist和SIP-1的表達(dá)。很多被癌細(xì)胞招募來的腫瘤浸潤炎性細(xì)胞擴(kuò)散到周圍基質(zhì),例如肌纖維母細(xì)胞、粒細(xì)胞、巨噬細(xì)胞、骨髓源性抑制細(xì)胞、骨髓間充質(zhì)干細(xì)胞和淋巴細(xì)胞等,創(chuàng)造了反應(yīng)性的基質(zhì),從而導(dǎo)致EMT誘導(dǎo)信號的釋放[20],如NF-κB,TGF-β,腫瘤壞死因子α,信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子、說HIF-1α和炎癥相關(guān)的miRNA等。炎癥介質(zhì)如花生四烯酸及其代謝產(chǎn)物前列腺素和白細(xì)胞三烯也可以提高波形蛋白及神經(jīng)鈣黏素表達(dá),降低上皮鈣黏素表達(dá),并激活局部黏著斑激酶、Src、NF-κB等信號通路,誘導(dǎo)乳腺癌細(xì)胞MCF10A發(fā)生EMT[21]。環(huán)加氧酶2為前列腺素合成所必需的酶,可以通過抑制Smad信號和前列腺素E2依賴機(jī)制,最終經(jīng)由TGF-β信號通路增強(qiáng)EMT的發(fā)生[22]。過表達(dá)HIF-α可以通過調(diào)控上皮鈣黏素以及波形蛋白表達(dá)而誘導(dǎo)前列腺癌發(fā)生EMT[23]。NF-κB是先天免疫和炎癥的一個(gè)關(guān)鍵協(xié)調(diào)者,有證據(jù)表明,NF-κB是一個(gè)強(qiáng)有力的的EMT誘導(dǎo)因子[24]。TGF-β可通過典型的Smad蛋白依賴途徑和非典型的Smad不依賴途徑誘導(dǎo)EMT[25]。在腫瘤細(xì)胞中,腫瘤壞死因子α誘導(dǎo)Snail-1啟動(dòng)子的活性并且可以穩(wěn)定Snail-1蛋白表達(dá)。在對炎癥相關(guān)的miRNA與EMT和癌癥轉(zhuǎn)移過程中的作用所進(jìn)行的研究進(jìn)一步表明了癌癥EMT和炎癥之間的聯(lián)系,已發(fā)現(xiàn)的有miR-29a、miR-155、miR-200、miR-205和miR-9等,如miR-200與miR-205可以調(diào)節(jié)ZEB-1與ZEB-2因子,抑制上皮鈣黏素的表達(dá),引起EMT發(fā)生。此外,通過促炎癥信號通路影響EMT是由信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子介導(dǎo)Twist的轉(zhuǎn)錄。
EB病毒(epstein-barr virus,EBV)是人類發(fā)現(xiàn)最早的人類腫瘤病毒,與鼻咽癌的發(fā)生、浸潤和轉(zhuǎn)移有著密切的關(guān)系[26-29]。EBV潛伏感染幾乎存在于所有的未分化鼻咽癌患者中,并以潛伏感染長期存在,主要表達(dá)潛伏膜蛋白(latent membrane protein,LMP)1,LMP-2、EBV核抗原等。LMP-1是主要的EBV致癌基因,可以誘導(dǎo)細(xì)胞表達(dá)多種細(xì)胞侵襲和浸潤因子,如c-Met[28]、成纖維細(xì)胞生長因子2[29]、HIF-1α、Ezrin等,可能通過促進(jìn)EMT的發(fā)生,增強(qiáng)鼻咽癌細(xì)胞的侵襲和轉(zhuǎn)移能力。通過比較鼻咽癌與鼻咽癌頸部轉(zhuǎn)移淋巴結(jié)組織發(fā)現(xiàn)上皮鈣黏素表達(dá)降低,而波形蛋白和LMP1表達(dá)升高,還發(fā)現(xiàn)鼻咽癌組織中LMP-1與上皮鈣黏素的表達(dá)呈負(fù)相關(guān),鼻咽癌頸部轉(zhuǎn)移淋巴結(jié)組織中LMP-1與波形蛋白的表達(dá)呈正相關(guān)[30],LMP1可能通過誘導(dǎo)這兩種蛋白的變化,使鼻咽癌細(xì)胞發(fā)生EMT,增強(qiáng)其運(yùn)動(dòng)和侵襲能力。Horikawa等[31]發(fā)現(xiàn),LMP-1在MDCK細(xì)胞系中誘導(dǎo)Twist表達(dá)促進(jìn)EMT的發(fā)生,增加腫瘤細(xì)胞的轉(zhuǎn)移能力,然而他們在之后的研究發(fā)現(xiàn)LMP-1可以通過Snail使上皮鈣黏素表達(dá)降低,從而介導(dǎo)鼻咽癌細(xì)胞EMT的發(fā)生,而Twist并沒有表現(xiàn)出與上皮鈣黏素的相關(guān)性。EBV相關(guān)LMP-2基因編碼兩種蛋白LMP-2A、LMP-2B,其中LMP-2A最為重要,研究發(fā)現(xiàn)LMP-2A同樣可以誘導(dǎo)鼻咽癌細(xì)胞上皮鈣黏素和α聯(lián)蛋白下調(diào),而上調(diào)波形蛋白和Snail,促進(jìn)EMT的發(fā)生,增加腫瘤的轉(zhuǎn)移能力[32]。最近有發(fā)現(xiàn),LMP-2A可以通過激活ERK-1/2信號通路,上調(diào)核轉(zhuǎn)錄因子Fra-1使金屬基質(zhì)蛋白酶9表達(dá)增加,從而增強(qiáng)了鼻咽癌的侵襲性,可能也是通過EMT完成的[33]。也有研究發(fā)現(xiàn),miR-149可以通過抑制上皮鈣黏素的表達(dá),誘導(dǎo)鼻咽癌細(xì)胞EMT的發(fā)生,促進(jìn)其侵襲和轉(zhuǎn)移[34]。
[1] Miealizzi DS,Farabaugh SM,Ford HL.Epithelial-mesenchymal transition in cancer:parallels between normal development and tumor progression[J].J Mammary Gland Biol Neoplasia,2010,15(2):117-134.
[2] Voulgari A,Pintzas A.Epithelial-mesenehymal transition in cancer metastasis:Mechanisms,markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta,2009,1796(2):75-90.
[3] Tamer T,Onder,Piyush B,etal.Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways[J].Cancer Res,2008,68(10):3645-3654.
[4] 徐江鋒,羅庚求.上皮細(xì)胞間質(zhì)轉(zhuǎn)型與腫瘤轉(zhuǎn)移[J].國際病理科學(xué)與臨床雜志,2007,27(5):393-396.
[5] 江慶萍,王爽,鄒桂華,等.鼻咽癌中上皮間充質(zhì)改變現(xiàn)象觀察[J].熱帶醫(yī)學(xué)雜志,2008,8(3):213-219.
[6] Howard S,Deroo T,Fujita Y,etal.A positive role of cadherin in Wnt/ β-catenin signalling during epithelial-mesenchymal transition[J].Plos One,2011,6(8):e23899.
[7] Tse JC,Kalluri R.Mechanisms of metastasis:epithelial-to-mesenehymal transition and contribution of tumor microenvironment[J].J Cell Biochem,2007,101(4):816-829.
[8] Niessen K,Fu Y,Chang L,etal.Slug is a direct Notch target required for initiation of cardiac cushion cellularization[J].J Cell Biol,2008,182(2):315-325.
[9] Lo HW,Hsu SC,Xia W,etal.Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer CeUs via Up-regulation of TWIST gene expression[J].Cancer Res,2007,7(19):9066-9076.
[10] Postigo AA.Opposing functions of ZEB proteins in the regulation of the TGF-β/BMP signaling pathway[J].EMBO J,2003,22(10):2443-2452.
[11] Julien S,Puig I,Caretti E,etal.Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition[J].Oncogene,2007,26(53):7445-7456.
[12] Chua HL,Bhat-Nakshatfi P,Clare SE,etal.NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1 and ZEB-2[J].Oncogene,2007,26(5):711-724.
[13] Menakongka A,Suthiphongchai T.Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion[J].World J Gastroenterol,2010,16(6):713-722.
[14] Lee MY,Chou CY,Tang MJ,etal.Epithelial-mesenchymal transition in cervical cancer:correlation with tumor progression,epidermal growth factor receptor overexpression and snail up-regulation[J].Cancer Res,2008,14(15):4743-4750.
[15] 張華東,黃 勇,李宏偉,等.上皮間質(zhì)轉(zhuǎn)化研究進(jìn)展[J].中國現(xiàn)代醫(yī)學(xué)雜志,2011,21(31):3907-3911.
[16] Graham TR,Zhau HE,Odero-Marah VA.Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer[J].Cancer Res,2008,68(7):2479-2488.
[17] Morali OG,Delmas V,Moore R,etal.IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition[J].Oncogene,2001,20(36):4942-4950.
[18] Gonzalez-Moreno O,Lecanda J,Green JE,etal.VEGF elicits epithelial-mesenchymal transition(EMT) in prostate intraepithelial neoplasia(PIN)-like cells via an autocrine loop[J].Exp Cell Res,2010,316(4):554-567.
[19] Singh A,Settleman J.EMT,cancer stem cells and drug resistance.an emerging axis of evil in the war on cancer[J].Oncogene,2010,29(34):4741-4751.
[20] Chaffer CL,Weinberg RA.A perspective on cancer cell metastasis[J].Science,2011,331(6024):1559-1564.
[21] Martinez-Orozeo R,Navarro-Tito N,Soto-Guznmn A.Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A[J].Eur J Cell Biol,2010,89(6):476-488.
[22] Jason R,Nell,Kyle M,etal.Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-β through a PGE2-dependent mechanisms[J].Carcinogenesis,2008,11(11):2227-2235.
[23] 羅勇,賀大林,姜永光,等.缺氧誘導(dǎo)因子1α誘導(dǎo)人前列腺癌細(xì)胞上皮間質(zhì)化改變的研究[J].中華男科學(xué)雜志,2008,14(9):800-804.
[24] Greten FR,Eckmann L,Greten TF,etal.IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer[J].Cell 2004,118(3):285-296.
[25] de Graauw M,van Miltenburg MH,Schmidt MK,etal.Annexin AL regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells[J].Proc Natl Acad Sci USA,2010,107(14):6340-6345.
[26] Raab-Traub N.Epstein-Barr virus in the pathogenesis of NPC[J].Semin Cancer Biol,2002,12(6):431-441.
[27] Lo AK,Lo KW,Tsao SW,etal.Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells[J].Neoplasia,2006,8(3):173-180.
[28] Horikawa T,Sheen TS,Takeshita H,etal.Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma[J].Am J Pathol,2001,159(1):27-33.
[29] Wakisaka N,Murono S,Yoshizaki T,etal.Epstein-barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor-2[J].Cancer Res 2002,62(21):6337-6344.
[30] 李蓉,敬敏,黎小兵,等.EB病毒潛伏膜蛋白1介導(dǎo)的上皮-間質(zhì)轉(zhuǎn)化增強(qiáng)鼻咽癌的轉(zhuǎn)移潛能[J].腫瘤,2011,31(7):627-632.
[31] Horikawa T,Yoshizaki T,Kondo S,etal.Epstein-Barr virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma[J].Br J Cancer,2011,104(7):1160-1167.
[32] Kong QL,Hu LJ,Cao JY,etal.Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma[J].PLoS Pathog,2010,6(6):e1000940.
[33] Lan YY,Hsiao JR,Chang KC,etal.Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase[J].J Virol,2012,86(12):6656-6667.
[34] Luo ZH,Zhang LY,Li Z,etal.miR-149 promotes epithelial-mesenchymal transition and invasion in nasoph-aryngeal carcinoma cells[J].J Cent South Univ(Med Sci),2011,36(7):604-609.