• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction

    2022-09-16 05:24:38QinLiYunniLiuZheWnHiynCoShoZhngYueZhouXingyuYeXioynLiuDieqingZhng
    Chinese Chemical Letters 2022年8期

    Qin Li, Yunni Liu, Zhe Wn, Hiyn Co, Sho Zhng, Yue Zhou, Xingyu Ye,Xioyn Liu,?, Dieqing Zhng,?

    a The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

    b School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

    ABSTRACT The solar-driven photocatalytic technology has shown great potential in nitrate (NO3?) pollutants reduction, however, it has been greatly hindered by the complex preparation and high cost of photocatalysts.Herein, a relatively low-cost photocatalyst, rutile and anatase mixed phase TiO2 was synthesized by a facile microwave-hydrothermal method.Meanwhile, oxygen vacancy is successfully generated, leading to an acidic surface for strong adsorption towards NO3?, which further improved the reduction activity.Compared with the commercial P25, a higher NO3?conversion of ca. 100% and nitrogen (N2) selectivity of 87% were achieved under UV (365 nm) irradiation within 2 h.This research provides a promising strategy for designing efficient noble metal free photocatalyst in the NO3?reduction.

    Keywords:Photocatalysis TiO2 Oxygen vacancy Nitrate reduction

    Nitrogen (N) is an essential nutrient, but when its concentration accumulated to some threshold value, it could be a source of pollution in water or the atmosphere [1].Nitrates (NO3?) as one of the most common N species contaminants in the world, was mainly resulting from the use of nitrogen fertilizers and the dung from large animal farms [2].However, high intake of nitrate would appear a serious threat to human health, such as an increased risk of natural preterm birth and central nervous system cancers (CNC)in children [2–4].Furthermore, the nitrate can be reduced to dangerous chemicals, including nitrite (NO2?), which caused blue baby syndrome [5].Thus, many strategies such as reverse osmosis, electrodialysis and ion exchange have been widely studied for removing nitrate from ground water [6].However, these works highly concentrated on the nitrate conversion into brines instead of removing it to harmless nitrogen (N2) [7,8].

    Photocatalysis as an environment-friendly technology shows great potentials in pollutant removal by directly using solar energy [9–13].As a semiconductor, titanium dioxide (TiO2) has been widely used in photocatalytic nitrogen oxides (NOx) oxidation[10,11,14-17], carbon dioxide (CO2) reduction [18], hydrogen (H2)production [19] and removal of volatile organic pollutants (VOCs),etc.[20], due to its low-cost, nontoxicity and good stability [21,22].However, its application in NO3?conversion has been limited because of the low efficiency of traditional TiO2.Noble metals(e.g., Pd, Au, and Ag) loaded TiO2have been developed for promoted denitrification performance (Table S1 in Supporting information).However, this noble metal involving strategy greatly increased the cost, which is not practical for large-scale application[8,23,24].TiO2with oxygen vacancies has attracted intensive attention in photocatalytic NOxremoval, H2evolution and CO2reduction [25–27] owing to the improved charge separation and reactant molecules adsorption.TiO2materials with oxygen vacancies are traditionally produced by hydrogen reduction or NaBH4reduction, both of which are time and energy consuming [28].

    Herein, the mixed anatase and rutile phase TiO2(TiO2-A-R)with oxygen vacancies and proper acid sites was successfully prepared by a simple microwave hydrothermal method.The obtained TiO2-A-R showed outstanding photocatalytic NO3?conversion ofca.100% and high N2selectivity of 89% under ultraviolet irradiation.This study will provide a novel approach for efficient and low-cost nitrate removal from water.

    The synthetic procedure of TiO2-A-R was illustrated in Scheme 1.In a typical process, potassium titanium oxide oxalate dihydrate and sodium chloride were dispersed in the mixed solution of ethanol and water, keeping stirring for 15 min.Then the as-prepared solution was transferred to the microwave reaction chamber for further microwave treatment under 200 °C for 30 min.As comparison, pure rutile (TiO2-R) and pure anatase (TiO2-A)were prepared.As shown in Fig.1a, the TiO2-A-R shows the typical X-ray diffraction (XRD) peaks of rutile and anatase phases, which are similar to the commercial P25.Besides, according to the peak intensity, the weight fraction of the rutile in TiO2-A-R,WRcan be calculated from the formula (Eq.1) [29,30].And the weight fraction of the anatase in TiO2-A-R,WAcan be calculated from the formula as follows (Eq.2) [31]:

    Scheme 1.Schematic illustration of the synthesis processes of TiO2-A-R.

    Fig.1.(a) The XRD pattern, (b) UV–vis DRS spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distributions of TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Scheme 2.Schematic illustration of photocatalytic reduction mechanism of NO3?.

    In formula,AanaandArutrepresented the diffraction peaks intensity of anatase (101) and rutile (110), respectively.Based on the XRD results, the anatase content of TiO2-A-R was estimated to be 84 wt%.The ultraviolet-visible diffuse reflectance spectra (UV–vis DRS) in Fig.1b demonstrated that all samples exhibited spectral absorption at 365 nm, which ensured the photocatalyst could be effectively excited under 365 nm irradiation.In addition, based on the UV–vis results, the band gap energy (Eg) of the TiO2-A-R was calculated as followed (Eq.3):

    whereα,h,v, A andEgrepresented the absorption coefficient, the Planck constant, the light frequency, the constant and band gap,respectively [32].Furthermore,nwas equal to 1/2 or 2 for an indirect or direct band gap semiconductors, respectively.Thus, the estimatedEgof TiO2-A-R is 3.18 eV (Fig.S1 in Supporting information).The calculated flat band potential (EFB) value of TiO2-A-R as shown in Fig.S2 (Supporting information) was –0.95 Vvs.SCE, which is corresponding to ?0.29 Vvs.NHE.Besides, TiO2-A-R as an n-type semiconductor, the conduction band (ECB) was 0.2 V belowEFB[33].Thus,ECBlevel of TiO2-A-R was ?0.49 eV.And the valence band(VB) was 2.69 eV, which was obtained according to the formula Eq.4 [32,34]:

    The nitrogen adsorption-desorption isotherms and pore size distributions were displayed in Figs.1c and d.All the samples showed typical IV isotherms and a pore size distribution ranging from 2 nm to 50 nm, indicating the mesoporous structures.The detailed surfaces areas, pore size and pore volume were listed in Table 1.Compared with other photocatalysts [35–37], TiO2-A-R had the distinguishing features of larger Brunauer-Emmett-Teller (BET)surface area (97.6 m2/g), the greater pore volume (0.3 cm3/g) and the pore diameter (11.4 nm), which might significantly enhance its adsorption ability of reactants and therefore facilitate the targeted reaction [38].

    Table 1 BET properties of TiO2-A-R, TiO2-A, TiO2-R and P25 photocatalysts.

    TEM images in Figs.2a and b suggested that TiO2-A-R was composed of flaky petal-like structure.Moreover, obvious diffraction rings could be observed in Fig.2c (the selected area electron diffraction, SAED), indicating the TiO2-A-R had good crystallinity[39].Meanwhile, the lattice spacing of 0.351 nm and 0.325 nm were also clearly detected in Fig.2d, which corresponded to (101)and (110) plane of anatase and rutile, respectively [40].The element mappings demonstrated the homogeneous distribution of Ti and O in TiO2-A-R (Fig.2e).These results further confirmed the successful synthesis of mixed-phase titanium dioxide.

    In order to probe the surface chemical compositions and the binding configuration of all the samples, X-ray photoelectron spectroscopy (XPS) measurement was performed.P25 and TiO2-R show the peaks located at 458.9 and 464.6 eV corresponding to Ti 2p3/2and Ti 2p1/2(Fig.3a).These peaks of TiO2-A slightly shifted to lower binding energies.Notably, a clearly negative shift was also observed in the TiO2-A-R, indicating the existence of Ti3+[41].Meanwhile, the O 1s XPS spectra of TiO2-A-R presented two peaks centered at ~529.8 and ~531.6 eV (Fig.3b), representing for the lattice oxygen and oxygen vacancy, respectively [7].And the area ratio of oxygen vacancy peak (named O2) to the sum area of the O1 and O2 peaks (named Os) is shown in Table S2 (Supporting information).The O2/Os of TiO2-A-R had the largest percentage(22.7%), which demonstrated that oxygen vacancy rooted more in the TiO2-A-R sample [28].

    Fig.2.(a, b) TEM images, (c) SAED pattern, (d) HRTEM image, (e) SEM image and corresponding elemental mappings of TiO2-A-R sample.

    Fig.3.XPS spectra of (a) Ti 2p and (b) O 1s over TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Moreover, the strong electron paramagnetic resonance (EPR)signal (Fig.4a) in TiO2-A-R with a g-value of 2.001 further verified the existence of oxygen vacancy [42], which might play a vital role in promoting the rapid conversion of nitrate as previously reported [28].Furthermore, the catalysts’activities are closely related to their surface properties such as alkaline and acidity properties [43].Moreover, the NO3?presents Lewis base due to its electronegativity, which implies that it is easier to combine with the Lewis acid catalyst surface [44,45].Thus temperature-programmed desorption of ammonia (NH3-TPD) of P25 and TiO2-A-R were performed from 50 °C to 800 °C to find out their surface properties,and the curves were illustrated in Fig.4b [46,47].The desorption peaks of NH3located below 200 °C, 200–400 °C and above 400 °C are considered as indicators of the weak, medium and strong acid sites, respectively [48].P25 exhibited three NH3desorption peaks at 200, 487 and 611 °C, respectively.The former one is assigned to the weak acid sites and the other two peaks are indexed to the strong acid sites.As comparison, there are only medium (suggested by the peaks at 277 and 384 °C) and strong acid sites (suggested by the peaks at 540, 606 and 706 °C) observed, demonstrating its more acidic surface.As displayed in Table S3 (Supporting information), TiO2-A-R shows a larger peak area than that of P25, confirming there are more active sites to possibly absorb and reduce the NO3?[44,49].

    Fig.4.(a) EPR spectra of TiO2-A-R, TiO2-R, TiO2-A and P25 samples.(b) NH3-TPD analysis over TiO2-A-R and P25 sample.

    Normally, NO3?could be reduced to N2, NO2?and ammonium(NH4+), but both NO2?and NH4+are hazardous to the environment.An ideal photocatalyst should have high NO3?conversion and good N2selectivity [24,50].In order to inhibit the rapid recombination of electron-hole pairs, formic acid (FA) was selected as a hole scavenger in this reaction [51].To exclude the catalytic effect of FA on NO3?reduction, we conducted a control experiment (in FA without photocatalyst added) and the results were shown in Fig.S3a (Supporting information).No catalytic activity was observed in the absence of the photocatalyst, and thus we can conclude that FA itself will not react with NO3?and promote NO3?reduction.Then, TiO2-A-R (0.060 g) and various amounts of FA were dispersed into 60 mL nitrate solution (50 mg/L) to evaluate the optimal photocatalytic performance.As shown in Figs.5a-c, the activity sequence involving different amounts of FA were summarized as 5 mL FA ≈4 mL FA>3 mL FA.Meanwhile, almost no NO2?was detected in the reaction process of the three controlled trials.When the reaction progressed to 120 min, the average conversion of NO3?involving 3 mL FA was 98%, the average selectivity of N2and NH4+were 88% and 12%, respectively.The experiments with 4 mL or 5 mL FA showed similar nitrate conversion (almost 100%),N2selectivity (89%) and NH4+selectivity (11%).Therefore, we determined adding 4 mL FA as the optimal hole scavenger amount for this reaction.

    According to the literature, different hole scavengers such as oxalic acid (OC) and methanol may also be favorable for the photocatalytic nitrate reduction [50].Thus, the 4 mL 0.1 mol/L methanol and OC solution was introduced for photocatalytic NO3?(50 mg/L)reduction experiment as shown in Fig.5d.The OC involving system demonstrated the NO3?conversion of 11% and the 78% N2selectivity, which were much lower than that of FA.No NO3?conversions were observed in methanol involving system or hole scavengers absence system, indicating that FA significantly improved the photocatalytic activity [24].Based on the previous study [51],we confirm that carbon dioxide anion radical (CO2??) generated by reacting FA with photogenerated holes of photocatalyst has strong reductive ability for NO3?conversion to N2.Then, EPR test was carried out to probe the production of CO2??in the TiO2-A-R system.As shown in Fig.6, no signals were detected under dark conditions.While under light irradiation, a six-line DMPOCO2??spin adduct signal was formed with hyperfine parameter of magnetic factorg=2.0059 (Fig.S3b in Supporting information), which can be assigned to reductive CO2??species for further promoting NO3?degradation [52–54].These results clearly indicated the important promoted effect of FA in the photocatalytic NO3?reduction reaction using noble-metal free TiO2as photocatalysts.

    Fig.5.Photocatalytic nitrate reduction activity of TiO2-A-R (a-c) with 3–5 mL formic acid and (d) with different hole scavengers.

    Fig.6.DMPO spin-trapping EPR spectra of TiO2-A-R.

    In order to compare the contribution of TiO2-A-R, the performance of TiO2-A, TiO2-R and commercial P25 were evaluated in 4 mL FA and NO3?(50 mg/L) mixture solution system (Figs.7a-c.).The photocatalytic removal rate of these samples followed the order of TiO2-A-R (100%)>TiO2-A (82%)>P25 (61%)>TiO2-R (36%).And the selectivity of N2presented the trend of TiO2-A-R (89%)>TiO2-A (88%)>P25 (87%)>TiO2-R (80%).Obviously, TiO2-A-R showed the enhanced ability of NO3?reduction, which may be attributed to the existence of Ov and acid sites [28].In addition, the cycling durability of TiO2-A-R was conducted and displayed in Fig.7d.After five cycles, the photocatalyst still had 98% NO3?conversion, demonstrating its great stability and big potential for practical application.Moreover, when the concentration of the initial NO3?solution was diluted to 30 mg/L (Fig.8a), the NO3?conversion was achieved 100% after 90 min reaction and the selectivity of N2and NH4+reached 86% and 14%, respectively.Even when the NO3?concentration was increased to 100 mg/L, a high NO3?removal of 77% and N2selectivity of 91% were achieved after 120 min reaction (Fig.8b), implying the excellent activity of TiO2-A-R in a wide NO3?concentrations range.

    Fig.7.Photocatalytic nitrate reduction activity of (a) P25, (b) TiO2-A, and (c) TiO2-R samples.(d) Cycling stability test of TiO2-A-R.

    Fig.8.Photocatalytic nitrate reduction activity over the TiO2-A-R sample involving different NO3?initial concentrations of (a) 30 and (b) 100 mg/L.

    The photocurrent response (Fig.9a) was carried out to evaluate the charge transport properties [10].Compared with commercial P25, TiO2-A-R has a higher photocurrent density, which demonstrates the improved light source usage rate and effective separation of e?and h+excited by photons [55].In addition, the steadystate photoluminescence (PL) spectrum was measured to investigate the electrons and holes recombination (Fig.9b).Notably, a lower emission peak of TiO2-A-R can be obtained, demonstrating the improved charge carrier separation efficiency [56].And TiO2-AR showed the smaller radius under dark and 365 nm UV-LED irradiation (Figs.9c and d), indicating a better conductivity [9].These factors co-contributed the excellent NO3?conversion and good N2selectivity.

    Fig.9.(a) Photocurrent density, (b) PL spectra (ex=290 nm), electrochemical impedance spectra (c) in dark and (d) light irradiation of TiO2-A-R and P25 samples.

    Based on the above discussion, the possible NO3?degradation mechanism is proposed as shown in Scheme 2.Firstly, TiO2-A-R is excited to produce photo-generated electron-hole pairs under the UV-LED irradiation (Eq.5).Then the electrons are consumed by NO3?to generate N2or NH4+(Eqs.6 and 7) [24].Meanwhile,the photo-generated holes are scavenged by FA to produce CO2??species, which further reduces NO3?to N2(Eqs.8 and 9) [8,44,57-59].

    In conclusion, the mixed TiO2photocatalyst with oxygen vacancy was successfully synthesizedviaa facile microwave-assisted method.It has a NO3?conversion up toca.100% under 2 h ultraviolet radiation, which is much high than that of commercial P25(61%).Moreover, the N2selectivity is as high as 89%.This work provides a novel strategy to design noble metal free photocatalysts for cheap, safe and efficient nitrate removal.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2020YFA0211004), and National Natural Science Foundation of China (Nos.21876112, 21876113,22022608, 92034301), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No.D18020),Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Engineering Research Center of Green Energy Chemical Engineering (Nos.18DZ2254200)and Shanghai government (Nos.18SG41, 309-AC9103–21–413002,19YF1436600).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.025.

    高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 80岁老熟妇乱子伦牲交| 天堂中文最新版在线下载 | 亚洲经典国产精华液单| 久久久久精品久久久久真实原创| 在线观看免费高清a一片| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 国产av码专区亚洲av| 亚洲精品,欧美精品| 97超视频在线观看视频| 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 看十八女毛片水多多多| 久久这里只有精品中国| 日韩成人av中文字幕在线观看| 一本一本综合久久| videos熟女内射| 伦精品一区二区三区| 男女啪啪激烈高潮av片| 欧美另类一区| 久久精品夜色国产| 欧美变态另类bdsm刘玥| 亚洲精品久久久久久婷婷小说| 九色成人免费人妻av| 免费观看的影片在线观看| 高清毛片免费看| 欧美一级a爱片免费观看看| 国产乱人偷精品视频| 日本熟妇午夜| 国产不卡一卡二| 一个人免费在线观看电影| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 美女主播在线视频| 久久韩国三级中文字幕| 伊人久久国产一区二区| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 亚洲高清免费不卡视频| 老女人水多毛片| 人人妻人人澡人人爽人人夜夜 | 亚洲精品日本国产第一区| 国产综合懂色| 成人亚洲欧美一区二区av| 久久精品国产自在天天线| 一个人免费在线观看电影| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 日韩不卡一区二区三区视频在线| 大片免费播放器 马上看| 一级av片app| 国产午夜精品论理片| 熟女电影av网| freevideosex欧美| 免费观看性生交大片5| 一级av片app| 不卡视频在线观看欧美| 亚洲国产av新网站| 亚洲四区av| 国产精品麻豆人妻色哟哟久久 | 少妇熟女欧美另类| 国产成人精品福利久久| 七月丁香在线播放| 大香蕉97超碰在线| 中文字幕av在线有码专区| 在线观看av片永久免费下载| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 国产精品一区二区三区四区久久| 国产精品久久久久久精品电影小说 | 男女啪啪激烈高潮av片| 亚洲av电影在线观看一区二区三区 | 久久99热6这里只有精品| 亚洲精品一二三| 2021天堂中文幕一二区在线观| 国产精品日韩av在线免费观看| 亚洲人与动物交配视频| 欧美+日韩+精品| 只有这里有精品99| 午夜亚洲福利在线播放| 女的被弄到高潮叫床怎么办| 熟女电影av网| 久久久国产一区二区| 51国产日韩欧美| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 啦啦啦中文免费视频观看日本| 两个人视频免费观看高清| 久久人人爽人人片av| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| 国产淫片久久久久久久久| av专区在线播放| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 国产在视频线在精品| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 在线免费十八禁| 小蜜桃在线观看免费完整版高清| av在线观看视频网站免费| 久久99热这里只频精品6学生| 亚洲人成网站在线播| .国产精品久久| 色吧在线观看| 在线免费十八禁| 亚洲欧美成人精品一区二区| 精品国产三级普通话版| 中文乱码字字幕精品一区二区三区 | 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 亚洲av电影不卡..在线观看| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 国产免费一级a男人的天堂| 精品午夜福利在线看| 午夜爱爱视频在线播放| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 亚洲一区高清亚洲精品| 全区人妻精品视频| 激情五月婷婷亚洲| 亚洲人成网站在线播| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在| 精品久久国产蜜桃| 日本黄色片子视频| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 三级经典国产精品| 亚洲欧洲日产国产| a级毛色黄片| 麻豆乱淫一区二区| 女人被狂操c到高潮| 成人午夜精彩视频在线观看| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 成年女人在线观看亚洲视频 | 亚洲怡红院男人天堂| 久久久色成人| 欧美变态另类bdsm刘玥| www.色视频.com| 国产精品熟女久久久久浪| 精品久久久久久久人妻蜜臀av| 美女大奶头视频| 欧美日韩国产mv在线观看视频 | 日韩欧美国产在线观看| 国产精品福利在线免费观看| 国产亚洲精品久久久com| a级一级毛片免费在线观看| 亚洲欧美精品专区久久| 高清欧美精品videossex| 天堂av国产一区二区熟女人妻| 久久99蜜桃精品久久| 成人午夜高清在线视频| 国产成人a区在线观看| 日日啪夜夜撸| 国语对白做爰xxxⅹ性视频网站| 欧美潮喷喷水| 免费播放大片免费观看视频在线观看| 午夜精品在线福利| 久久久久国产网址| 亚洲国产欧美人成| 直男gayav资源| 国产爱豆传媒在线观看| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 免费电影在线观看免费观看| 久久久久性生活片| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 高清在线视频一区二区三区| 国产三级在线视频| 春色校园在线视频观看| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜精品国产一区二区电影 | 中文字幕av成人在线电影| 免费观看无遮挡的男女| 欧美潮喷喷水| 99热网站在线观看| 一级av片app| 天堂中文最新版在线下载 | 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 日韩大片免费观看网站| 18禁动态无遮挡网站| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品50| 日韩精品有码人妻一区| 亚洲成人久久爱视频| 国产毛片a区久久久久| 日韩三级伦理在线观看| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 欧美另类一区| 丝袜喷水一区| 日韩伦理黄色片| 国产精品久久久久久精品电影小说 | 91精品国产九色| 国产精品一区二区性色av| 69人妻影院| 国产精品麻豆人妻色哟哟久久 | 老女人水多毛片| av播播在线观看一区| 午夜福利视频1000在线观看| 国产成人精品福利久久| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| av在线观看视频网站免费| 最近手机中文字幕大全| 精品酒店卫生间| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 身体一侧抽搐| 能在线免费看毛片的网站| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 一个人看的www免费观看视频| 国产av不卡久久| 午夜精品国产一区二区电影 | 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| av在线亚洲专区| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 国产av在哪里看| 国产亚洲精品久久久com| 亚洲最大成人中文| 免费大片18禁| 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 亚洲不卡免费看| freevideosex欧美| 水蜜桃什么品种好| 日本黄大片高清| 欧美激情在线99| 国产又色又爽无遮挡免| 亚洲av男天堂| 久久久久久久国产电影| 两个人的视频大全免费| 亚洲va在线va天堂va国产| 欧美+日韩+精品| 一级a做视频免费观看| 别揉我奶头 嗯啊视频| 国产精品福利在线免费观看| 97精品久久久久久久久久精品| 久久久久久久久久人人人人人人| 一区二区三区四区激情视频| 国产精品99久久久久久久久| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 久久久午夜欧美精品| 男插女下体视频免费在线播放| 国产精品麻豆人妻色哟哟久久 | 国产单亲对白刺激| .国产精品久久| 97超视频在线观看视频| 久久久久久久久久久丰满| 久久99蜜桃精品久久| 成人性生交大片免费视频hd| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 在线a可以看的网站| 国产综合精华液| a级一级毛片免费在线观看| 免费电影在线观看免费观看| av黄色大香蕉| 欧美日韩精品成人综合77777| 国产中年淑女户外野战色| 亚洲国产高清在线一区二区三| 69人妻影院| 亚洲精华国产精华液的使用体验| 天堂√8在线中文| 国产在线一区二区三区精| av免费观看日本| 欧美xxxx性猛交bbbb| 插逼视频在线观看| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 乱人视频在线观看| 午夜免费男女啪啪视频观看| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 国产av不卡久久| 国产亚洲av片在线观看秒播厂 | 婷婷色av中文字幕| 2021天堂中文幕一二区在线观| 久久久久精品性色| 国产免费一级a男人的天堂| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 日本免费a在线| 波多野结衣巨乳人妻| 国产精品人妻久久久影院| 伊人久久国产一区二区| www.色视频.com| 精品99又大又爽又粗少妇毛片| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 性色avwww在线观看| 网址你懂的国产日韩在线| 一夜夜www| av在线亚洲专区| 淫秽高清视频在线观看| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 精品一区二区三卡| 亚洲av成人av| 免费观看精品视频网站| 精品久久久久久久久av| 亚洲在线自拍视频| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| av免费在线看不卡| av在线老鸭窝| 五月玫瑰六月丁香| 亚洲在线自拍视频| 一级片'在线观看视频| 在线观看人妻少妇| 国产一区亚洲一区在线观看| 国产 一区 欧美 日韩| 日本wwww免费看| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲精品日韩av片在线观看| 中文字幕制服av| 精品人妻视频免费看| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 老司机影院成人| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 熟女电影av网| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 白带黄色成豆腐渣| 久久午夜福利片| 老司机影院毛片| 91精品伊人久久大香线蕉| 欧美不卡视频在线免费观看| av卡一久久| 亚洲经典国产精华液单| 插阴视频在线观看视频| 国产成人精品久久久久久| 美女cb高潮喷水在线观看| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| 我的老师免费观看完整版| 亚洲四区av| 身体一侧抽搐| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 久久6这里有精品| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 色尼玛亚洲综合影院| 99久久精品热视频| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 美女主播在线视频| 一本一本综合久久| 黄色配什么色好看| 偷拍熟女少妇极品色| 麻豆成人av视频| 国产亚洲最大av| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 日韩在线高清观看一区二区三区| 一个人免费在线观看电影| 久久鲁丝午夜福利片| 嫩草影院新地址| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 黄色日韩在线| 99久久精品国产国产毛片| 精品一区二区三区人妻视频| 国产麻豆成人av免费视频| 婷婷色麻豆天堂久久| 国产视频内射| 欧美日韩精品成人综合77777| 亚洲精品国产av蜜桃| 欧美日本视频| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 一夜夜www| 99久久九九国产精品国产免费| 天天躁日日操中文字幕| 天堂中文最新版在线下载 | 嘟嘟电影网在线观看| 久久精品国产自在天天线| 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 国产高清三级在线| 欧美精品国产亚洲| 18+在线观看网站| 欧美性感艳星| 成年版毛片免费区| 亚洲欧美清纯卡通| 国产精品综合久久久久久久免费| 韩国高清视频一区二区三区| 美女主播在线视频| 国产大屁股一区二区在线视频| 在线免费观看的www视频| 国产免费又黄又爽又色| 亚洲精品国产成人久久av| 欧美+日韩+精品| 91久久精品国产一区二区成人| 国产黄片美女视频| 日本欧美国产在线视频| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 国产伦精品一区二区三区视频9| 最近最新中文字幕大全电影3| 一级片'在线观看视频| 国产又色又爽无遮挡免| 国产高清有码在线观看视频| 国产老妇女一区| 一本一本综合久久| 免费高清在线观看视频在线观看| 欧美极品一区二区三区四区| 国产精品一及| 久久精品熟女亚洲av麻豆精品 | 精品一区二区三卡| av在线天堂中文字幕| 国产毛片a区久久久久| 性色avwww在线观看| 国产高潮美女av| 国产中年淑女户外野战色| 国产 一区精品| 亚洲国产成人一精品久久久| 97超视频在线观看视频| 18+在线观看网站| 两个人视频免费观看高清| 美女脱内裤让男人舔精品视频| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版 | 成年女人看的毛片在线观看| 国产中年淑女户外野战色| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 欧美潮喷喷水| 免费观看性生交大片5| 国产老妇女一区| 亚洲国产成人一精品久久久| 国产成人91sexporn| 精品久久久噜噜| 国产亚洲最大av| 免费大片黄手机在线观看| 精品久久久精品久久久| 日韩av不卡免费在线播放| 国产精品一二三区在线看| 久久精品国产自在天天线| 免费黄频网站在线观看国产| 男女国产视频网站| 国产毛片a区久久久久| 男插女下体视频免费在线播放| 精品人妻偷拍中文字幕| 亚洲av不卡在线观看| 高清日韩中文字幕在线| 国产又色又爽无遮挡免| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 狂野欧美白嫩少妇大欣赏| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 日韩强制内射视频| 在线播放无遮挡| 久久韩国三级中文字幕| 纵有疾风起免费观看全集完整版 | 日韩一本色道免费dvd| 国产v大片淫在线免费观看| 日韩大片免费观看网站| 亚洲国产日韩欧美精品在线观看| 六月丁香七月| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看| 高清视频免费观看一区二区 | 在线观看av片永久免费下载| 晚上一个人看的免费电影| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 成人午夜高清在线视频| 永久免费av网站大全| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品一区二区三区| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产专区5o| 日韩制服骚丝袜av| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 亚洲精品亚洲一区二区| av线在线观看网站| 欧美另类一区| 国产精品1区2区在线观看.| 久久久久网色| av免费观看日本| 国产免费又黄又爽又色| 最近中文字幕高清免费大全6| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利在线观看吧| 男的添女的下面高潮视频| 成人亚洲精品av一区二区| 天堂√8在线中文| 久久鲁丝午夜福利片| 亚洲精品日本国产第一区| 美女大奶头视频| 国产日韩欧美在线精品| 日本爱情动作片www.在线观看| 国产一级毛片七仙女欲春2| 女人被狂操c到高潮| 国产欧美另类精品又又久久亚洲欧美| 搞女人的毛片| 中文乱码字字幕精品一区二区三区 | 国产老妇伦熟女老妇高清| 精品人妻视频免费看| 亚洲在线自拍视频| 日日干狠狠操夜夜爽| 我的老师免费观看完整版| 亚洲av不卡在线观看| 国产成人福利小说| 成人亚洲精品一区在线观看 | 狂野欧美激情性xxxx在线观看| 国产精品1区2区在线观看.| 99热6这里只有精品| 国产伦精品一区二区三区视频9| 中文字幕av在线有码专区| videossex国产| 国产av在哪里看| 久久久a久久爽久久v久久| 少妇裸体淫交视频免费看高清| 亚洲国产高清在线一区二区三| 亚洲成人一二三区av| 亚洲熟妇中文字幕五十中出| 岛国毛片在线播放| 51国产日韩欧美| 亚洲国产精品专区欧美| 国产午夜精品论理片| 午夜精品在线福利| 男人舔女人下体高潮全视频| 欧美变态另类bdsm刘玥| 午夜老司机福利剧场| 国产午夜精品久久久久久一区二区三区| 中文在线观看免费www的网站| 听说在线观看完整版免费高清| 夜夜看夜夜爽夜夜摸| 国产v大片淫在线免费观看| 日本猛色少妇xxxxx猛交久久| h日本视频在线播放| 99热6这里只有精品| 亚洲一级一片aⅴ在线观看| 十八禁网站网址无遮挡 | 日本午夜av视频| 大又大粗又爽又黄少妇毛片口| 69av精品久久久久久| 身体一侧抽搐| 欧美成人午夜免费资源| 青春草亚洲视频在线观看| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| 激情五月婷婷亚洲| 欧美日韩一区二区视频在线观看视频在线 | 久久久久精品性色| 日韩制服骚丝袜av| 国产伦一二天堂av在线观看| 亚洲精品日本国产第一区| 精品国产三级普通话版| 国产精品不卡视频一区二区| 高清欧美精品videossex| 美女大奶头视频| 久久久精品免费免费高清| 欧美成人一区二区免费高清观看| 久久99蜜桃精品久久| 啦啦啦韩国在线观看视频| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 久久这里有精品视频免费| 亚洲精品影视一区二区三区av| 久久99精品国语久久久| 大又大粗又爽又黄少妇毛片口| 美女内射精品一级片tv| 亚洲成人精品中文字幕电影| 成人欧美大片| 国产在视频线精品| 十八禁网站网址无遮挡 | eeuss影院久久| 午夜免费男女啪啪视频观看| 国产亚洲av嫩草精品影院|