• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction

    2022-09-16 05:24:38QinLiYunniLiuZheWnHiynCoShoZhngYueZhouXingyuYeXioynLiuDieqingZhng
    Chinese Chemical Letters 2022年8期

    Qin Li, Yunni Liu, Zhe Wn, Hiyn Co, Sho Zhng, Yue Zhou, Xingyu Ye,Xioyn Liu,?, Dieqing Zhng,?

    a The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

    b School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

    ABSTRACT The solar-driven photocatalytic technology has shown great potential in nitrate (NO3?) pollutants reduction, however, it has been greatly hindered by the complex preparation and high cost of photocatalysts.Herein, a relatively low-cost photocatalyst, rutile and anatase mixed phase TiO2 was synthesized by a facile microwave-hydrothermal method.Meanwhile, oxygen vacancy is successfully generated, leading to an acidic surface for strong adsorption towards NO3?, which further improved the reduction activity.Compared with the commercial P25, a higher NO3?conversion of ca. 100% and nitrogen (N2) selectivity of 87% were achieved under UV (365 nm) irradiation within 2 h.This research provides a promising strategy for designing efficient noble metal free photocatalyst in the NO3?reduction.

    Keywords:Photocatalysis TiO2 Oxygen vacancy Nitrate reduction

    Nitrogen (N) is an essential nutrient, but when its concentration accumulated to some threshold value, it could be a source of pollution in water or the atmosphere [1].Nitrates (NO3?) as one of the most common N species contaminants in the world, was mainly resulting from the use of nitrogen fertilizers and the dung from large animal farms [2].However, high intake of nitrate would appear a serious threat to human health, such as an increased risk of natural preterm birth and central nervous system cancers (CNC)in children [2–4].Furthermore, the nitrate can be reduced to dangerous chemicals, including nitrite (NO2?), which caused blue baby syndrome [5].Thus, many strategies such as reverse osmosis, electrodialysis and ion exchange have been widely studied for removing nitrate from ground water [6].However, these works highly concentrated on the nitrate conversion into brines instead of removing it to harmless nitrogen (N2) [7,8].

    Photocatalysis as an environment-friendly technology shows great potentials in pollutant removal by directly using solar energy [9–13].As a semiconductor, titanium dioxide (TiO2) has been widely used in photocatalytic nitrogen oxides (NOx) oxidation[10,11,14-17], carbon dioxide (CO2) reduction [18], hydrogen (H2)production [19] and removal of volatile organic pollutants (VOCs),etc.[20], due to its low-cost, nontoxicity and good stability [21,22].However, its application in NO3?conversion has been limited because of the low efficiency of traditional TiO2.Noble metals(e.g., Pd, Au, and Ag) loaded TiO2have been developed for promoted denitrification performance (Table S1 in Supporting information).However, this noble metal involving strategy greatly increased the cost, which is not practical for large-scale application[8,23,24].TiO2with oxygen vacancies has attracted intensive attention in photocatalytic NOxremoval, H2evolution and CO2reduction [25–27] owing to the improved charge separation and reactant molecules adsorption.TiO2materials with oxygen vacancies are traditionally produced by hydrogen reduction or NaBH4reduction, both of which are time and energy consuming [28].

    Herein, the mixed anatase and rutile phase TiO2(TiO2-A-R)with oxygen vacancies and proper acid sites was successfully prepared by a simple microwave hydrothermal method.The obtained TiO2-A-R showed outstanding photocatalytic NO3?conversion ofca.100% and high N2selectivity of 89% under ultraviolet irradiation.This study will provide a novel approach for efficient and low-cost nitrate removal from water.

    The synthetic procedure of TiO2-A-R was illustrated in Scheme 1.In a typical process, potassium titanium oxide oxalate dihydrate and sodium chloride were dispersed in the mixed solution of ethanol and water, keeping stirring for 15 min.Then the as-prepared solution was transferred to the microwave reaction chamber for further microwave treatment under 200 °C for 30 min.As comparison, pure rutile (TiO2-R) and pure anatase (TiO2-A)were prepared.As shown in Fig.1a, the TiO2-A-R shows the typical X-ray diffraction (XRD) peaks of rutile and anatase phases, which are similar to the commercial P25.Besides, according to the peak intensity, the weight fraction of the rutile in TiO2-A-R,WRcan be calculated from the formula (Eq.1) [29,30].And the weight fraction of the anatase in TiO2-A-R,WAcan be calculated from the formula as follows (Eq.2) [31]:

    Scheme 1.Schematic illustration of the synthesis processes of TiO2-A-R.

    Fig.1.(a) The XRD pattern, (b) UV–vis DRS spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distributions of TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Scheme 2.Schematic illustration of photocatalytic reduction mechanism of NO3?.

    In formula,AanaandArutrepresented the diffraction peaks intensity of anatase (101) and rutile (110), respectively.Based on the XRD results, the anatase content of TiO2-A-R was estimated to be 84 wt%.The ultraviolet-visible diffuse reflectance spectra (UV–vis DRS) in Fig.1b demonstrated that all samples exhibited spectral absorption at 365 nm, which ensured the photocatalyst could be effectively excited under 365 nm irradiation.In addition, based on the UV–vis results, the band gap energy (Eg) of the TiO2-A-R was calculated as followed (Eq.3):

    whereα,h,v, A andEgrepresented the absorption coefficient, the Planck constant, the light frequency, the constant and band gap,respectively [32].Furthermore,nwas equal to 1/2 or 2 for an indirect or direct band gap semiconductors, respectively.Thus, the estimatedEgof TiO2-A-R is 3.18 eV (Fig.S1 in Supporting information).The calculated flat band potential (EFB) value of TiO2-A-R as shown in Fig.S2 (Supporting information) was –0.95 Vvs.SCE, which is corresponding to ?0.29 Vvs.NHE.Besides, TiO2-A-R as an n-type semiconductor, the conduction band (ECB) was 0.2 V belowEFB[33].Thus,ECBlevel of TiO2-A-R was ?0.49 eV.And the valence band(VB) was 2.69 eV, which was obtained according to the formula Eq.4 [32,34]:

    The nitrogen adsorption-desorption isotherms and pore size distributions were displayed in Figs.1c and d.All the samples showed typical IV isotherms and a pore size distribution ranging from 2 nm to 50 nm, indicating the mesoporous structures.The detailed surfaces areas, pore size and pore volume were listed in Table 1.Compared with other photocatalysts [35–37], TiO2-A-R had the distinguishing features of larger Brunauer-Emmett-Teller (BET)surface area (97.6 m2/g), the greater pore volume (0.3 cm3/g) and the pore diameter (11.4 nm), which might significantly enhance its adsorption ability of reactants and therefore facilitate the targeted reaction [38].

    Table 1 BET properties of TiO2-A-R, TiO2-A, TiO2-R and P25 photocatalysts.

    TEM images in Figs.2a and b suggested that TiO2-A-R was composed of flaky petal-like structure.Moreover, obvious diffraction rings could be observed in Fig.2c (the selected area electron diffraction, SAED), indicating the TiO2-A-R had good crystallinity[39].Meanwhile, the lattice spacing of 0.351 nm and 0.325 nm were also clearly detected in Fig.2d, which corresponded to (101)and (110) plane of anatase and rutile, respectively [40].The element mappings demonstrated the homogeneous distribution of Ti and O in TiO2-A-R (Fig.2e).These results further confirmed the successful synthesis of mixed-phase titanium dioxide.

    In order to probe the surface chemical compositions and the binding configuration of all the samples, X-ray photoelectron spectroscopy (XPS) measurement was performed.P25 and TiO2-R show the peaks located at 458.9 and 464.6 eV corresponding to Ti 2p3/2and Ti 2p1/2(Fig.3a).These peaks of TiO2-A slightly shifted to lower binding energies.Notably, a clearly negative shift was also observed in the TiO2-A-R, indicating the existence of Ti3+[41].Meanwhile, the O 1s XPS spectra of TiO2-A-R presented two peaks centered at ~529.8 and ~531.6 eV (Fig.3b), representing for the lattice oxygen and oxygen vacancy, respectively [7].And the area ratio of oxygen vacancy peak (named O2) to the sum area of the O1 and O2 peaks (named Os) is shown in Table S2 (Supporting information).The O2/Os of TiO2-A-R had the largest percentage(22.7%), which demonstrated that oxygen vacancy rooted more in the TiO2-A-R sample [28].

    Fig.2.(a, b) TEM images, (c) SAED pattern, (d) HRTEM image, (e) SEM image and corresponding elemental mappings of TiO2-A-R sample.

    Fig.3.XPS spectra of (a) Ti 2p and (b) O 1s over TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Moreover, the strong electron paramagnetic resonance (EPR)signal (Fig.4a) in TiO2-A-R with a g-value of 2.001 further verified the existence of oxygen vacancy [42], which might play a vital role in promoting the rapid conversion of nitrate as previously reported [28].Furthermore, the catalysts’activities are closely related to their surface properties such as alkaline and acidity properties [43].Moreover, the NO3?presents Lewis base due to its electronegativity, which implies that it is easier to combine with the Lewis acid catalyst surface [44,45].Thus temperature-programmed desorption of ammonia (NH3-TPD) of P25 and TiO2-A-R were performed from 50 °C to 800 °C to find out their surface properties,and the curves were illustrated in Fig.4b [46,47].The desorption peaks of NH3located below 200 °C, 200–400 °C and above 400 °C are considered as indicators of the weak, medium and strong acid sites, respectively [48].P25 exhibited three NH3desorption peaks at 200, 487 and 611 °C, respectively.The former one is assigned to the weak acid sites and the other two peaks are indexed to the strong acid sites.As comparison, there are only medium (suggested by the peaks at 277 and 384 °C) and strong acid sites (suggested by the peaks at 540, 606 and 706 °C) observed, demonstrating its more acidic surface.As displayed in Table S3 (Supporting information), TiO2-A-R shows a larger peak area than that of P25, confirming there are more active sites to possibly absorb and reduce the NO3?[44,49].

    Fig.4.(a) EPR spectra of TiO2-A-R, TiO2-R, TiO2-A and P25 samples.(b) NH3-TPD analysis over TiO2-A-R and P25 sample.

    Normally, NO3?could be reduced to N2, NO2?and ammonium(NH4+), but both NO2?and NH4+are hazardous to the environment.An ideal photocatalyst should have high NO3?conversion and good N2selectivity [24,50].In order to inhibit the rapid recombination of electron-hole pairs, formic acid (FA) was selected as a hole scavenger in this reaction [51].To exclude the catalytic effect of FA on NO3?reduction, we conducted a control experiment (in FA without photocatalyst added) and the results were shown in Fig.S3a (Supporting information).No catalytic activity was observed in the absence of the photocatalyst, and thus we can conclude that FA itself will not react with NO3?and promote NO3?reduction.Then, TiO2-A-R (0.060 g) and various amounts of FA were dispersed into 60 mL nitrate solution (50 mg/L) to evaluate the optimal photocatalytic performance.As shown in Figs.5a-c, the activity sequence involving different amounts of FA were summarized as 5 mL FA ≈4 mL FA>3 mL FA.Meanwhile, almost no NO2?was detected in the reaction process of the three controlled trials.When the reaction progressed to 120 min, the average conversion of NO3?involving 3 mL FA was 98%, the average selectivity of N2and NH4+were 88% and 12%, respectively.The experiments with 4 mL or 5 mL FA showed similar nitrate conversion (almost 100%),N2selectivity (89%) and NH4+selectivity (11%).Therefore, we determined adding 4 mL FA as the optimal hole scavenger amount for this reaction.

    According to the literature, different hole scavengers such as oxalic acid (OC) and methanol may also be favorable for the photocatalytic nitrate reduction [50].Thus, the 4 mL 0.1 mol/L methanol and OC solution was introduced for photocatalytic NO3?(50 mg/L)reduction experiment as shown in Fig.5d.The OC involving system demonstrated the NO3?conversion of 11% and the 78% N2selectivity, which were much lower than that of FA.No NO3?conversions were observed in methanol involving system or hole scavengers absence system, indicating that FA significantly improved the photocatalytic activity [24].Based on the previous study [51],we confirm that carbon dioxide anion radical (CO2??) generated by reacting FA with photogenerated holes of photocatalyst has strong reductive ability for NO3?conversion to N2.Then, EPR test was carried out to probe the production of CO2??in the TiO2-A-R system.As shown in Fig.6, no signals were detected under dark conditions.While under light irradiation, a six-line DMPOCO2??spin adduct signal was formed with hyperfine parameter of magnetic factorg=2.0059 (Fig.S3b in Supporting information), which can be assigned to reductive CO2??species for further promoting NO3?degradation [52–54].These results clearly indicated the important promoted effect of FA in the photocatalytic NO3?reduction reaction using noble-metal free TiO2as photocatalysts.

    Fig.5.Photocatalytic nitrate reduction activity of TiO2-A-R (a-c) with 3–5 mL formic acid and (d) with different hole scavengers.

    Fig.6.DMPO spin-trapping EPR spectra of TiO2-A-R.

    In order to compare the contribution of TiO2-A-R, the performance of TiO2-A, TiO2-R and commercial P25 were evaluated in 4 mL FA and NO3?(50 mg/L) mixture solution system (Figs.7a-c.).The photocatalytic removal rate of these samples followed the order of TiO2-A-R (100%)>TiO2-A (82%)>P25 (61%)>TiO2-R (36%).And the selectivity of N2presented the trend of TiO2-A-R (89%)>TiO2-A (88%)>P25 (87%)>TiO2-R (80%).Obviously, TiO2-A-R showed the enhanced ability of NO3?reduction, which may be attributed to the existence of Ov and acid sites [28].In addition, the cycling durability of TiO2-A-R was conducted and displayed in Fig.7d.After five cycles, the photocatalyst still had 98% NO3?conversion, demonstrating its great stability and big potential for practical application.Moreover, when the concentration of the initial NO3?solution was diluted to 30 mg/L (Fig.8a), the NO3?conversion was achieved 100% after 90 min reaction and the selectivity of N2and NH4+reached 86% and 14%, respectively.Even when the NO3?concentration was increased to 100 mg/L, a high NO3?removal of 77% and N2selectivity of 91% were achieved after 120 min reaction (Fig.8b), implying the excellent activity of TiO2-A-R in a wide NO3?concentrations range.

    Fig.7.Photocatalytic nitrate reduction activity of (a) P25, (b) TiO2-A, and (c) TiO2-R samples.(d) Cycling stability test of TiO2-A-R.

    Fig.8.Photocatalytic nitrate reduction activity over the TiO2-A-R sample involving different NO3?initial concentrations of (a) 30 and (b) 100 mg/L.

    The photocurrent response (Fig.9a) was carried out to evaluate the charge transport properties [10].Compared with commercial P25, TiO2-A-R has a higher photocurrent density, which demonstrates the improved light source usage rate and effective separation of e?and h+excited by photons [55].In addition, the steadystate photoluminescence (PL) spectrum was measured to investigate the electrons and holes recombination (Fig.9b).Notably, a lower emission peak of TiO2-A-R can be obtained, demonstrating the improved charge carrier separation efficiency [56].And TiO2-AR showed the smaller radius under dark and 365 nm UV-LED irradiation (Figs.9c and d), indicating a better conductivity [9].These factors co-contributed the excellent NO3?conversion and good N2selectivity.

    Fig.9.(a) Photocurrent density, (b) PL spectra (ex=290 nm), electrochemical impedance spectra (c) in dark and (d) light irradiation of TiO2-A-R and P25 samples.

    Based on the above discussion, the possible NO3?degradation mechanism is proposed as shown in Scheme 2.Firstly, TiO2-A-R is excited to produce photo-generated electron-hole pairs under the UV-LED irradiation (Eq.5).Then the electrons are consumed by NO3?to generate N2or NH4+(Eqs.6 and 7) [24].Meanwhile,the photo-generated holes are scavenged by FA to produce CO2??species, which further reduces NO3?to N2(Eqs.8 and 9) [8,44,57-59].

    In conclusion, the mixed TiO2photocatalyst with oxygen vacancy was successfully synthesizedviaa facile microwave-assisted method.It has a NO3?conversion up toca.100% under 2 h ultraviolet radiation, which is much high than that of commercial P25(61%).Moreover, the N2selectivity is as high as 89%.This work provides a novel strategy to design noble metal free photocatalysts for cheap, safe and efficient nitrate removal.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2020YFA0211004), and National Natural Science Foundation of China (Nos.21876112, 21876113,22022608, 92034301), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No.D18020),Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Engineering Research Center of Green Energy Chemical Engineering (Nos.18DZ2254200)and Shanghai government (Nos.18SG41, 309-AC9103–21–413002,19YF1436600).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.025.

    videos熟女内射| 天美传媒精品一区二区| 日韩中字成人| 亚洲av二区三区四区| 久久久久久久国产电影| 成年人午夜在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品一二三| 久久精品国产亚洲av天美| 国产乱来视频区| 啦啦啦中文免费视频观看日本| 爱豆传媒免费全集在线观看| 免费高清在线观看视频在线观看| 九九在线视频观看精品| 熟女av电影| 亚洲第一av免费看| 亚洲国产成人一精品久久久| 性色avwww在线观看| 麻豆国产97在线/欧美| 亚洲天堂av无毛| 日本-黄色视频高清免费观看| 中文字幕久久专区| 久久久久久久国产电影| 久久久色成人| 青青草视频在线视频观看| 精品人妻视频免费看| 亚洲欧美一区二区三区黑人 | 久热这里只有精品99| 晚上一个人看的免费电影| 简卡轻食公司| 久久青草综合色| 又粗又硬又长又爽又黄的视频| 免费观看a级毛片全部| 国产爱豆传媒在线观看| 国产午夜精品一二区理论片| 亚洲国产精品国产精品| 国产在视频线精品| 国产精品欧美亚洲77777| 久久久成人免费电影| 亚洲精品视频女| 寂寞人妻少妇视频99o| 波野结衣二区三区在线| 国产成人一区二区在线| 最近最新中文字幕大全电影3| 91精品国产九色| 99热6这里只有精品| 国产精品一区www在线观看| 国内精品宾馆在线| 亚洲精品国产av成人精品| 久久青草综合色| 国产成人免费无遮挡视频| 日本午夜av视频| 永久网站在线| 日韩欧美一区视频在线观看 | 秋霞在线观看毛片| 欧美成人a在线观看| 亚洲国产欧美人成| 国产精品av视频在线免费观看| 亚洲精品aⅴ在线观看| 日韩,欧美,国产一区二区三区| kizo精华| 青春草视频在线免费观看| 在线观看免费视频网站a站| 久久这里有精品视频免费| 国产成人午夜福利电影在线观看| 国产成人freesex在线| 成人毛片60女人毛片免费| av免费观看日本| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂 | 三级经典国产精品| 中文天堂在线官网| 最近中文字幕2019免费版| www.av在线官网国产| 赤兔流量卡办理| 亚洲丝袜综合中文字幕| 成人二区视频| 亚洲精品成人av观看孕妇| 亚洲精品日本国产第一区| 成人无遮挡网站| 国产精品一区二区在线不卡| 久久人人爽人人爽人人片va| 久久精品久久久久久噜噜老黄| 有码 亚洲区| 亚洲国产精品一区三区| 深爱激情五月婷婷| 久久人人爽av亚洲精品天堂 | 成人一区二区视频在线观看| 精品一品国产午夜福利视频| 男人添女人高潮全过程视频| 女的被弄到高潮叫床怎么办| 国产精品一区www在线观看| 一区二区三区乱码不卡18| 日日摸夜夜添夜夜爱| 久久人人爽av亚洲精品天堂 | videos熟女内射| 尤物成人国产欧美一区二区三区| 韩国高清视频一区二区三区| 国内精品宾馆在线| 亚洲欧美清纯卡通| 国产成人a∨麻豆精品| 久久青草综合色| 综合色丁香网| 美女xxoo啪啪120秒动态图| 国产亚洲午夜精品一区二区久久| 我的女老师完整版在线观看| 亚洲av成人精品一二三区| 永久网站在线| 夫妻性生交免费视频一级片| 国产精品99久久久久久久久| 日日摸夜夜添夜夜添av毛片| 成年女人在线观看亚洲视频| 伊人久久国产一区二区| 嘟嘟电影网在线观看| 99热这里只有是精品在线观看| 人妻少妇偷人精品九色| 国产在视频线精品| 好男人视频免费观看在线| 最黄视频免费看| 日韩人妻高清精品专区| 成人毛片60女人毛片免费| 最近中文字幕2019免费版| 美女脱内裤让男人舔精品视频| 亚洲国产精品999| 亚洲在久久综合| 97超碰精品成人国产| 五月开心婷婷网| 大陆偷拍与自拍| 国产在线免费精品| 国产在线免费精品| 制服丝袜香蕉在线| 永久免费av网站大全| 中文天堂在线官网| 亚洲激情五月婷婷啪啪| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 久久精品久久久久久噜噜老黄| 国产成人91sexporn| 多毛熟女@视频| 成人漫画全彩无遮挡| 我要看日韩黄色一级片| 丰满乱子伦码专区| 久久ye,这里只有精品| 黄片wwwwww| 婷婷色综合大香蕉| 国产黄片美女视频| 色综合色国产| .国产精品久久| 亚洲国产高清在线一区二区三| 亚洲第一区二区三区不卡| 国产有黄有色有爽视频| 午夜福利网站1000一区二区三区| 国产熟女欧美一区二区| 免费观看在线日韩| 欧美精品一区二区大全| 九九在线视频观看精品| 欧美三级亚洲精品| 亚洲精品,欧美精品| 亚洲av国产av综合av卡| 最黄视频免费看| 日本vs欧美在线观看视频 | 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 亚洲av日韩在线播放| av网站免费在线观看视频| 边亲边吃奶的免费视频| 亚洲精品视频女| 久久99精品国语久久久| av播播在线观看一区| 国产午夜精品久久久久久一区二区三区| av在线观看视频网站免费| 亚洲欧美精品专区久久| 欧美精品一区二区免费开放| 亚洲精品乱久久久久久| 激情五月婷婷亚洲| 国精品久久久久久国模美| 久久韩国三级中文字幕| 夜夜骑夜夜射夜夜干| 一级黄片播放器| 香蕉精品网在线| 久久精品国产a三级三级三级| 精品亚洲乱码少妇综合久久| 亚洲国产毛片av蜜桃av| 久热这里只有精品99| 精品一品国产午夜福利视频| 一个人看的www免费观看视频| 色网站视频免费| av在线蜜桃| 日本av免费视频播放| 美女国产视频在线观看| 日日撸夜夜添| 日韩av免费高清视频| 精品一区在线观看国产| 深爱激情五月婷婷| 国产成人a∨麻豆精品| av不卡在线播放| 国产精品一区www在线观看| 国产亚洲一区二区精品| 直男gayav资源| 国产成人精品一,二区| 久热这里只有精品99| 精品少妇黑人巨大在线播放| 伦理电影大哥的女人| 一级毛片黄色毛片免费观看视频| 边亲边吃奶的免费视频| 久久99精品国语久久久| 国产精品av视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 精品午夜福利在线看| 激情 狠狠 欧美| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院入口| 国内精品宾馆在线| 久久人人爽人人片av| 91精品国产九色| 极品少妇高潮喷水抽搐| 另类亚洲欧美激情| 亚洲在久久综合| 人体艺术视频欧美日本| 这个男人来自地球电影免费观看 | 欧美日韩亚洲高清精品| 老熟女久久久| 在线观看免费视频网站a站| 伊人久久精品亚洲午夜| 全区人妻精品视频| 久久久亚洲精品成人影院| 久久久久精品久久久久真实原创| 久久久国产一区二区| 青春草亚洲视频在线观看| 我要看黄色一级片免费的| 国产乱来视频区| tube8黄色片| 赤兔流量卡办理| 欧美xxⅹ黑人| 国产精品无大码| 99久久精品热视频| 搡老乐熟女国产| 日韩免费高清中文字幕av| 亚洲欧美中文字幕日韩二区| 欧美3d第一页| 久久这里有精品视频免费| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 国产精品国产三级专区第一集| 精品人妻视频免费看| 日本vs欧美在线观看视频 | 久久久午夜欧美精品| www.色视频.com| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久com| 狠狠精品人妻久久久久久综合| 男人添女人高潮全过程视频| 五月开心婷婷网| 精品人妻偷拍中文字幕| 久久99热这里只有精品18| 有码 亚洲区| 王馨瑶露胸无遮挡在线观看| 国产69精品久久久久777片| 香蕉精品网在线| 午夜免费观看性视频| 夫妻性生交免费视频一级片| 最新中文字幕久久久久| 99久久精品热视频| 久久99热这里只频精品6学生| 国产69精品久久久久777片| 另类亚洲欧美激情| av福利片在线观看| 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频 | 亚洲av福利一区| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 亚洲av中文字字幕乱码综合| 制服丝袜香蕉在线| 爱豆传媒免费全集在线观看| 国产av国产精品国产| 午夜激情福利司机影院| 一级爰片在线观看| 久久久久国产网址| 亚洲av中文av极速乱| 十分钟在线观看高清视频www | 99视频精品全部免费 在线| 久久99精品国语久久久| 黑人高潮一二区| 国产高清有码在线观看视频| 色婷婷久久久亚洲欧美| 内地一区二区视频在线| 在线观看免费视频网站a站| 久久女婷五月综合色啪小说| 交换朋友夫妻互换小说| 3wmmmm亚洲av在线观看| 精品一区在线观看国产| 一本久久精品| 亚洲成人一二三区av| 久久久精品免费免费高清| 亚洲国产精品999| 边亲边吃奶的免费视频| 精品一区二区免费观看| 观看美女的网站| 99久久综合免费| 亚洲av综合色区一区| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 中文字幕av成人在线电影| 亚洲精品乱久久久久久| 在线观看免费高清a一片| 日本黄色片子视频| 久热这里只有精品99| 精品国产露脸久久av麻豆| 婷婷色综合大香蕉| 久久影院123| 狂野欧美白嫩少妇大欣赏| 少妇精品久久久久久久| 岛国毛片在线播放| 欧美日韩在线观看h| 黑人猛操日本美女一级片| 精品久久久精品久久久| 国产欧美日韩一区二区三区在线 | 一级片'在线观看视频| 好男人视频免费观看在线| 如何舔出高潮| 亚洲无线观看免费| 午夜日本视频在线| 精品久久国产蜜桃| 高清欧美精品videossex| 国产久久久一区二区三区| 99国产精品免费福利视频| 中文字幕av成人在线电影| 高清毛片免费看| kizo精华| 亚洲精品乱码久久久久久按摩| 高清av免费在线| 性色avwww在线观看| 久久久久久久久久久丰满| 岛国毛片在线播放| av免费观看日本| 一级毛片久久久久久久久女| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 人妻少妇偷人精品九色| 国产亚洲av片在线观看秒播厂| 亚洲最大成人中文| 美女主播在线视频| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 国产探花极品一区二区| 亚洲精品,欧美精品| 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| h视频一区二区三区| 午夜福利高清视频| 亚洲内射少妇av| 免费看日本二区| 日韩,欧美,国产一区二区三区| 午夜福利高清视频| 欧美另类一区| 午夜激情福利司机影院| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 91在线精品国自产拍蜜月| 狠狠精品人妻久久久久久综合| 性高湖久久久久久久久免费观看| 亚洲精品,欧美精品| 日本av手机在线免费观看| 成人二区视频| 国产成人freesex在线| www.色视频.com| 日韩免费高清中文字幕av| 国产成人精品一,二区| 亚洲欧美一区二区三区黑人 | 亚洲国产成人一精品久久久| 国产成人freesex在线| 婷婷色综合大香蕉| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看 | 国产精品爽爽va在线观看网站| 久久99热6这里只有精品| 久久久久久久久久成人| 国产精品无大码| 少妇猛男粗大的猛烈进出视频| 欧美日韩亚洲高清精品| 熟女电影av网| 爱豆传媒免费全集在线观看| 精品一区二区三区视频在线| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 欧美一区二区亚洲| 久热久热在线精品观看| 色网站视频免费| 国产亚洲欧美精品永久| 水蜜桃什么品种好| 国产精品人妻久久久久久| 亚洲av男天堂| 一区二区三区乱码不卡18| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 国产亚洲最大av| 亚洲成人一二三区av| 伦理电影大哥的女人| 高清av免费在线| 国产亚洲一区二区精品| 国产成人精品福利久久| 国内揄拍国产精品人妻在线| 啦啦啦中文免费视频观看日本| 亚洲av不卡在线观看| 亚洲国产日韩一区二区| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说 | 国产在线一区二区三区精| 成人黄色视频免费在线看| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 这个男人来自地球电影免费观看 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av免费高清在线观看| 联通29元200g的流量卡| 亚洲电影在线观看av| 色哟哟·www| 建设人人有责人人尽责人人享有的 | 久久久久久人妻| 纵有疾风起免费观看全集完整版| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品一二三| 黄片无遮挡物在线观看| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲 | 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 在线观看国产h片| 少妇精品久久久久久久| 亚洲美女黄色视频免费看| 婷婷色综合www| 18+在线观看网站| 少妇人妻 视频| 在线免费十八禁| 国产精品99久久久久久久久| 美女国产视频在线观看| 国产人妻一区二区三区在| 人人妻人人爽人人添夜夜欢视频 | 日韩成人伦理影院| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 97超碰精品成人国产| 视频区图区小说| 下体分泌物呈黄色| 国产成人一区二区在线| 亚洲美女视频黄频| 在现免费观看毛片| 国产成人一区二区在线| 99热网站在线观看| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 联通29元200g的流量卡| 日本-黄色视频高清免费观看| 国产精品三级大全| 香蕉精品网在线| 国产成人精品久久久久久| 深爱激情五月婷婷| 在线观看人妻少妇| 日本与韩国留学比较| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 亚洲欧美成人综合另类久久久| 2021少妇久久久久久久久久久| 91精品一卡2卡3卡4卡| www.色视频.com| 国产 精品1| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 精品一区在线观看国产| 丝瓜视频免费看黄片| 亚洲av中文av极速乱| 亚洲国产最新在线播放| 97超碰精品成人国产| 亚州av有码| 纯流量卡能插随身wifi吗| 精品人妻视频免费看| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| 久久综合国产亚洲精品| 日本欧美视频一区| 日韩中字成人| 人妻少妇偷人精品九色| 制服丝袜香蕉在线| 一本久久精品| 成人免费观看视频高清| 国产精品精品国产色婷婷| 国产无遮挡羞羞视频在线观看| 成人毛片60女人毛片免费| 王馨瑶露胸无遮挡在线观看| 麻豆成人av视频| 少妇的逼好多水| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 久久这里有精品视频免费| 一本色道久久久久久精品综合| 一级黄片播放器| 少妇高潮的动态图| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 亚洲精品成人av观看孕妇| 日本免费在线观看一区| 最后的刺客免费高清国语| 伦精品一区二区三区| 国产精品爽爽va在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 国产 精品1| 日韩欧美 国产精品| 插阴视频在线观看视频| 黑丝袜美女国产一区| 久久97久久精品| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 久久久亚洲精品成人影院| 欧美成人a在线观看| 国产欧美日韩精品一区二区| 国产成人91sexporn| 韩国高清视频一区二区三区| 寂寞人妻少妇视频99o| 欧美成人a在线观看| 国产精品.久久久| 少妇裸体淫交视频免费看高清| 日韩欧美一区视频在线观看 | 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 国产成人一区二区在线| 日本av免费视频播放| 麻豆成人午夜福利视频| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图 | 少妇高潮的动态图| 一级毛片久久久久久久久女| 99久久精品一区二区三区| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 成年美女黄网站色视频大全免费 | 国产精品伦人一区二区| 国产高清不卡午夜福利| 亚洲欧洲日产国产| 亚洲成人一二三区av| 22中文网久久字幕| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 伊人久久精品亚洲午夜| 国产亚洲最大av| kizo精华| 青春草亚洲视频在线观看| kizo精华| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | 精品久久久久久久久av| 亚洲人成网站高清观看| 亚洲怡红院男人天堂| 亚洲图色成人| 最新中文字幕久久久久| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线| a级毛色黄片| 日韩一本色道免费dvd| 亚洲精品第二区| 我的老师免费观看完整版| 亚洲综合精品二区| 国产熟女欧美一区二区| 亚洲精品国产av成人精品| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 国产精品不卡视频一区二区| 日韩强制内射视频| 久久久欧美国产精品| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片 | av在线蜜桃| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 五月天丁香电影| 国产精品一区二区性色av| 久久久久精品性色| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看 | 国产69精品久久久久777片| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 欧美精品一区二区免费开放| 香蕉精品网在线| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 亚洲怡红院男人天堂| 新久久久久国产一级毛片| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 2018国产大陆天天弄谢| 午夜视频国产福利| 激情 狠狠 欧美| 亚洲性久久影院| av在线播放精品| 成人免费观看视频高清| av国产久精品久网站免费入址| 色网站视频免费| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看|