• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Crystal Structures and Luminescent Properties of Lead(II) and Cadmium(II) Coordination Polymers Constructed from Biphenyl-2,5,3?-tricarboxylate①

    2014-03-02 07:26:34GAOZhuQingLIHongJinKirillovAlexnderGUJinZhongShoolofChemilndBiologilEngineeringTiyunUniversityofSienendTehnologyTiyun030021Chin
    結(jié)構(gòu)化學 2014年6期

    GAO Zhu-Qing LI Hong-Jin M. Kirillov Alexnder GU Jin-Zhong (Shool of Chemil nd Biologil Engineering,Tiyun University of Siene nd Tehnology, Tiyun 030021, Chin)

    b (Centro de Química Estrutural, Complexo I, Instituto Superior Técnico,The University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal))

    c (College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China)

    1 INTRODUCTION

    In the last two decades, more and more researchers have paid attention to the construction of transition coordination polymers not only due to their versatile architectures[1–5]but also for their desirable properties such as luminescent, magnetic,catalytic, and gas absorption and separation properties[6–10]. In previous reports, researchers found that many factors may seriously influence the structures of the resulting complexes, such as the ligands, kinds of metal salt, the solvent system, pH value, the metal-to-ligand ratio, reaction temperature and time, and so on[11–15]. A basic design route for this kind of polymers is directed by self-assembly of designed organic ligands and inorganic metal cations.Multicarboxylate ligands have been proven to be good candidates in the construction of coordination polymers due to their diverse coordination modes[1–2,12–14,16]. In order to extend our researches in this field, we have selected H3btc as a functional building block on account of the following considerations: (a) H3btc possesses three carboxyl groups that may be completely or partially deprotonated, depending on the pH; (b) it is a flexible ligand allowing the rotation of two phenyl rings around the C–C single bond; (c) to our knowledge,H3btc has not been adequately explored in the con-struction of coordination polymers. In fact, the search of the Cambridge Structural Database (version 5.34,May 2013) reveals that there is no example of a coordination compound derived from H3btc.

    Taking into account these factors, we herein report the synthesis, crystal structures, and luminescent properties of Pb(II) and Cd(II) coordination polymers constructed from H3btc and/or phen ligand.

    2 EXPERIMENTAL

    2. 1 General procedures

    All chemicals and solvents were of A.R. grade and used without further purification. Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TG) was performed under N2atmosphere with a heating rate of 10 ℃/min on a LINSEIS STA PT1600 thermal analyzer. Excitation and emission spectra were recorded for the solid samples on an Edinburgh FLS920 fluorescence spectrometer at room temperature.

    2. 2 Synthesis of compound 1

    A mixture of PbCl2(0.083 g, 0.3 mmol), H3btc(0.086 g, 0.3 mmol), phen (0.060 g, 0.3 mmol), and H2O (10 mL) was adjusted to pH = 6.0 with a 0.5 M NaOH solution. The mixture was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h–1. Colourless block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 60% (based on Pb). Anal.Calcd. (%) for C27H16PbN2O6: C, 48.28; H, 2.40; N,4.17. Found (%): C, 48.67; H, 2.05; N, 3.81. IR(KBr, cm–1): 1693s, 1608m, 1539s, 1424m, 1355s,1215s, 1133w, 1097w, 907w, 857m, 798m, 774m,726w, 685w, 633w, 516w. vCOOH1693, vas(CO2)1608 and 1539, vs(CO2) 1424 and 1355.

    2. 3 Synthesis of compound 2

    A mixture of CdCl2·H2O (0.060 g, 0.3 mmol),H3btc (0.057 g, 0.2 mmol), and H2O (10 mL) was adjusted to pH = 7.0 with a 0.5 M NaOH solution.The mixture was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days,followed by cooling to room temperature at a rate of 10 ℃/h. Colourless block-shaped crystals of 2 were isolated manually, and washed with distilled water.Yield 0.075 g, 70% (based on Cd). Anal. found for C30H26Cd3O18(%): C, 35.6; H, 2.6. Calcd. (%): C,35.8; H, 3.0. IR (KBr, cm–1): 3429m, 1609m, 1534s,1430m, 1394s, 1268m, 1168w, 1092w, 1045w, 843m,768m, 699m, 603w, 502w. vOH3429, v as(CO2) 1609 and 1534, v s(CO2) 1430 and 1394.

    2. 4 Structure determination

    A single crystal of the title compound with dimensions of 0.28mm × 0.26mm × 0.24mm (1) and 0.30mm × 0.26mm × 0.24mm (2) were mounted on a Bruker CCD diffractometer equipped with a graphite-monochromatic Mo Kα (λ = 0.71073 ?)radiation using φ-ω scan mode at 293(2) K in the ranges of 3.15<θ<25.50o and 2.89<θ<25.50o, respectively. The structures were solved by direct methods with SHELXS-97[17]and refined by fullmatrix least-squares techniques on F2with SHELXL-97[18]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms (except those bound to water molecules) were placed in the calculated positions with fixed isotropic thermal parameters and included in structure factor calculations in the final stage of full-matrix least-squares refinement. The hydrogen atoms of water molecules were located by difference maps and constrained to ride on their parent O atoms. Details of X-ray experiment and crystal data are summarized in Table 1.The selected important bond parameters are given in Tables 2 and 3.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis

    Both compounds 1 and 2 were obtained by hydrothermal reactions at pH = 6.0 or 7.0 and 160 ℃for three days (Scheme 1).

    Scheme 1. Synthetic routes for compounds 1 and 2

    Table 1. Crystal Data and Structural Refinements for Compounds 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compound 1

    Table 3. Selected Bond Lengths (?) and Bond Angles (°) for Compound 2

    3. 2 Crystal structure of 1

    The asymmetric unit of compound 1 contains one crystallographically unique Pb(II) atom, one Hbtc2–ligand, and one phen moiety. The partial deprotonation of H3btc to give Hbtc2–is also confirmed by the IR spectra data of 1, since a strong -COOH band at 1693 cm-1was observed (see Experimental Section). As depicted in Fig. 1, each Pb(II) atom is six-coordinated and adopts a distorted octahedral geometry formed by two N atoms of phen ligand and four O atoms of two different Hbtc2–moieties. The Pb–O (2.393(12) ~ 2.747(14) ?) and Pb–N(2.566(16)~2.727(16) ?) bond lengths are in good agreement with those observed in some other Pb(II)compounds[19-20]. In 1, the Hbtc2–ligand adopts a μ2-coordination mode, in which two deprotonated carboxylate groups show a η1:η1bidentate mode(Scheme 2). The dihedral angle of two benzene rings in Hbtc2–is 49.93o. The carboxylate groups of Hbtc2–ligands alternately bridge the neighboring Pb(II)ions to form a zigzag chain with the Pb··Pb separation of 10.973(2) ? (Fig. 2). Adjacent chains are connected to a form 2D sheet through O–H··O hydrogen bonding (Table 4). Then a 3D supramolecular framework is assembled by π-π packing interactions (Fig. 3). There are four kinds of π-π stacking interactions observed. One is between adjacent phenly planes of the phen ligands with the centroid-centroid separation of 3.560(2) ?; One is between adjacent pyridyl planes of the phen ligands with the centroid-centroid separation of 3.733(2) ?;The other one is between adjacent phenyl planes of the Hbtc2–ligands with the centroid-centroid separation of 3.706(2) ?; and the last one is between adjacent phenyl planes of the phen ligands and the pyridyl planes of the phen ligands with the centroid-centroid separation of 3.863(2) ?.

    Scheme 2. Coordination modes of the Hbtc2–/btc3– ligands in compounds 1 and 2

    Fig. 1. Coordination environment of the Pb(II) atom in compound 1.H atoms except those of COOH groups were omitted for clarity. Symmetry code: i: x+1/2, –y+1/2, z–1/2

    Fig. 2. A perspective of 1D chain along the bc plane

    Fig. 3. A perspective of 3D supramolecular structure along the bc plane

    3. 3 Crystal structure of 2

    Compound 2 crystallizes in the triclinic space group P. In the asymmetric unit, there are two crystallographically unique Cd(II) atoms, one μ6-btc3–ligand, two coordinated and one lattice water molecules. As shown in Fig. 4, the Cd(1) atom is sevencoordinated by four O atoms of four different btc3–ligands, and one O atom of coordinated water molecule, constructing a distorted pentagonal bipyramid. The Cd(2) atom is six-coordinated by four carboxylate O atoms of four independent btc3–ligands, and two O atoms of two coordinated water molecules, forming a distorted octahedron. The Cd–O bond lengths are in the range of 2.193(3)~2.452(3) ?, which are comparable to those of other Cd(II) compounds[6,11,19]. The btc3–ligands adopt aμ6-coordination mode (Scheme 2), in which the carboxylate groups show μ2-η1:η1bidentate and μ2-η1:η2tridentate modes. The dihedral angle of two rings in the btc3–moieties is 55.59o. The three neighboring Cd(II) ions are bridged by means of four carboxylate groups from the four different btc3–ligands, giving rise to a centrosymmetric linear trinuclear Cd(II) subunit (Fig. 5). In this tricadmium(II) unit, the Cd··Cd distance is 3.833(2) ?.The adjacent Cd3subunits are further linked by the btc3–blocks into a 3D open framework (Fig. 6). The 3D framework is stabilized by O–H··O hydrogen bonding (Table 5) and π-π packing interactions.There are two kinds of π-π stacking interactions observed between adjacent phenyl planes of the btc3–ligands with the centroid-centroid separations of 3.585(2) and 3.760(2) ?. The resulting network features channels (11.34? × 10.01? measured by atom-to-atom distances) which are filled with guest water molecules. If viewed down the c axis, the framework of 2 also displays channels with size ca.4.54? × 11.14? measured by atom-to-atom distances. Upon removal of guest water molecules, we computed by the PLATON an effective free volume that is 7.5% of the crystal volume[21]. However, after eliminating both coordinated and guest water molecules, the effective free volume attains 19.2%of the crystal volume of 2.

    Table 4. Hydrogen Bond Lengths (?) and Bond Angles (o) of Compound 1

    Table 5. Hydrogen Bond Lengths (?) and Bond Angles (o) of Compound 2

    To get further insight into the structure of 2, a topological analysis of its 3D framework was performed using the TOPOS software[22]. We have generated an underlying network by omitting the terminal H2O ligands and reducing the μ6-btc3–moieties to their centroids. This network (Fig. 7) is built from the 4-connected Cd(1)/Cd(2) (topologically different) and 6-connected μ6-btc3–nodes.From the topological viewpoint[22], it is classified as a trinodal 4,4,6-connected net with the 4,4,6T24 topology defined by the point symbol of(44·62)3(46·69)2, wherein the (44·62) and (46·69)2indices are those of the Cd(1)/Cd(2) and μ6-L nodes,respectively. This topological type is rather rare and has only been observed in five other metal-organic frameworks[22–26].

    Fig. 6. View of the 3D supramolecular framework of compound 2 along the ac plane

    3. 4 Thermal analysis

    To study the stability of compounds 1 and 2,thermal gravimertric analyses (TGA) were performed. As shown in Fig. 8, the TGA curve of compound 1 indicates that it is stable up to 285 ℃.Further heating leads to its decomposition. Compound 2 undergoes a mass loss of 10.56% between 66 and 176 ℃, which corresponds to the loss of four coordinated and two lattice water molecules(calcd. 10.67%). Above 373 ℃, the framework is destroyed gradually.

    Fig. 7. Topological representation (arbitrary view) of the underlying trinodal 4,4,6-connected 3D network in 2 with the 4,4,6T24 topology and the point symbol of (44·62)3(46·69)2.Colour codes: 4-connected Cd(1)/Cd(2) nodes (cyan), centroids of 6-connected μ6-L nodes (gray)

    Fig. 8. TGA curves of compounds 1 and 2

    Fig. 9. Solid state emission spectra of H3btc and compounds 1 and 2

    3. 5 Luminescent properties

    The emission spectra of H3btc and compounds 1 and 2 were measured in the solid state at room temperature, as depicted in Fig. 9. The “free” H3btc ligand displays a weak photoluminescence with two emission peaks at 418 and 525 nm if excited at 358 nm, which may be ascribed to intraligand π*→n or π*→π transitions[16]. For the two compounds, the significantly more intense emission bands are observed with maximum at 512 nm (λex= 352 nm)for 1 and 430 nm (λex= 358 nm) for 2. All bands can be assigned to an intraligand (π*→n or π*→π)emission[27]. The enhancement of luminescence of the compounds can be attributed to the binding of ligands to the metal centers, which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay[28].

    4 CONCLUSION

    In this work, by adjusting the reaction pH and/or adding the auxiliary ligand, two coordination polymers driven by the biphenyl-2,5,3?-tricarboxylate blocks were synthesized by hydrothermal method. The structures of the obtained compounds vary from 1D chains (1) to 3D metal-organic frameworks (2) with distinct architectures. Their structural diversities demonstrate that the pH value of the reaction system, the nature of the metal ion,and auxiliary ligand play a crucial role in the assembly of structurally distinct coordination polymers. This work shows that biphenyl-2,5,3?-tricarboxylic acid is an excellent bridging ligand for the construction of coordination polymers.

    (1) Chen, S. S.; Qiao, R.; Sheng, L. Q.; Zhao, Y.; Yang, S.; Chen, M. M.; Liu, Z. D.; Wang, D. H. Cadmium(II) and zinc(II) complexes with rigid 1-(1H-imidazol-4-yl)-3-(4H-tetrazol-5-yl)benzene and varied carboxylate ligands. CryEngComm. 2013, 15, 5713–5725.

    (2) Lu, W. G.; Su, C. Y.; Lu, T. B.; Jiang, L.; Chen, J. M. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls. J. Am. Chem. Soc. 2006, 128, 34–35.

    (3) Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379.

    (4) Dong, M. M.; He, L. L.; Fan, Y. J.; Zang, S. Q.; Hou, H. M.; Thomas, C. K. M. Seven copper coordination polymers based on 5-iodo-isophthalic acid:halogen-related bonding and N-nonor auxiliary ligands modulating effect. Cryst. Growth Des. 2013, 13, 3353–3364.

    (5) Zheng, X. D.; Lu, T. B. Constructions of helical coordination compounds. CrystEngComm. 2010, 12, 324–336.

    (6) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

    (7) Ma, L. Q.; Abney, C.; Lin, W. B. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248–1256.

    (8) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    (9) Fere, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380–1399.

    (10) Chen, Q.; Xue, W.; Lin, J. B.; Zeng, M. H.; Chen, X. M. Highly-connected, porous coordination polymers based on [M4(μ3-OH)2] (M = CoIIand NiII)clusters: different networks, adsorption and magnetic properties. J. Chem. Soc., Dalton Trans. 2012, 41, 4199–4206.

    (11) Li, C. P.; Wu, J. M.; Du, M. Exceptional crystallization diversity and solid-state conversions of CdIIcoordination frameworks with 5-bromonicotinate directed by solvent media. Chem. Eur. J. 2012, 18, 12437–12445.

    (12) Gu. J. Z.; Gao, Z. Q.; Tang, Y. pH and auxiliary ligand influence on the structural variations of 5(2?-carboxylphenyl) nicotate coordination polymers.Cryst. Growth Des. 2012,12, 3312–3323.

    (13) Gu, J. Z.; Wu, J.; Lv, D. Y.; Tang, Y.; Zhu, K. Y.; Wu, J. C. Lanthanide coordination polymers based on5-(2?-carboxylphenyl) nicotinate: syntheses,structure diversity, dehydration/hydration, luminescence and magnetic properties. J. Chem. Soc., Dalton Trans. 2013, 42, 4822–4830.

    (14) Chen, L.; Gou, S. H.; Wang, J. Q. Three new 3D coordination polymers constructed by biphenyl-2,2?,4,4?-tetracarboxylic acid: Effect of metal ions and the second ligands. J. Mol. Struct. 2011, 991, 149–157.

    (15) Lu, W. G.; Jiang, L.; Lu, T. B. Lanthanide contraction and temperature-dependent structures of lanthanide coordination polymers with imidazole-4,5-dicarboxylate and oxalate. Cryst. Growth Des. 2010, 10, 4310–4318.

    (16) Liu, T.; Wang, S. N.; Lu, J.; Dou, J. M.; Li, D. C.; Bai, J. F. Positional isomeric and substituent effect on the assemblies of a series of d10coordination polymers based upon unsymmetric tricarboxylate acids and nitrogen-containing ligands. CrystEngComm. 2013, 15, 5476–5489.

    (17) Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of G?ttingen, Germany 1997.

    (18) Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of G?ttingen, Germany 1997.

    (19) Gu, J. Z.; Kirillov, A. M.; Wu, J.; Lv, D. Y.; Tang, Y.; Wu, J. C. Synthesis, structural versatility, luminescent and magnetic properties of a series of coordination polymers constructed from biphenyl-2,4,4?-tricarboxylate and different N-donor ligands. CrystEngComm. 2013, 15, 10287–10303.

    (20) Cong, Y.; Ma, C. L.; Che, G. B.; Bai, H. Y.; Sun, H. Y.; Ren, A.; Liu, C. B.Syntheses, structures, luminescent properties and photocatalytic activities of two lead(II) compounds. Chin. J. Struct. Chem. 2013, 32, 1673–1679.

    (21) Van der Sluis, P.; Spek, A. L. An effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr.Sect. A 1990, 46, 194–201.

    (22) Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr. CompComm. Newsletter. 2006, 7, 4–38.

    (23) Zehnder, R. A.; Renn, R. A.; Pippin, E.; Zeller, M.; Wheeler, K. A.; Carr, J. A.; Fontaine, N.; McMullen, N. C. Network dimensionality and ligand flexibility in lanthanide terephthalate hydrates. J. Mol. Struct. 2011, 985, 109–119.

    (24) Deng, Z. P.; Huo, L. H.; Wang, H. Y.; Zhao, H. A series of three-dimensional lanthanide metal-organic frameworks with biphenylethene-4,4?-dicarboxylic acid:hydrothermal syntheses and structures. CrystEngComm. 2010, 12, 1526–1535.

    (25) Ghosh, S. K.; Kitagawa, S. Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand.CrystEngComm. 2008, 10, 1739–1742.

    (26) Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J. Am. Chem. Soc. 1999, 121, 1651–1657.

    (27) Sun, D.; Han, L. L.; Yuan, S.; Deng, Y. K.; Xu, M. Z.; Sun, D. F. Four new Cd(II) coordination polymers with mixed multidentate N-donors and biphenyl-based polycarboxylate ligands: syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13, 377–385.

    (28) Zhang, Y.; Guo, B. B.; Li, L.; Liu, S. F.; Li, G. Construction and properties of six metal-organic frameworks based on the newly designed 2-(p-bromophenyl)-imidazole dicarboxylate ligand. Cryst. Growth Des. 2013, 13, 367–376.

    全区人妻精品视频| 精品免费久久久久久久清纯| 禁无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品一区二区三区| 日韩欧美一区二区三区在线观看| 97超视频在线观看视频| 国产精品女同一区二区软件 | 日韩精品青青久久久久久| 成人三级黄色视频| 噜噜噜噜噜久久久久久91| 麻豆国产av国片精品| 久久久久久久久久久丰满 | 久久精品综合一区二区三区| 午夜精品在线福利| 别揉我奶头 嗯啊视频| 成年女人看的毛片在线观看| 日韩欧美精品v在线| 欧美一区二区国产精品久久精品| 日韩亚洲欧美综合| 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 97碰自拍视频| 亚洲一级一片aⅴ在线观看| 久久久久久久精品吃奶| 男人狂女人下面高潮的视频| 美女被艹到高潮喷水动态| av.在线天堂| 久久99热这里只有精品18| 亚洲七黄色美女视频| 国产亚洲欧美98| 欧美日本视频| 大型黄色视频在线免费观看| 天堂√8在线中文| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品 | 亚洲最大成人手机在线| 日韩欧美国产在线观看| av天堂中文字幕网| 亚洲美女视频黄频| 啪啪无遮挡十八禁网站| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 免费看a级黄色片| a级毛片a级免费在线| 能在线免费观看的黄片| 国产av麻豆久久久久久久| 不卡一级毛片| 变态另类丝袜制服| 麻豆成人午夜福利视频| 精品久久久噜噜| 动漫黄色视频在线观看| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 久久久久精品国产欧美久久久| 成年版毛片免费区| 日韩精品有码人妻一区| 久久亚洲真实| 国产久久久一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 男女下面进入的视频免费午夜| 狠狠狠狠99中文字幕| 国产精品伦人一区二区| 内射极品少妇av片p| 成人一区二区视频在线观看| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 两个人视频免费观看高清| 成人亚洲精品av一区二区| 老女人水多毛片| 日韩国内少妇激情av| 12—13女人毛片做爰片一| 国产一区二区在线观看日韩| 久久久久久久精品吃奶| 久久精品国产亚洲av天美| h日本视频在线播放| 日本 av在线| 毛片一级片免费看久久久久 | 欧美日本亚洲视频在线播放| 免费大片18禁| 女人被狂操c到高潮| 亚洲,欧美,日韩| 黄片wwwwww| 丝袜美腿在线中文| 内地一区二区视频在线| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 亚洲精品久久国产高清桃花| 国产综合懂色| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 麻豆成人午夜福利视频| 亚洲午夜理论影院| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 免费黄网站久久成人精品| 白带黄色成豆腐渣| 免费电影在线观看免费观看| 国产亚洲精品久久久com| 精品久久久久久久久久免费视频| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 午夜免费成人在线视频| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 麻豆成人av在线观看| 国产精品免费一区二区三区在线| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 噜噜噜噜噜久久久久久91| 性欧美人与动物交配| 少妇熟女aⅴ在线视频| 黄片wwwwww| 精品久久久久久久末码| 久久人妻av系列| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 亚洲中文日韩欧美视频| 国产精品无大码| 岛国在线免费视频观看| 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 久久中文看片网| 精品一区二区三区视频在线| 人人妻人人看人人澡| 亚洲真实伦在线观看| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 色哟哟哟哟哟哟| 亚洲av日韩精品久久久久久密| xxxwww97欧美| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 午夜免费激情av| 日日夜夜操网爽| 久久久午夜欧美精品| 精品免费久久久久久久清纯| 在线播放国产精品三级| 亚洲精品一区av在线观看| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 亚洲专区中文字幕在线| 最近中文字幕高清免费大全6 | 国产 一区精品| 欧美成人一区二区免费高清观看| 窝窝影院91人妻| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 精品一区二区三区视频在线观看免费| or卡值多少钱| 蜜桃久久精品国产亚洲av| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 欧美高清性xxxxhd video| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 精品日产1卡2卡| 熟女电影av网| 嫩草影院精品99| 欧美丝袜亚洲另类 | 成年人黄色毛片网站| 中文字幕高清在线视频| 搡老岳熟女国产| 一本久久中文字幕| 波多野结衣巨乳人妻| 少妇被粗大猛烈的视频| 毛片女人毛片| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看 | 国产av不卡久久| 国产亚洲欧美98| 国产高清不卡午夜福利| 亚洲无线在线观看| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 我要搜黄色片| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 五月伊人婷婷丁香| 久久久色成人| 日本熟妇午夜| 亚洲内射少妇av| 久久草成人影院| 欧美日韩黄片免| 欧美一区二区亚洲| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 亚洲av中文字字幕乱码综合| 九九久久精品国产亚洲av麻豆| 99精品久久久久人妻精品| 国产免费男女视频| 波多野结衣高清作品| 欧美3d第一页| 麻豆久久精品国产亚洲av| 日本a在线网址| 99热这里只有是精品50| 午夜福利18| 久久九九热精品免费| 久久久久免费精品人妻一区二区| 99热只有精品国产| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 深爱激情五月婷婷| 九色国产91popny在线| 国产午夜精品久久久久久一区二区三区 | 国产一区二区亚洲精品在线观看| 日本在线视频免费播放| av在线观看视频网站免费| 中国美女看黄片| 色综合婷婷激情| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 又紧又爽又黄一区二区| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 成人国产一区最新在线观看| 一区二区三区免费毛片| 91狼人影院| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 两个人的视频大全免费| 亚洲国产精品成人综合色| 看片在线看免费视频| 他把我摸到了高潮在线观看| 性欧美人与动物交配| 1000部很黄的大片| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 亚洲精品色激情综合| 欧美中文日本在线观看视频| 国产精品综合久久久久久久免费| 嫩草影院入口| 国产伦在线观看视频一区| 99热只有精品国产| 特大巨黑吊av在线直播| 国产乱人视频| 给我免费播放毛片高清在线观看| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 级片在线观看| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 身体一侧抽搐| 国产精品久久久久久av不卡| 欧美日韩国产亚洲二区| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品v在线| 国产真实乱freesex| 国语自产精品视频在线第100页| 亚洲精品国产成人久久av| 日韩欧美国产在线观看| 一a级毛片在线观看| 国产成人av教育| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 午夜日韩欧美国产| 哪里可以看免费的av片| 国产在视频线在精品| 一级a爱片免费观看的视频| 三级毛片av免费| 全区人妻精品视频| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜久久久久精精品| 欧美日韩精品成人综合77777| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在 | 五月伊人婷婷丁香| 久久久久性生活片| 久久久久久九九精品二区国产| 久久久久九九精品影院| 国产精品国产高清国产av| 乱人视频在线观看| 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 成人三级黄色视频| 亚洲成a人片在线一区二区| 国产精品综合久久久久久久免费| 国产亚洲精品久久久com| h日本视频在线播放| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 色综合站精品国产| 国产色婷婷99| 亚洲av美国av| 国产在视频线在精品| 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 国产三级中文精品| 久久午夜亚洲精品久久| 欧美精品啪啪一区二区三区| 欧美性猛交╳xxx乱大交人| 可以在线观看毛片的网站| 国产精品国产三级国产av玫瑰| 成人亚洲精品av一区二区| 国产午夜精品久久久久久一区二区三区 | 97热精品久久久久久| 日韩国内少妇激情av| 极品教师在线免费播放| 看片在线看免费视频| 长腿黑丝高跟| av在线老鸭窝| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 国产单亲对白刺激| av在线观看视频网站免费| 国产麻豆成人av免费视频| 亚洲第一区二区三区不卡| 久久久久国内视频| 婷婷精品国产亚洲av| 女人十人毛片免费观看3o分钟| 国产亚洲精品av在线| 色综合站精品国产| 真人做人爱边吃奶动态| 变态另类丝袜制服| 窝窝影院91人妻| 欧美精品国产亚洲| 精品久久久久久久久久免费视频| 99热只有精品国产| 九色国产91popny在线| 久久久久久伊人网av| 校园春色视频在线观看| 午夜a级毛片| 精品日产1卡2卡| 国产 一区精品| 干丝袜人妻中文字幕| 国产三级在线视频| 欧美3d第一页| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区| 日韩欧美精品v在线| 日本黄色片子视频| 欧美日本亚洲视频在线播放| 色视频www国产| 日韩欧美国产一区二区入口| 久久久久性生活片| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 久久国产乱子免费精品| 免费看日本二区| 成人三级黄色视频| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 88av欧美| eeuss影院久久| 日韩欧美精品免费久久| 国产色婷婷99| 精品一区二区免费观看| 久9热在线精品视频| 国产伦一二天堂av在线观看| 国产av不卡久久| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产69精品久久久久777片| 99久久久亚洲精品蜜臀av| 最近中文字幕高清免费大全6 | 99久久精品一区二区三区| 一a级毛片在线观看| 一本一本综合久久| 一个人看的www免费观看视频| 免费看美女性在线毛片视频| 九色国产91popny在线| avwww免费| xxxwww97欧美| 亚洲成人免费电影在线观看| 嫩草影院精品99| 干丝袜人妻中文字幕| 国产一区二区三区视频了| 在线观看美女被高潮喷水网站| 淫妇啪啪啪对白视频| 精品久久久久久,| 一进一出抽搐动态| 在线观看免费视频日本深夜| 亚洲狠狠婷婷综合久久图片| 日本在线视频免费播放| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 一级毛片久久久久久久久女| 国产在线男女| 国产精品久久久久久精品电影| 久久精品国产99精品国产亚洲性色| 男人舔奶头视频| 国产淫片久久久久久久久| 看十八女毛片水多多多| 男女做爰动态图高潮gif福利片| 成年免费大片在线观看| 一区二区三区高清视频在线| 性插视频无遮挡在线免费观看| 真人做人爱边吃奶动态| 97超视频在线观看视频| 成年女人毛片免费观看观看9| 两个人的视频大全免费| 一本久久中文字幕| 欧美精品啪啪一区二区三区| a级毛片免费高清观看在线播放| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 成人毛片a级毛片在线播放| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看 | 亚洲经典国产精华液单| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 香蕉av资源在线| 精品久久久久久成人av| 18禁黄网站禁片免费观看直播| 一级黄片播放器| 精品人妻偷拍中文字幕| 亚洲国产色片| 日韩中文字幕欧美一区二区| 最后的刺客免费高清国语| 国产精品乱码一区二三区的特点| 欧美性猛交╳xxx乱大交人| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 国产 一区 欧美 日韩| 高清日韩中文字幕在线| 日本三级黄在线观看| av国产免费在线观看| 国产视频内射| av中文乱码字幕在线| 精品人妻熟女av久视频| 我的老师免费观看完整版| 97热精品久久久久久| 欧美日韩瑟瑟在线播放| 少妇的逼好多水| 中文字幕久久专区| 一进一出好大好爽视频| 欧美+亚洲+日韩+国产| 男人和女人高潮做爰伦理| 国产老妇女一区| 色精品久久人妻99蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久精品吃奶| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 看黄色毛片网站| 久久久久久久午夜电影| 日韩一区二区视频免费看| 亚洲熟妇中文字幕五十中出| 成人美女网站在线观看视频| 日本 av在线| 直男gayav资源| 一区福利在线观看| 校园春色视频在线观看| 久久国产乱子免费精品| 干丝袜人妻中文字幕| av中文乱码字幕在线| 亚洲欧美激情综合另类| 午夜影院日韩av| 国产精品98久久久久久宅男小说| 俄罗斯特黄特色一大片| 亚洲午夜理论影院| 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 日韩强制内射视频| 欧美高清成人免费视频www| 亚洲国产欧美人成| 免费观看精品视频网站| 久久中文看片网| 特大巨黑吊av在线直播| 亚洲美女黄片视频| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 黄色日韩在线| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 亚洲内射少妇av| 亚洲av中文字字幕乱码综合| 国产男人的电影天堂91| 观看免费一级毛片| 国产精品,欧美在线| 九色国产91popny在线| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 日本 av在线| 九九爱精品视频在线观看| 免费av毛片视频| 久久久久久久久久久丰满 | 我要看日韩黄色一级片| av在线亚洲专区| av在线天堂中文字幕| netflix在线观看网站| 最近视频中文字幕2019在线8| 亚洲三级黄色毛片| 亚洲内射少妇av| 成人一区二区视频在线观看| 亚洲熟妇中文字幕五十中出| 国产大屁股一区二区在线视频| 国产精品,欧美在线| 一本精品99久久精品77| 亚洲一级一片aⅴ在线观看| 亚洲第一电影网av| 免费电影在线观看免费观看| 男女那种视频在线观看| 亚洲美女视频黄频| 国产av一区在线观看免费| 丰满的人妻完整版| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 天堂网av新在线| 国产精品三级大全| 亚洲国产日韩欧美精品在线观看| 日韩欧美免费精品| 老熟妇乱子伦视频在线观看| 亚洲五月天丁香| 全区人妻精品视频| 亚洲最大成人手机在线| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 黄色一级大片看看| 日本 欧美在线| av天堂中文字幕网| 美女cb高潮喷水在线观看| 中文亚洲av片在线观看爽| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 麻豆久久精品国产亚洲av| 能在线免费观看的黄片| 日本五十路高清| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 日韩欧美在线乱码| 国产黄色小视频在线观看| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 白带黄色成豆腐渣| 午夜福利视频1000在线观看| 日韩人妻高清精品专区| 中出人妻视频一区二区| 九九久久精品国产亚洲av麻豆| 精品久久久久久久久久久久久| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 日韩在线高清观看一区二区三区 | 人妻少妇偷人精品九色| 久久精品人妻少妇| 欧美3d第一页| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 欧美国产日韩亚洲一区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品国产三级国产av玫瑰| 天堂网av新在线| 有码 亚洲区| 国产精品不卡视频一区二区| 亚洲七黄色美女视频| 女同久久另类99精品国产91| 精品一区二区三区视频在线| av天堂在线播放| 精品久久久久久成人av| 亚洲精品色激情综合| 欧美高清成人免费视频www| 欧美成人性av电影在线观看| 女同久久另类99精品国产91| 久99久视频精品免费| 精华霜和精华液先用哪个| 国产综合懂色| 色哟哟·www| 在线国产一区二区在线| 国产伦人伦偷精品视频| .国产精品久久| 99在线视频只有这里精品首页| 国产av在哪里看| 国产精品久久电影中文字幕| 日韩精品有码人妻一区| 久久久久久久久久久丰满 | 成年人黄色毛片网站| 此物有八面人人有两片| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 小蜜桃在线观看免费完整版高清| 亚洲狠狠婷婷综合久久图片| 伊人久久精品亚洲午夜| videossex国产| 免费观看在线日韩| 成人av在线播放网站| av天堂在线播放| 男人狂女人下面高潮的视频| 日本 av在线| 人妻丰满熟妇av一区二区三区| 亚洲最大成人av| 国内精品一区二区在线观看| 国产美女午夜福利| 久久精品国产清高在天天线| 内射极品少妇av片p| 无人区码免费观看不卡|