• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Theoretical Study on the Photochromic Mechanism of 1-Phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one①

    2014-05-11 02:37:28LIUAnJieJIADianZengWUDongLing
    結構化學 2014年6期

    LIU An-Jie JIA Dian-Zeng WU Dong-Ling

    LIU Lang GUO Ji-Xi

    (Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China)

    1 INTRODUCTION

    Photochromic compounds are of great interest for optical computer, information storage, light-driven information display device, as well as environmental probes in biomolecule, etc[1-3]. Therefore, the synthesis of novel photochromic systems and the study of the photochemical mechanism are of very important significance.

    It is well-known that many Schiff base compounds[4-6]show photochromism. For the past several years, our laboratory has synthesized a large number of pyrazolone photochromic compounds by molecular design and structure modification[7-13].Based on the crystal structures of photochromic compounds, it was concluded that photochromic phenomenon was due to the intramolecular (Intra-PT)or intermolecular proton transfer (Inter-PT)associated with a change in π electron configuration[14,15]through hydrogen bonds (H-bonds), and the non-coplanarity of structure is beneficial to photochromic property[16-18]. In addition, the photochromic processes of some of them are reversible and others are not. These phenomena are very interesting and we think that analyzing their photochromic mechanism is helpful for designing new photochromic materials. Because experimental methods are sometimes insufficient for further achievements on the mechanism of photochromism,theoretical studies are required[16-22].

    In this article, 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one (PMCPTSC)[23]has been studied. Previous experimental results indicate that the title compound exhibits photochromic properties when irradiated by 365 nm light at room temperature in solution, and this process is not reversible. In addition, the polarity increase of the solvent favors the photochromism.According to the analysis of the title compound’s crystal structure and hydrogen bond connection diagram (Fig. 1), it is proposed that the photochromic mechanism of PMCP-TSC is an Intra-PT from the enol form to the keto form (Fig. 2).Although previous theoretical studies[24]have done some work on analyzing the molecular structure, the nature of H-bond, the stability and the reactivity of the title compounds in different solvents, it is not sufficient to get insight into the photochromic mechanism. So, this paper will further discuss the photochromic property of the title compound through analyzing the molecular structure, absorption spectra, molecular orbital and stability in the gas and in different solvents.

    Fig. 1. Different HB patterns of the title compound

    Fig. 2. Proposed photochromic mechanism of the title compound

    2 CALCULATION METHODS

    All calculations were performed with the Gaussian 03W program[25].

    The ground state of enol form, transition state and keto form were calculated with B3LYP/6-311+G (2d, p)method[24]. Frequency calculation at the same level characterized the stationary points as local minima or a first-order saddle point on the potential energy surface. TDDFT method was chosen to obtain the absorption spectrum of keto and enol forms. The polarizable continuum model(PCM)[26]of the self-consistent reaction field theory was used to study the solvent effects on the conformers. Atom-in-molecule theory (AIM)[27-29]is applied to investigate the nature of hydrogen bonds and ring structures of the conformers in different solvents. The NBO analysis was performed by means of the NBO 3.1 program[30]within the Gaussian 03W package. Molecular orbitals were also analyzed to testify the rationality of the photochromic mechanism of the title compound.

    3 RESULTS AND DISCUSSION

    3. 1 Structure analysis

    The title compound’s crystal structure and hydrogen bond connection diagram are presented in Fig. 1.The bond length between O(2)and C(13)atoms is 1.262 ?, which is consistent with the C=O bond length[31-33]and indicates PMCP-TSC existing in the keto form. Geometrical difference of the monomers in the dimer has been found. The S atom is located at the upper and lower positions of the plane of the pyrazolone ring, respectively. However, the experimental and calculated results show that the geometry parameters, the energy and the atomic charges of the monomers are almost the same. The geometrical difference could arise from packing constraints. In Fig. 1, two molecules interact with each other via intermolecular hydrogen bonds(O(2)··H–N(3), 2.954 ?, N(4)··H–N(5), 3.006 ?)and two intramolecular hydrogen bonds (O(2)··H–N(5), 2.792 ?)are also observed. The hydrogen bond geometrical parameters are collected in Table 1. The data indicate that the probable order of the hydrogen bond strength is as follows: O(2)··H–N(5)> O(2)··H–N(3)> N(4)··H–N(5). The intramolecular O(2)··H–N(5)is most likely to participate in the proton transfer reaction. Thus, a hypothesis that photochromic mechanism of the title compound is due to the intramolecular proton transfer was proposed by us.

    Table 1. Geometrical Parameters of the Existing Hydrogen Bonds

    Experimental results indicate that the title compound undergoes photochromism in solution. In order to further study the photochromic mechanism and the solvent effects on the geometries, the keto and constructed enol forms are both optimized and their structural difference in different solvents including water, methanol, tetrahydrofuran (THF)and carbon tetrachloride (CCl4)are investigated in detail.In this part, atom-in-molecule (AIM)theory and Natural Bond Orbital (NBO)theory have continued to be applied to study the geometries and photochromic mechanism of the title compound in different solvents. In the AIM theory, the nature of H-bond can be characterized by the value of electron density ρ(r), the Laplacian of electron density?2ρ(r)and the ellipticity ε at the H-bond critical point (HBCP); the nature of ring can be described by the value of electron density ρ(r)at the ring critical point (RCP). In the NBO theory, the secondorder perturbation energy E(2)can be used to characterize the strength of H-bond. Geometrical and topological parameters as well as stabilization energy of O–H··N/O··H–N H-bonds are collected in Table 2. It shows that O–H··N is stronger than O··H–N, which indicates that the proton transfer is more likely to occur in enol than in the keto form. It also means that the keto form of the title compound is more stable than the enol form in all solvents.Furthermore, because ellipticity ε of H··Y is in agreement with the trend of E(2), ellipticity ε of H··Y can be used to characterize the strength of H-bond.

    Table 2. Geometrical and Topological Parameters (a.u)as well as Stabilization Energy (kcal/mol)of O–H··N/O··H–N H-Bonds

    In order to discuss the coplanarity of the title compound, we analyze all ring structures which are of its components quantitatively. The perimeter of the rings and the electron density ρ(r)at the ring critical points for the keto and enol forms in different solvents are calculated and listed in Table 3. For the keto and enol forms of the title compound, six rings (ring I (benzene-ring), ring II (H(22)–C(21)–C(20)–N(6)–C(13)–O(2)), ring III (pyrazo-lonering), ring IV (O(2)–C(13)–C(14)–C(9)– N(5)–H(33)), ring V (C(16)–C(15)–C(14)–C(9)– C(10)–H(12))and ring VI (C(8)–N(4)–N(5)–C(9)– C(10)–S(1)))have been studied. The data show that stable ring structures generally have large ρ(r)values(greater than 0.02). In addition, the correlation (Fig.3)between the perimeter and the electron density ρ(r)for the same ring structure is reverse and good linear correlation (0.9432, 0.9869, 0.9994, 0.9997,0.9975 and 0.9789)indicates that perimeter can characterize the electron density and stability for the same ring structure. In other words, the coplanarity for the same ring structure grows with the decrease of perimeter.

    Fig. 3. Correlation between the perimeter and the electron density ρ(r)for different ring structures

    Table 3. Perimeter of the Rings and the Electron Density ρ(r)at the Ring Critical Points for the Keto and Enol Forms in Different Solvents

    3. 2 Keto-enol isomerization

    By TDDFT energy calculation and Swizard program[34], we got the absorption spectra (Fig. 4)of keto and enol forms in methanol. Fig. 4 shows the results are accurate enough compared with the experiment ones (Fig. 5). The calculation results of the maximum absorption wavelength for the enol and keto forms are 333 and 369 nm, respectively,and the experimental value for the keto form is 375 nm. The data indicate that the proposed mechanism from enol to the keto form is reasonable because the latter has longer maximum absorption wavelength than the former.

    Fig. 4. Calculation results of the maximum absorption wavelength for enol and keto forms in methanol

    Fig. 5. UV-vis spectra in methanol

    3. 3 Molecular orbital analysis

    A powerful practical model for describing chemical reactivity is the Frontier Molecular Orbital(FMO)theory. The important aspect of the frontier electron theory is the focus on the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Generally, the frontier orbital theory predicts that a site where the highest occupied orbital is localized is a good nucleophile site. Similarly, where the lowest unoccupied orbital is also localized is a good electrophilic site. With the purpose of explaining the photochromic mechanism,orbital analyses of the keto and constructed enol form in methanol were performed (Fig. 6). For enol form, the calculation results indicate that the HOMO orbital contains N(6)and N(7); LUMO orbital contains the N(6), C(13), C(14)and O(2).They have the same symmetry: A. Because there are three interactions (O(2)··H–N(5), O(2)··H–N(3)and N(4)··H–N(5))after reaction, only O(2)is the possible site for reactivity. In addition, the charge quantity on O(2)decreases after reaction, which indicates O(2)is an electrophilic site and shows once again the photochromic process from enol to the keto form is reasonable. For keto form, the calculation results indicate that the HOMO orbital contains benzene ring; LUMO orbital also contains N(6), C(13), C(14)and O(2). Because O(2)is an electrophilic site, it will be impossible that the H(33)transfers to O(2), along with the breaking of N–H and C=O bonds as well as the formation of O–H and C=N bonds.

    Fig. 6. HOMO and LUMO orbitals for the enol and keto forms in methanol

    3. 4 Stability analysis

    Table 4 and Fig. 7 depict the electronic energies and dipole moments of enol, TS and keto forms in gas and different solvents. The results show that the title compound is more stable in all solvents than in gas, and the stabilities of enol, TS, and keto forms grow with the increase of the solvent polarity. In addition, the stability order of the title compound is keto form > enol form > TS form. The relative energy for enol to TS form is 0.02642 a.u in gas,0.02616 a.u in water, 0.02607 a.u in methanol,

    0.02590 a.u in THF and 0.02598 a.u in CCl4,indicating that the solvent will decrease the barrier height of pronton transfer and contribute to the reaction from enol to the keto form. It is worth noting that the relative energy for keto form to the TS form is 0.03676 a.u in gas, 0.04020 a.u in water,0.03994 a.u in methanol, 0.03915 a.u in THF and 0.03786 a.u in CCl4. This means that the solvent will be detrimental to the reversible reaction from keto to the enol form.

    Table 4. Electronic Energies (E)(a.u), Dipole Moments (μ), and Relative Energies for Enol and Keto Forms to the TS Form (aΔE and bΔE)(a.u)

    Fig. 7. Calculated reaction energy profile

    The dipole moments of enol, TS and keto forms increase with growing the solvent polarity. The order of dipole moments of the title compound is as below: keto form > TS form > enol form, which further proves that the title compound exists in the keto form.

    4 CONCLUSION

    Atom-in-molecule (AIM)theory was used to study HBs and ring structures of the title compound.The computational results show that ellipticity ε of H··Y is in agreement with the trend of E(2), which indicates that ellipticity ε of H··Y can be used to characterize the strength of H-bond. In addition, the data show that good linear correlation between the perimeter and the electron density ρ(r)for the same ring structure has been established.

    The calculation results of the maximum absorption wavelength for enol and keto forms indicate that the proposed mechanism from enol to the keto form is reasonable.

    The analysis of molecular orbitals further accounts for the probable reactive sites and the photochromic mechanism.

    The keto form of the title compound is more stable than the enol form in all appointed solvents,and the stability of enol, TS and keto forms grows with the increase of solvent polarity. In addition, the solvent will contribute to the reaction from enol to the keto form.

    (1)Irie, M. Photochromic diarylethenes for photonic devices. Pure Appl. Chem. 1996, 68, 1367?1371.

    (2)Sytnik, A.; Khasa, M. Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity. Proc. Natl. Acad.Sci. USA 1994, 91, 8627?8630.

    (3)Zhao, J. Z.; Zhao, B.; Liu, J. Z.; Xu, W.; Wang, Z. M. Spectroscopy study on the photochromism of Schiff bases N,N?-bis(salicylidene)-1,2-diaminoehtane and N,N′-bis(salicylidene)-1,6-hexanediamine. Spectrochim. Acta A 2001, 57, 149?154.

    (4)Zio?ek, M.; Kubicki, J.; Maciejewski, A.; Naskrecki, R.; Grabowska, A. Excited state proton transfer and photochromism of an aromatic Schiff base.pico- and femtosecond kinetics of the N,N?-bis(salicylidene)-p-phenylenediamine (BSP). Chem. Phys. Lett. 2003, 369, 80?89.

    (5)Kunkely, H.; Vogler, A. Photochemistry of N,N?-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane and its Co(II)complex in chloroform. J.Photochem. Photobio. A: Chem. 2001, 138, 51?54.

    (6)Grabowska, A.; Kownacki, K.; Karpiuk, J.; Dobrin, S.; Kaczmarek, L. Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases. Chem. Phys. Lett. 1997, 267, 132?140.

    (7)Liu, G. F.; Liu, L.; Jia, D. Z.; Yu, K. B. Synthesis and properties of a novel photochromic compound. Chin. Chem. Lett. 2003, 14, 1230?1232.

    (8)Liu, L.; Jia, D. Z.; Ji, Y. L.; Yu, K. B. Crystal structure and photochromism of 1-phenyl-3-methyl-4-benzyl-5-one-pyrazole S-methylthiosemicarbazone. J. Mol. Struct. 2003, 655, 221?227.

    (9)Tang, X. C.; Jia, D. Z.; Liang, K.; Zhang, X. G.; Xia, X.; Zhou, Z. Y. Synthesis, structure and properties of a novel kind of photochromic compound containing a pyrazolone-ring. J. Photochem. Photobio. A: Chem. 2001, 134, 23?29.

    (10)Liu, L.; Jia, D. Z.; Ji, Y. L.; Yu, K. B. Synthesis, structure and photochromic properties of 4-acyl pyrazolone derivants. J. Photochem. Photobio. A:Chem. 2003, 154, 117?122.

    (11)Peng, B. H.; Liu, G. F.; Liu, L.; Jia, D. Z. Studies on solid-state proton transfer along hydrogen bond of pyrazolone-ring. Tetrahedron 2005, 61,5926?5932.

    (12)Zhang, T.; Liu, G. F.; Liu, L.; Jia, D. Z.; Zhang, L. Solid-state proton transfer studies on phototautomerization of 1-phenyl-3-methyl-4-furoyl-5-pyrazolone 4-methylthiosemicarbazone. Chem. Phys. Lett. 2006, 427, 443?448.

    (13)Guo, J. X.; Liu, L.; Liu, G. F.; Jia, D. Z.; Xie, X. L. Synthesis and solid-state photochromism of 1,3-diphenyl-4-(2-chlorobenzal)-5-hydroxypyrazole 4-methylthiosemicarbazone. Org. Lett. 2007, 20, 3989?3992.

    (14)Barbara, P. F.; Rentzepis, P. M.; Brus, L. Photochemical kinetics of salicylidenaniline. J. Am. Chem. Soc. 1980, 102, 2786?2791.

    (15)Hadjoudis, E.; Vitterakis, M.; Moustakali-Mavridis, I. Photochromism and thermochromism of Schiff bases in the solid state and in rigid glasses.Tetrahedron 1987, 43, 1345?1360.

    (16)Cohen, M. D.; Hirshberg, Y.; Schmidt, G. M. J.; Flavian, S. Topochemistry. VII. The photactivity of anils of salicylaldehydes in rigid solutions. J.Chem. Soc. 1964, 2051?2059.

    (17)Cohen, M. D.; Flavian, S. Topochemistry. Part XXVII. The luminescence of crystalline N-salicylideneanilines and related anils. J. Chem. Soc. 1967,334?340.

    (18)Cohen, M. D.; Schmidt, G. M. J. Photochromy and thermochromy of anils. J. Phys. Chem. 1962, 66, 2442?2445.

    (19)Gholami, M. R.; Izadyar, M. A joint experimental and computational study on the kinetic and mechanism of diallyl disulfide pyrolysis in the gas phase. Chem. Phys. 2004, 301, 45?51.

    (20)Casany, M. P. P.; Gil, I. N.; Marin, J. S. Ab initio study on the mechanism of the reactions of the nitrate radical with haloalkenes: 1,2-dichloroethene,1,1-dichloroethene, trichloroethene, and tetrachloroethene. J. Phys. Chem. A 2000, 104, 11340?11346.

    (21)Karafiloglou, P. Common features of various mechanisms of electron transfer across a 4,4?-bipyridine bridge: a theoretical evaluation of resonance structures of the transition state. Chem. Phys. 1997, 214, 171?182.

    (22)Nakatsuji, H.; Hasegawa, J.; Ohkawa, K. Excited states and electron transfer mechanism in the photosynthetic reaction center of rhodopseudomonas viridis: SAC–CI study. Chem. Phys. Lett. 1998, 296, 499?504.

    (23)Liu, L.; Jia, D. Z.; Qiao, Y. M.; Yu, K. B. Synthesis, crystal structure and photochromism properties of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one. Acta Chim. Sin. 2002, 60, 493?498.

    (24)Liu, A. J.; Wu, D. L.; Liu, L.; Jia, D. Z. Theoretical studies on geometry, solvent effect and photochromic mechanism of two bis-heterocyclic compounds containing pyrazolone-ring. Inter. J. Quantum Chem. 2010, 110, 1360?1367.

    (25)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.;Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision B.04,Gaussian, Inc., Pittsburgh PA 2003.

    (26)Amovilli, C.; Barone, V.; Cammi, R.; Cances, E.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi, J. Recent advances in the description of solvent effects with the polarizable continuum model. Adv. Quantum Chem. 1998, 32, 227?262.

    (27)Bader, R. F. W. Atoms in molecules. A quantum theory. Clarendon Press, Oxford 1990.

    (28)Bader, R. F. W.; Gillespie, R. J.; MacDougall, P. J. Physical basis for the VSEPR model of molecular geometry.J. Am. Chem. Soc. 1988, 110, 7329?7336.

    (29)Bader, R. F. W. A quantum theory of molecular structure and its application. Chem. Rev. 1991, 91, 893?928.

    (30)Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison 1995.

    (31)Kabak, M. Crystal structure and conformation of N,N?-bis(3,5-dichlorosalicylidene)-2-hydroxy 1,3-diamino-2-propan.J. Mol. Struct. 2003, 655, 135?139.

    (32)Kabak, M.; Elmali, A.; Elerman, Y. Keto-enol tautomerism, conformations and structure of N-(2-hydroxy-5-methylphenyl),2-hydroxybenzaldehydeimine. J. Mol. Struct. 1999, 477, 151?158.

    (33)Kabak, M.; Elmali, A.; Elerman, Y. Tautomeric properties, conformations and structure of N-(2-hydroxyphenyl)-4-amino-3-penten-2-on. J. Mol.Struct. 1998, 470, 295?300.

    (34)Wu, Y.; Xue, Y.; Xie, D. Q.; Yan, G. S. A computational study on the mechanism for the chemical fixation of nitric oxide leading to 1,2,3-oxadiazole 3-oxide. J. Org. Chem. 2005, 70, 5045?5054.

    亚洲自拍偷在线| 2021少妇久久久久久久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲av成人精品一区久久| 国产白丝娇喘喷水9色精品| 国产av在哪里看| 亚洲国产欧美在线一区| 午夜精品在线福利| 国产淫语在线视频| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 欧美zozozo另类| 美女高潮的动态| 久久久久久久久中文| 亚洲第一区二区三区不卡| 久久这里只有精品中国| 精品久久久久久久末码| 直男gayav资源| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| 狂野欧美激情性xxxx在线观看| 成人av在线播放网站| 男女那种视频在线观看| 国产精品一区二区性色av| 精品久久久久久电影网 | 精品人妻一区二区三区麻豆| 日本免费在线观看一区| 亚洲av成人av| 亚洲最大成人手机在线| 国产欧美日韩精品一区二区| 午夜福利在线在线| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o | 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 69人妻影院| 青春草国产在线视频| 中文字幕av在线有码专区| 1000部很黄的大片| 最近视频中文字幕2019在线8| 国产成人aa在线观看| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区| 亚洲国产欧洲综合997久久,| 国产黄色视频一区二区在线观看 | 免费观看性生交大片5| 桃色一区二区三区在线观看| 亚洲欧美日韩东京热| 精品人妻视频免费看| 偷拍熟女少妇极品色| 秋霞在线观看毛片| 日本熟妇午夜| 久久久成人免费电影| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 精品不卡国产一区二区三区| 久久精品影院6| 日本一二三区视频观看| 99热精品在线国产| 久久99精品国语久久久| 欧美激情在线99| 一卡2卡三卡四卡精品乱码亚洲| 看免费成人av毛片| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看 | 久久韩国三级中文字幕| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 亚洲成人久久爱视频| 国产精品野战在线观看| 国产精品无大码| 免费观看性生交大片5| 欧美成人免费av一区二区三区| 尾随美女入室| 亚洲国产精品sss在线观看| 我要搜黄色片| 亚洲国产精品国产精品| 91久久精品电影网| 九色成人免费人妻av| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 热99在线观看视频| 日韩亚洲欧美综合| 日韩欧美在线乱码| 最新中文字幕久久久久| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 国产三级中文精品| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精 | 国产黄片视频在线免费观看| 国产在视频线在精品| 高清午夜精品一区二区三区| 精品久久久久久久久av| 最近2019中文字幕mv第一页| 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 国内精品宾馆在线| 日韩在线高清观看一区二区三区| www日本黄色视频网| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 欧美日韩在线观看h| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 中文字幕熟女人妻在线| 国产91av在线免费观看| 午夜福利在线观看免费完整高清在| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 欧美日本视频| 免费av毛片视频| 国产精品熟女久久久久浪| 天堂av国产一区二区熟女人妻| 亚洲精品日韩在线中文字幕| 日日摸夜夜添夜夜爱| 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 又爽又黄无遮挡网站| 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va| 又爽又黄无遮挡网站| 三级经典国产精品| 有码 亚洲区| 少妇人妻精品综合一区二区| 网址你懂的国产日韩在线| 免费电影在线观看免费观看| 日韩一区二区三区影片| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 人妻系列 视频| 九草在线视频观看| 高清av免费在线| 日韩一区二区三区影片| 色网站视频免费| 亚洲av福利一区| 三级毛片av免费| 伦精品一区二区三区| 男女下面进入的视频免费午夜| 男插女下体视频免费在线播放| 99热精品在线国产| 亚洲欧美成人综合另类久久久 | 汤姆久久久久久久影院中文字幕 | 久久久国产成人免费| 看黄色毛片网站| 国产 一区精品| 97热精品久久久久久| 日韩视频在线欧美| 国产午夜精品久久久久久一区二区三区| 久久韩国三级中文字幕| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 美女高潮的动态| .国产精品久久| 九色成人免费人妻av| 三级国产精品片| 免费无遮挡裸体视频| 爱豆传媒免费全集在线观看| 久久草成人影院| 在线观看66精品国产| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 亚洲中文字幕日韩| 免费大片18禁| 男女那种视频在线观看| 深夜a级毛片| 亚洲va在线va天堂va国产| 日韩一区二区视频免费看| 美女大奶头视频| 一本久久精品| 91精品一卡2卡3卡4卡| 久久精品夜夜夜夜夜久久蜜豆| 久久久久网色| 内射极品少妇av片p| 搡女人真爽免费视频火全软件| 综合色av麻豆| 如何舔出高潮| av福利片在线观看| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品色激情综合| 久99久视频精品免费| 看免费成人av毛片| 国产视频首页在线观看| 日本一本二区三区精品| 欧美日韩精品成人综合77777| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站| 亚洲av电影不卡..在线观看| 亚洲av日韩在线播放| 亚洲精品国产成人久久av| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 狠狠狠狠99中文字幕| 国产色婷婷99| 搡女人真爽免费视频火全软件| 99在线视频只有这里精品首页| 尾随美女入室| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 亚洲色图av天堂| 高清av免费在线| 中文字幕亚洲精品专区| 神马国产精品三级电影在线观看| 国产成人a∨麻豆精品| 精品久久久久久久人妻蜜臀av| 日韩精品有码人妻一区| 麻豆av噜噜一区二区三区| 久久精品91蜜桃| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 亚洲自偷自拍三级| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久一区二区三区| 亚洲欧美清纯卡通| 国产黄片美女视频| 日韩成人av中文字幕在线观看| 精品久久久噜噜| 精华霜和精华液先用哪个| 午夜精品在线福利| 小说图片视频综合网站| 狠狠狠狠99中文字幕| 亚洲丝袜综合中文字幕| 日本wwww免费看| 三级毛片av免费| 精品不卡国产一区二区三区| 久久6这里有精品| 国产欧美日韩精品一区二区| 日韩三级伦理在线观看| 九九爱精品视频在线观看| 有码 亚洲区| 超碰97精品在线观看| 日本黄大片高清| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 久久欧美精品欧美久久欧美| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 亚洲国产欧洲综合997久久,| videos熟女内射| 国产一区二区三区av在线| 欧美色视频一区免费| 国产毛片a区久久久久| 精品久久国产蜜桃| 男女那种视频在线观看| 国产精品久久久久久精品电影| 日本黄色片子视频| 日韩av在线免费看完整版不卡| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 天堂影院成人在线观看| 亚洲欧洲国产日韩| 亚洲精品456在线播放app| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 99久久九九国产精品国产免费| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 两个人的视频大全免费| 久久国内精品自在自线图片| 黄色日韩在线| 女人十人毛片免费观看3o分钟| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 国产久久久一区二区三区| 亚洲精品,欧美精品| 久久久久网色| 国内精品美女久久久久久| 丝袜美腿在线中文| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 97超视频在线观看视频| 乱码一卡2卡4卡精品| 国产精品无大码| 51国产日韩欧美| 寂寞人妻少妇视频99o| 99久久无色码亚洲精品果冻| 日本欧美国产在线视频| 老女人水多毛片| 婷婷色综合大香蕉| 久久精品国产亚洲网站| 亚洲成人av在线免费| 深爱激情五月婷婷| 18+在线观看网站| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 一边摸一边抽搐一进一小说| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久| 黄色一级大片看看| 狠狠狠狠99中文字幕| 中文资源天堂在线| 亚洲av.av天堂| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 国产美女午夜福利| 欧美日韩一区二区视频在线观看视频在线 | 精品国内亚洲2022精品成人| 97超视频在线观看视频| videos熟女内射| 国产不卡一卡二| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 久久久久九九精品影院| 国产精品一区二区在线观看99 | 久久午夜福利片| 国产免费又黄又爽又色| 日日撸夜夜添| 别揉我奶头 嗯啊视频| 亚洲乱码一区二区免费版| 亚洲国产最新在线播放| 国产黄片美女视频| 综合色丁香网| 尾随美女入室| av在线天堂中文字幕| 成人综合一区亚洲| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 日日啪夜夜撸| 在线免费观看不下载黄p国产| av在线蜜桃| 性色avwww在线观看| 三级经典国产精品| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 国产精品精品国产色婷婷| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 真实男女啪啪啪动态图| 亚洲精品乱久久久久久| 最近最新中文字幕大全电影3| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| 亚洲欧美中文字幕日韩二区| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 白带黄色成豆腐渣| 久久99热这里只频精品6学生 | 亚洲熟妇中文字幕五十中出| 国产大屁股一区二区在线视频| 婷婷六月久久综合丁香| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 直男gayav资源| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| av免费在线看不卡| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 亚洲在线自拍视频| 少妇的逼好多水| 亚洲在线自拍视频| 色哟哟·www| 天堂av国产一区二区熟女人妻| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| 亚洲最大成人中文| 免费搜索国产男女视频| 插逼视频在线观看| 国产片特级美女逼逼视频| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 亚洲成人久久爱视频| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 亚洲精品国产av成人精品| 日本黄色视频三级网站网址| 老司机影院成人| 亚洲精品aⅴ在线观看| 成人性生交大片免费视频hd| 日本五十路高清| 在线免费观看不下载黄p国产| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 深夜a级毛片| 午夜精品国产一区二区电影 | 成人亚洲欧美一区二区av| 久久久久九九精品影院| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| 婷婷色麻豆天堂久久 | 高清日韩中文字幕在线| 国产日韩欧美在线精品| 亚洲国产欧美人成| av在线亚洲专区| 91在线精品国自产拍蜜月| 少妇高潮的动态图| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 精品无人区乱码1区二区| 亚洲成人精品中文字幕电影| 亚洲人成网站在线播| www.色视频.com| 久久人妻av系列| 中文精品一卡2卡3卡4更新| 国产精品野战在线观看| 综合色丁香网| 老司机影院毛片| 毛片女人毛片| 日韩av在线免费看完整版不卡| 色视频www国产| 婷婷色综合大香蕉| 老女人水多毛片| 一边亲一边摸免费视频| kizo精华| 国产高清有码在线观看视频| 欧美最新免费一区二区三区| 中文乱码字字幕精品一区二区三区 | 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| 婷婷色综合大香蕉| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 中文资源天堂在线| 亚洲在久久综合| 超碰av人人做人人爽久久| 99久久九九国产精品国产免费| 一级毛片我不卡| 国产精品一区二区性色av| 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 99久久成人亚洲精品观看| 中文精品一卡2卡3卡4更新| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 亚洲精华国产精华液的使用体验| 精品免费久久久久久久清纯| 国产av码专区亚洲av| 成人性生交大片免费视频hd| 少妇人妻一区二区三区视频| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 欧美激情国产日韩精品一区| 性色avwww在线观看| 国产精品综合久久久久久久免费| 国产一级毛片在线| 18禁动态无遮挡网站| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 亚洲美女搞黄在线观看| 亚洲综合色惰| 中文字幕av在线有码专区| 一区二区三区四区激情视频| 在线观看66精品国产| 午夜爱爱视频在线播放| www日本黄色视频网| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 亚洲国产精品合色在线| 毛片女人毛片| 91aial.com中文字幕在线观看| 久久精品国产亚洲av天美| АⅤ资源中文在线天堂| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 晚上一个人看的免费电影| 在线免费观看的www视频| 欧美变态另类bdsm刘玥| 99久久无色码亚洲精品果冻| 一区二区三区高清视频在线| 特大巨黑吊av在线直播| 亚洲精品色激情综合| 中文资源天堂在线| 丰满少妇做爰视频| 日韩一本色道免费dvd| 亚洲av电影不卡..在线观看| 国产国拍精品亚洲av在线观看| 特级一级黄色大片| 国产在视频线精品| 亚洲精品,欧美精品| 久久久久久久久久久丰满| 亚洲国产欧美人成| 黄色一级大片看看| 简卡轻食公司| 最新中文字幕久久久久| 久久这里有精品视频免费| av视频在线观看入口| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 丰满人妻一区二区三区视频av| 91精品一卡2卡3卡4卡| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 亚洲久久久久久中文字幕| 高清av免费在线| 人妻制服诱惑在线中文字幕| 久久久国产成人免费| 精品久久久久久久久亚洲| 国产成人精品一,二区| 视频中文字幕在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲一区二区精品| 亚洲精品乱久久久久久| 亚洲在久久综合| 一本一本综合久久| 日本午夜av视频| 中文字幕久久专区| 69人妻影院| 两个人的视频大全免费| 欧美极品一区二区三区四区| 亚洲欧洲日产国产| 国产精品国产高清国产av| 简卡轻食公司| 搡女人真爽免费视频火全软件| 精品久久久久久久人妻蜜臀av| 毛片一级片免费看久久久久| 午夜日本视频在线| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 人体艺术视频欧美日本| 欧美丝袜亚洲另类| 亚洲综合色惰| 亚洲无线观看免费| 午夜精品在线福利| 少妇被粗大猛烈的视频| 午夜视频国产福利| 一级毛片我不卡| av播播在线观看一区| 国产成人a区在线观看| 搡老妇女老女人老熟妇| 边亲边吃奶的免费视频| 亚洲不卡免费看| 欧美性猛交黑人性爽| 国产老妇女一区| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 国产精品一区二区三区四区免费观看| 久99久视频精品免费| 九九久久精品国产亚洲av麻豆| 看黄色毛片网站| 插阴视频在线观看视频| 成人三级黄色视频| 99热精品在线国产| 亚洲五月天丁香| 免费看a级黄色片| 日本一本二区三区精品| 成人午夜高清在线视频| 日本免费一区二区三区高清不卡| 尤物成人国产欧美一区二区三区| 欧美一区二区亚洲| 人妻夜夜爽99麻豆av| 亚洲不卡免费看| 国产精品精品国产色婷婷| 永久网站在线| 亚洲人成网站在线播| 久久久精品欧美日韩精品| 欧美三级亚洲精品| 亚洲av电影不卡..在线观看| 九九热线精品视视频播放| 小说图片视频综合网站| 男人狂女人下面高潮的视频| 天堂√8在线中文| 三级经典国产精品| 国产精品一二三区在线看| 亚洲国产欧洲综合997久久,| 国产白丝娇喘喷水9色精品| 日韩一区二区三区影片| 亚洲国产欧洲综合997久久,| 三级经典国产精品| 色视频www国产| 亚洲内射少妇av| 欧美日韩综合久久久久久| 国产精品伦人一区二区| 少妇的逼好多水| 欧美区成人在线视频| 一级av片app| 亚洲内射少妇av| 小说图片视频综合网站| 国产v大片淫在线免费观看| 欧美性猛交黑人性爽| 日本-黄色视频高清免费观看| 国产精品蜜桃在线观看| 久久精品综合一区二区三区| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 噜噜噜噜噜久久久久久91| 国产一级毛片七仙女欲春2| 成年av动漫网址| 久久综合国产亚洲精品| 国产爱豆传媒在线观看| 观看免费一级毛片| 国产免费视频播放在线视频 | 日韩制服骚丝袜av|