• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    De-Duplication Complexity of Fingerprint Data in Large-Scale Applications

    2014-03-01 10:19:42NallaPattabhiRamaiahandKrishnaMohan

    Nalla Pattabhi Ramaiah and C. Krishna Mohan

    De-Duplication Complexity of Fingerprint Data in Large-Scale Applications

    Nalla Pattabhi Ramaiah and C. Krishna Mohan

    —De-duplication using biometrics has gained much attention from research communities as it provides a unique identity for each and every individual among the large population. De-duplication is the process of removing the instances of multiple enrollments by the same person using the person’s biometric data. An important issue in the large-scale de-duplication applications is the speed of matching and the accuracy of the matching because the number of persons to be enrolled runs into millions. This paper presents an efficient method to improve the accuracy of fingerprint de-duplication in de-centralized manner. De-duplication accuracy decreases because of the noise present in the data, which would cause improper slap fingerprint segmentation. In this paper, an attempt is made to remove the noise present in the data by using binarization of slap fingerprint images and region labelingofdesiredregionswith8-adjacency neighborhood. The distinct feature of this technique is to remove the noise present in the data for an accurate slap fingerprint segmentation and improve the de-duplication accuracy. Experimental results demonstrate that the fingerprint segmentation rate and de-duplication accuracy are improved significantly.

    Index Terms—8-adjacency neighborhood, de-duplication, fingerprints, slap fingerprint segmentation.

    1. Introduction

    Government of India provides different services and welfare schemes for the benefit of the people in the society. Some of these services include issuance of birth certificate, voter identity card, driving license, passport, etc. Also, welfare schemes include the targeted public distribution system (TPDS), the national rural employment guarantee system (NREGS), health insurance, old age pensions, etc. for the economic and social upliftment of the people. A unique identity (UID) number assigned for every citizen would obviate the need for a person to produce multiple documentary proofs of his/her identity for availing any government service, or private services like opening of a bank account. The UID number would remain a permanent identifier right from the birth to death of every citizen in the country. The UID would enable government to ensure that benefits under various welfare programs reach the intended beneficiaries, prevent cornering of benefits by a few sections of people, and minimize frauds. UIDs are also expected to be of help in law and order enforcement, effective implementation of the public distribution system, define social welfare entitlements and financial inclusion, and improve overall efficiency of the government administration. The biometrics plays a key role in providing unique identity of a person. The one among the most popular biometrics is fingerprints. The fingerprints are more accurate and reliable biometrics in civilian applications.

    A fingerprint[1]consists of ridges and valleys on the surface of the finger. The uniqueness of a fingerprint can be determined by the minutiae points. Minutiae points are the local ridge features which are identified by a ridge bifurcation or a ridge ending. One way of acquiring fingerprints is to capture the slap fingerprint image. Slap fingerprints are taken by pressing four fingers simultaneously onto a slap fingerprint scanner. In general, the slap fingerprint image will be captured in the manner of 4-4-2 fingers, which means capturing left four fingers at one time, followed by all right four fingers and then followed by two thumb fingers. The captured slap fingerprint images are then processed for the segmentation[2]of fingerprints into the individual fingers.

    The methods described in [3]-[9] used various filtering techniques to enhance the significant details of singlefingerprint images. Fingerprint segmentation using block-wise grey-level variances or local histograms of ridge orientations was described in [10]. In [11], Gabor filters were used to divide fingerprint into foreground and background regions. Edge detection and convex hull calculation were used in [12] for segmenting the image into different disconnected regions. In 2004, NIST (National Institute of Standards and Technology) organized a contest called Slap Fingerprint Evaluation 2004 (SlapSeg04)[13], in which thirteen segmentation algorithms were evaluated. One algorithm which is accessible publicly is the NIST fingerprint segmentation algorithm (NFSEG)[14]. In 2008,NIST again conducted the contest called Slap Fingerprint Segmentation Evaluation II (SlapSegII). The difference between the two contests is the metrics used for successful slap fingerprint segmentation. SlapSeg04[15]used the fingerprint matching algorithm to determine the accuracy of slap fingerprint segmentation. SlapSegII used the ground truth data which has hand marked segmentation boxes as baseline for using NFSEG algorithm.

    This paper presents the de-duplication process of fingerprint images. The targeted public distribution system (TPDS) is an Indian government welfare scheme for ensuring access and availability of food grains and other essential commodities at subsidized prices to the households. Identification of eligible beneficiaries and ensuring delivery commodities to them effectively and efficiently are the basic challenges for TPDS. The main objective of the TPDS is to find the duplicates by de-duplicating the fingerprints using fingerprint matching which requires the individual fingers. These individual fingerprint images are submitted for the de-duplication process which will eliminate the duplicates using fingerprint matching.

    The slap fingerprint images have some noisy data due to some external factors which affect the calibration process of the fingerprint device. In the process of slap fingerprint segmentation, some of the total slap fingerprint images are improperly segmented because of noise present in the data. Moreover, the noise present in the slap fingerprint images are segmented as individual fingers instead of splitting the actual finger. In this paper, an efficient fingerprint de-noising algorithm is proposed to remove the noise present in the images for accurate slap fingerprint segmentation and to improve the de-duplication accuracy. The fingerprint de-duplication and NIST fingerprint image quality (NFIQ) scores are used as the baseline for determining the successful slap fingerprint segmentation. NFIQ score ranges on the scale 1 to 5, where lower quality score represents good quality and higher quality score represents poor quality. Fig. 1 illustrates the noisy fingerprint image.

    This paper is organized as follows. In Section 2, the de-duplication process and the enrollments using centralized manner and decentralized manner are explained. In Section 3, various steps involved in the slap fingerprint noise removal algorithm are discussed. Experimental results are given in Section 4. Conclusions are explained in Section 5.

    Fig. 1. Noisy slap fingerprint image.

    Table 1: De-duplication complexity in a centralized manner

    2. De-Duplication

    De-duplication is the process of removing the instances of multiple enrollments by the same person using the person's biometric data. During the de-duplication process, matching the biometrics of a citizen is done against the biometrics of other citizens to ensure that the same person is not enrolled more than once. This will ensure that each person will have a unique identity. The de-duplication complexity is demonstrated by using two different enrollment scenarios, i.e., enrollment using a centralized manner and enrollment using a decentralized manner.

    2.1 Enrollment Using a Centralized Manner

    In the case of enrollment using a centralized manner, the fingerprints of the citizen have to be matched against the fingerprints of all the previously enrolled citizens. The matching has to be done soon after the fingerprints are captured to check whether the same citizen has been enrolled earlier. In case a match is found, the citizen will not be enrolled into the system.

    To illustrate the de-duplication complexity in the centralized manner, let us consider an example where 200 million citizens have already been enrolled, and a new citizen is now waiting to be enrolled into the system at the enrollment station. Also it is assumed that there are 10 blade servers with a total matching capacity of 5 million per second. The number of matches to be performed across different fingerprints and the time taken for the matching process is shown in Table 1.

    2.2 Enrollment Using a Decentralized Manner

    In the case of enrollment using a decentralized manner, the biometrics of citizens captured during a certain period have to be matched against the unique identity enrollment database of all the previously enrolled citizens. The matching has to be done by aggregating the data from each of the decentralized enrollment stations and matching against the de-duplicated biometrics of all the previously enrolled citizens. To illustrate the de-duplication complexity in a decentralized manner, we consider the case that 200 million citizens have already been enrolled, and data of 1 million citizens has been aggregated from the enrollment stations. The data of the 1 million citizens will have to be matched against the 200 million citizens to avoid multiple enrollments. With the assumption to assess the de-duplication complexity, we assume 10 blade servers witha total matching capacity of 5 million per second. The number of fingerprint matches across different fingerprints to be performed and the time taken for matching the fingerprints are shown in Table 2.

    Table 2: De-duplication complexity in a de-centralized manner

    3. Noise Removal Method for Slap Fingerprint Image Segmentation

    The noise removal method uses the noisy slap images. Fig. 1 represents the sample noisy four-finger slap image with dimensions of 500 dpi (dots per inch) resolution and 1600×1500 size. The steps involved in the noise removal process[16]includes the binarization of slap image, foreground and background segmentation of slap image, resampling and region labeling of slap image, and finally reconstruction of the original data for the larger labeled regions of the slap image

    4. Experimental Results

    The database consists of 1.8 million slap fingerprint images. Each slap image has the dimensions of 1600×1500 size and 500 dpi resolution. It is observed that the correct segmentation rate before the noise removal process is 78%, and after the noise removal process, the correct segmentation rate is 89% in Phase-I and 99% in Phase-II. These results are presented in Table 3.

    The images shown in Fig. 2 (a), (b), (c), (d), (e), and (f), and Fig. 3 (a), (b), (c), (d), and (e) belong to Slap-Group-1 and It is observed that in the Slap-Group-1, Fig. 2 (a) represents the slap with high noise. Fig. 2 (b), (c), (d), and (e) are the segmented fingers of the slap with high noise, which has the NIST fingerprint image quality (NFIQ) scores 3, 5, 4, and 5, respectively. NFIQ score ranges on the scale 1 to 5, where lower quality score represents good quality and higher quality score represents poor quality. The resultant image after binarization as well as foreground and background segmentation of the slap fingerprint image is shown in Fig. 2 (f). Fig. 3 (a) shows the noise-free fingerprint image with recovered original data, and Fig. 3 (b), (c), (d), and (e) are the corresponding segmented fingers with NFIQ scores 1, 1, 1, and 3, respectively.

    Table 3: Segmentation statistics

    Fig. 2. Illustration of sequence of steps of de-noising slap fingerprints for accurate slap fingerprint segmentation: (a) slap with high noise, (b), (c), (d), and (e) are segmented fingers of the slap with high noise, and (f) foreground-background separation of high noisy slap.

    Fig. 3. Illustration of sequence of steps of de-noising slap fingerprints for accurate slap fingerprint segmentation: (a) noise-free slap of high noise, (b), (c), (d), and (e) are segmented fingers of the noise-free slap of high noise.

    Fig. 4. Levels of fingerprint image NFIQ scores for the entire dataset before the noise removal process.

    Fig. 5. Levels of fingerprint image NFIQ scores for the entire dataset after the noise removal process.

    The results shown in Fig. 4 and Fig. 5 illustrate the levels of segmented fingerprint image NFIQ scores before and after the noise removal process of the entire dataset respectively. The NFIQ scale values from 1 to 5 are represented as NFIQ-1, NFIQ-2, NFIQ-3, NFIQ-4, and NFIQ-5, respectively. The X-axis shows the finger positions in the sequence of right thumb (RT), right index (RI), right middle (RM), right ring (RR), right little (RL), left thumb (LT), left index (LI), left middle (LM), left ring (LR), and left little (LL). The Y-axis represents the percentages of segmented fingers with NFIQ scores. The correct segmentation is defined by fixing the NFIQ scores of all the respective slap segmented fingers less than 4. It is observed that the segmentation failure before the noise removal process for the two thumbs is 4%, the failure for the left four fingers slap is 11%, and it is 7% for the right four fingers slap as shown in Fig. 4. The correct segmentation rate for the entire dataset is significantly improved to 99% as shown in Fig. 5.

    5. Conclusions

    In this paper, we address a few issues to improve the de-duplication accuracy in large scale de-duplication applications. The large scale de-duplication applications need a lot of enhancements in different phases of recognition process to achieve high speed and good accuracy. The noise removal method is proposed to segment the individual fingers accurately from the slap fingerprint images using binarization of slap fingerprint image, foreground and background segmentation of slap image and region labeling of desired regions with 8-adjacency neighborhood. De-duplication accuracy and slap fingerprint segmentation rate are improved significantly.

    [1] The Science of Fingerprints. [Online]. Available: http://www.fun-science-project-ideas.com/The-science-of-fi ngerprints.html

    [2] P. Gupta and P. Gupta, “Slap fingerprint segmentation,” in Proc. of IEEE 5th Int. Conf. on Biometrics: Theory, Applications and Systems, Arlington, 2012, pp. 189-194.

    [3] (May 2007). American National Standard for Information Systems Data Format for the Interchange of Fingerprint, Facial, & Other Biometric Information Part 1, ANSI/NIST-ITL 1-2007. [Online]. Available: http://fingerprint.nist.gov/standard/index.html.

    [4] M. U. Akram, S. Nasir, A. Tariq, I. Zafar, and W. S. Khan,“Improved fingerprint image segmentation using new modified gradient based technique,” in Proc. of IEEE Canadian Conf. on Electrical and Computer Engineering, Niagara Falls, 2008, pp. 001967-001972.

    [5] J.-J. Gao, and M. Xie, “The layered segmentation, gabor filtering and binarization based on orientation for fingerprint preprocessing,” presented at the 8th IEEE Int. Conf. on Signal Processing, Banff, 2006.

    [6] J.-Z. Cao and Q.-Y. Dai, “A novel online fingerprint segmentation method based on frame-difference,” in Proc. of IEEE Int. Conf. on Image Analysis and Signal Processing, Kuala Lumpur , 2009, pp. 57-60.

    [7] X. Guo, G. Yang, and Y. Yin, “Sensor interoperability of fingerprint segmentation: An empirical study,” in Proc. of IEEE Int. Conf. on Information Engineering and Computer Science, Wuhan, 2009, pp. 1-4.

    [8] J. Qi and M. Xie, “Segmentation of fingerprint images using the gradient vector field,” in Proc. of IEEE Int. Conf. on Cybernetics and Intelligent Systems, Chengdu, 2008, pp. 543-545.

    [9] Z. Ma, M. Xie, and C. Yu, “Fingerprint segmentation based on PCNN and morphology,” in Proc. of IEEE Int. Conf. on Communications, Circuits and Systems, San Jose, 2009, pp. 566-568.

    [10] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar Handbook of Fingerprint Recognition, New York: Springer-Verlag New York Inc., 2003.

    [11] F. Alonso-Fernandez, J. Fierrez-Aguilar, J. Ortega-Garcia,“An enhanced gabor filter-based segmentation algorithm for fingerprint recognition systems,” in Proc. of the 4th IEEEInt. Symposium on Image and Signal Processing and Analysis, Dubrovnik, 2005, pp. 239-244.

    [12] P. Z.-P. Lo and, P. V. Sankar, “Slap print segmentation system and method,” in Google Patents, 2006, US Patent 7,072,496.

    [13] B. Ulery, A. Hicklin, C. Watson, M. Indovina, and K. Kwong, “Slap fingerprint segmentation evaluation 2004 analysis report,” Technical report, National Institute of Standards and Technology, 2005.

    [14] S. Maddala, S. R. Tangellapally, J. S. Bartuněk, and M. Nilsson “Implementation and evaluation of NIST biometric image software for fingerprint recognition,” in Proc. of the 4th IEEE Int. Conf. on Signal and Image Processing, Québec, 2010, pp. 207-211.

    [15] B. Ulery, A. Hickline, C. Watson, M. Indovina, and K. Kwong. (March 2005). Slap fingerprint segmentation evaluation 2004. SlapSeg04 analysis report. [Online]. Available: http://www.nist.gov/itl/iad/ig/upload/ir_7209.pdf

    [16] N. P. Ramaiah and C. K. Mohan, “De-noising Slap Fingerprint Images for Accurate Slap Fingerprint Segmentation,” in Proc. of the 10th IEEE Int. Conf. on Machine Learning and Applications, Honolulu, 2011, pp. 208-211.

    Nalla Pattabhi Ramaiahwas born in Andhrapradesh, India in 1981. He received the B.Tech. degree from the Jawaharlal Nehru Technological University, Hyderabad in 2004 in computer science and information technology and the M.Tech. degree from the University of Hyderabad in 2007 in artificial intelligence. He is currently pursuing the Ph.D. degree with the Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad (IITH). His research interests include biometrics, image processing, and pattern recognition.

    C. Krishna Mohanwas born in Andhrapradesh, India in 1967. He received the Bachelor of Science Education (B.Sc.Ed) degree from Regional Institute of Education, University of Mysore in 1988 and the Master of Computer Applications (M.C.A) degree from S. J. College of Engineering, Mysore in 1991. He received the Master of Technology in system analysis and computer applications from IITH, Surathkal in 2000. He received the Ph.D. degree from Indian Institute of Technology Madras in 2007. He is an assistant professor with the Department of Computer Science and Engineering, IITH. His research interests include video content analysis, pattern recognition, and neural networks.

    The author’s photograph is not available at the time of publication.

    Manuscript received May 17, 2013; revised June 26, 2013.

    N. P. Ramaiah is with the the Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India (Corresponding author e-mail: ramaiah.iith@gmail.com).

    C. K. Mohan is with the Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India (e-mail: ckm@iith.ac.in).

    Color versions of one or more of the figures in this paper are available online at http://www.intl-jest.com.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.02.017

    一级毛片黄色毛片免费观看视频| 狂野欧美激情性xxxx在线观看| 观看美女的网站| 好男人在线观看高清免费视频| 亚洲不卡免费看| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 亚洲欧美清纯卡通| 伊人久久国产一区二区| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 精品午夜福利在线看| 国产免费视频播放在线视频 | 免费观看av网站的网址| 国产不卡一卡二| 免费看a级黄色片| 99久久精品一区二区三区| 国产午夜精品一二区理论片| 成人午夜精彩视频在线观看| 伊人久久精品亚洲午夜| 国产精品.久久久| 麻豆久久精品国产亚洲av| 国产精品综合久久久久久久免费| 91aial.com中文字幕在线观看| 国产精品av视频在线免费观看| 国产亚洲91精品色在线| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| 亚洲精品第二区| 亚洲一区高清亚洲精品| 特大巨黑吊av在线直播| 国产在线一区二区三区精| 亚洲在线自拍视频| 国产伦精品一区二区三区四那| kizo精华| 久久久久久久久久久免费av| 边亲边吃奶的免费视频| 亚洲精品成人久久久久久| 男女下面进入的视频免费午夜| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| videos熟女内射| 丝袜喷水一区| 欧美97在线视频| 国产精品一区二区三区四区免费观看| 国产乱人视频| 高清日韩中文字幕在线| 女人十人毛片免费观看3o分钟| 建设人人有责人人尽责人人享有的 | 最近最新中文字幕免费大全7| 国产国拍精品亚洲av在线观看| 欧美一区二区亚洲| 在线 av 中文字幕| 三级毛片av免费| 亚洲精品第二区| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 国产探花极品一区二区| 精品熟女少妇av免费看| 91av网一区二区| 亚洲综合色惰| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| 成年av动漫网址| 午夜福利成人在线免费观看| 日本一本二区三区精品| 一个人看视频在线观看www免费| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看| 欧美日韩国产mv在线观看视频 | 欧美高清成人免费视频www| 国产精品综合久久久久久久免费| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 欧美日韩一区二区视频在线观看视频在线 | 男女那种视频在线观看| av天堂中文字幕网| 五月伊人婷婷丁香| 日韩成人av中文字幕在线观看| 久久午夜福利片| 51国产日韩欧美| 大又大粗又爽又黄少妇毛片口| 成人高潮视频无遮挡免费网站| 久久久亚洲精品成人影院| av国产免费在线观看| 中文精品一卡2卡3卡4更新| 嫩草影院精品99| 国产麻豆成人av免费视频| 91精品国产九色| 国产又色又爽无遮挡免| 人人妻人人澡人人爽人人夜夜 | 能在线免费看毛片的网站| 99热这里只有精品一区| 高清视频免费观看一区二区 | 在线观看免费高清a一片| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 欧美+日韩+精品| 2021天堂中文幕一二区在线观| 国产 亚洲一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级国产专区5o| 午夜精品国产一区二区电影 | 国产精品久久久久久精品电影小说 | 三级国产精品欧美在线观看| eeuss影院久久| 一级a做视频免费观看| 丝袜美腿在线中文| 亚洲人与动物交配视频| 久久久久久久久久久丰满| 免费看不卡的av| 亚洲国产高清在线一区二区三| 亚洲精品乱码久久久久久按摩| 精华霜和精华液先用哪个| 欧美zozozo另类| 99久久人妻综合| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 国产淫语在线视频| 免费看a级黄色片| 国产高清有码在线观看视频| 国产成人a区在线观看| 边亲边吃奶的免费视频| 两个人视频免费观看高清| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 亚洲av成人av| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 久久久色成人| 十八禁网站网址无遮挡 | 啦啦啦韩国在线观看视频| 亚洲精品视频女| 天美传媒精品一区二区| 中文在线观看免费www的网站| 永久网站在线| 嫩草影院新地址| 午夜福利成人在线免费观看| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| 99视频精品全部免费 在线| 有码 亚洲区| 国产乱来视频区| 看免费成人av毛片| 久久99热这里只有精品18| 老司机影院成人| 看黄色毛片网站| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 乱系列少妇在线播放| 亚洲性久久影院| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 欧美高清成人免费视频www| 看非洲黑人一级黄片| 性色avwww在线观看| 国产免费又黄又爽又色| 亚洲精品日韩av片在线观看| 99久国产av精品国产电影| 91精品一卡2卡3卡4卡| 欧美bdsm另类| 日韩 亚洲 欧美在线| 内射极品少妇av片p| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 91精品一卡2卡3卡4卡| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 极品教师在线视频| 精品国产一区二区三区久久久樱花 | 日日摸夜夜添夜夜添av毛片| 亚州av有码| a级毛色黄片| 国产男女超爽视频在线观看| 亚洲av一区综合| 国产亚洲av片在线观看秒播厂 | 久久久久网色| 黄色日韩在线| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 街头女战士在线观看网站| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 又大又黄又爽视频免费| 最近中文字幕高清免费大全6| 精品久久久久久成人av| 边亲边吃奶的免费视频| videossex国产| 国产成人午夜福利电影在线观看| 国产 亚洲一区二区三区 | 最近2019中文字幕mv第一页| 最近中文字幕2019免费版| av一本久久久久| 久久精品国产亚洲av天美| 久久精品人妻少妇| 国模一区二区三区四区视频| 国产成人午夜福利电影在线观看| 五月玫瑰六月丁香| 日本三级黄在线观看| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 欧美日本视频| 日韩av免费高清视频| 中文字幕制服av| 两个人的视频大全免费| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 精品午夜福利在线看| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 国产高清有码在线观看视频| 欧美日本视频| 亚洲国产欧美人成| 日本一本二区三区精品| 国产伦精品一区二区三区视频9| 亚洲精品第二区| 国产老妇女一区| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 青青草视频在线视频观看| 国产综合懂色| 日韩精品有码人妻一区| 久久精品久久久久久久性| 永久网站在线| 能在线免费看毛片的网站| av在线亚洲专区| 国产成人91sexporn| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版 | 亚洲欧美成人精品一区二区| 国产成人福利小说| 一级爰片在线观看| 国产成人91sexporn| 免费看av在线观看网站| 日日啪夜夜撸| 午夜精品在线福利| 欧美日韩综合久久久久久| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 日韩大片免费观看网站| 99久久人妻综合| 亚洲自拍偷在线| 亚洲精品日本国产第一区| 成年版毛片免费区| 国产综合精华液| 免费人成在线观看视频色| 日本wwww免费看| 天堂俺去俺来也www色官网 | 精品久久久精品久久久| 欧美激情久久久久久爽电影| 综合色av麻豆| 亚洲在线自拍视频| 色吧在线观看| 99热这里只有精品一区| 国产亚洲5aaaaa淫片| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 日韩精品青青久久久久久| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| 精品久久久久久久人妻蜜臀av| 最近最新中文字幕免费大全7| 18禁动态无遮挡网站| 2022亚洲国产成人精品| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 国产在线男女| 国产精品三级大全| 欧美97在线视频| 99热网站在线观看| 高清毛片免费看| 中文欧美无线码| 熟女人妻精品中文字幕| 日本黄大片高清| av卡一久久| 欧美+日韩+精品| 欧美另类一区| 久久这里有精品视频免费| 黑人高潮一二区| 国产久久久一区二区三区| 亚洲自拍偷在线| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 超碰av人人做人人爽久久| 午夜视频国产福利| 丰满乱子伦码专区| 久久久久久久久中文| 777米奇影视久久| videos熟女内射| 日韩精品有码人妻一区| 成年av动漫网址| 亚洲国产精品sss在线观看| 韩国av在线不卡| 国产爱豆传媒在线观看| 成人av在线播放网站| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡免费网站照片| 三级经典国产精品| 一二三四中文在线观看免费高清| 少妇熟女aⅴ在线视频| 国产精品女同一区二区软件| 麻豆成人av视频| 国产亚洲最大av| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 午夜免费观看性视频| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 丝瓜视频免费看黄片| 26uuu在线亚洲综合色| 美女高潮的动态| 精品熟女少妇av免费看| 超碰av人人做人人爽久久| 亚洲美女搞黄在线观看| 日日撸夜夜添| 美女cb高潮喷水在线观看| 国产在线一区二区三区精| 久久久午夜欧美精品| 日日干狠狠操夜夜爽| 又黄又爽又刺激的免费视频.| 亚洲精品,欧美精品| 久久午夜福利片| 亚洲无线观看免费| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲精品乱码久久久久久按摩| 日韩欧美精品免费久久| 亚洲性久久影院| 国产伦精品一区二区三区视频9| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 中文字幕亚洲精品专区| 国产午夜福利久久久久久| 久久精品久久精品一区二区三区| 日韩电影二区| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 黄色配什么色好看| 国产精品一二三区在线看| 久久久久久久久久久免费av| 夫妻午夜视频| 亚洲不卡免费看| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网 | 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 国产精品国产三级国产专区5o| 久久久午夜欧美精品| 久久人人爽人人片av| av在线观看视频网站免费| 久久99热6这里只有精品| 国产黄频视频在线观看| 国产精品伦人一区二区| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 国产成人91sexporn| 中文在线观看免费www的网站| 最近最新中文字幕免费大全7| 国产高清三级在线| 一级a做视频免费观看| 日韩欧美一区视频在线观看 | 国产白丝娇喘喷水9色精品| av卡一久久| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 午夜精品在线福利| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| 哪个播放器可以免费观看大片| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| www.色视频.com| 真实男女啪啪啪动态图| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 91久久精品国产一区二区三区| 在线播放无遮挡| 免费大片18禁| www.av在线官网国产| 嫩草影院入口| 寂寞人妻少妇视频99o| 久久久久精品性色| 免费看a级黄色片| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 可以在线观看毛片的网站| av一本久久久久| 欧美+日韩+精品| 免费观看无遮挡的男女| 精品不卡国产一区二区三区| 成年人午夜在线观看视频 | 18禁裸乳无遮挡免费网站照片| 国产午夜福利久久久久久| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 久久久久性生活片| 国产一区二区在线观看日韩| videos熟女内射| 国产成人一区二区在线| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 搞女人的毛片| 激情 狠狠 欧美| 日本免费a在线| 啦啦啦中文免费视频观看日本| 成人综合一区亚洲| 免费观看a级毛片全部| 色视频www国产| 天天躁夜夜躁狠狠久久av| 国产精品嫩草影院av在线观看| 精品不卡国产一区二区三区| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 亚洲av一区综合| 亚洲,欧美,日韩| 超碰av人人做人人爽久久| 亚洲无线观看免费| 91久久精品国产一区二区三区| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 亚洲图色成人| 亚洲av成人精品一二三区| 久久久久久久国产电影| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 久久午夜福利片| 欧美日韩综合久久久久久| 一区二区三区免费毛片| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 国产欧美日韩精品一区二区| 少妇丰满av| 免费看日本二区| 麻豆久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 白带黄色成豆腐渣| 久久97久久精品| 欧美人与善性xxx| av在线天堂中文字幕| 日韩在线高清观看一区二区三区| 国产亚洲午夜精品一区二区久久 | 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 亚洲av不卡在线观看| 免费观看a级毛片全部| 干丝袜人妻中文字幕| 国产av在哪里看| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 秋霞在线观看毛片| 2022亚洲国产成人精品| 少妇熟女欧美另类| 午夜日本视频在线| 男人狂女人下面高潮的视频| 97超视频在线观看视频| av在线亚洲专区| 国模一区二区三区四区视频| 男人舔奶头视频| 蜜桃久久精品国产亚洲av| 一级片'在线观看视频| 特级一级黄色大片| 2021少妇久久久久久久久久久| 只有这里有精品99| 老师上课跳d突然被开到最大视频| 97在线视频观看| 国产成人精品福利久久| av女优亚洲男人天堂| 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕| 中国国产av一级| 久久久久久久久久人人人人人人| 久久精品夜色国产| 99久久精品热视频| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 久久热精品热| 丝瓜视频免费看黄片| 国产一区二区亚洲精品在线观看| 国产精品.久久久| 国产精品久久久久久精品电影小说 | 午夜视频国产福利| 性插视频无遮挡在线免费观看| av网站免费在线观看视频 | 只有这里有精品99| 老女人水多毛片| 成人漫画全彩无遮挡| 99视频精品全部免费 在线| 三级国产精品片| 菩萨蛮人人尽说江南好唐韦庄| 赤兔流量卡办理| 亚洲精品影视一区二区三区av| 中文天堂在线官网| 午夜精品国产一区二区电影 | 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区黑人 | 亚洲人与动物交配视频| 成人国产麻豆网| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产高潮美女av| 成人亚洲精品av一区二区| 高清av免费在线| 岛国毛片在线播放| 国产美女午夜福利| 国产精品av视频在线免费观看| 久久久久久久亚洲中文字幕| 一夜夜www| 国产女主播在线喷水免费视频网站 | 纵有疾风起免费观看全集完整版 | 久久99蜜桃精品久久| 国产高清三级在线| 日本爱情动作片www.在线观看| 人妻夜夜爽99麻豆av| 亚洲精品国产av蜜桃| 色哟哟·www| 人人妻人人澡人人爽人人夜夜 | 麻豆久久精品国产亚洲av| 亚洲国产成人一精品久久久| 夫妻午夜视频| 欧美日韩综合久久久久久| 韩国高清视频一区二区三区| 丰满人妻一区二区三区视频av| 97超碰精品成人国产| 亚洲精品国产av成人精品| 少妇人妻一区二区三区视频| 精品国内亚洲2022精品成人| 毛片一级片免费看久久久久| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂 | 成人午夜精彩视频在线观看| 97热精品久久久久久| 中文欧美无线码| 成人综合一区亚洲| 国产成人a∨麻豆精品| 汤姆久久久久久久影院中文字幕 | 热99在线观看视频| 亚洲精华国产精华液的使用体验| 禁无遮挡网站| 国产不卡一卡二| 国产成人午夜福利电影在线观看| 男插女下体视频免费在线播放| 日本色播在线视频| 亚洲av中文字字幕乱码综合| 性色avwww在线观看| 亚洲熟女精品中文字幕| 国产淫语在线视频| 大片免费播放器 马上看| 国产黄频视频在线观看| 大又大粗又爽又黄少妇毛片口| av卡一久久| 国产精品福利在线免费观看| 国产成人精品一,二区| 在线观看免费高清a一片| 亚洲真实伦在线观看| 成人美女网站在线观看视频| 成人午夜高清在线视频| freevideosex欧美| 免费少妇av软件| 毛片一级片免费看久久久久| 国产黄频视频在线观看| 啦啦啦韩国在线观看视频| 国产精品久久视频播放| 2021天堂中文幕一二区在线观| 中文字幕久久专区| 午夜福利在线观看吧| 国产真实伦视频高清在线观看| 国产欧美日韩精品一区二区| 插阴视频在线观看视频| eeuss影院久久| 亚洲国产日韩欧美精品在线观看| 中文乱码字字幕精品一区二区三区 | 韩国高清视频一区二区三区|