• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    2014-03-01 10:19:38JuanPabloSotoQuirosandDomingoRodriguez

    Juan Pablo Soto Quiros and Domingo Rodriguez

    A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    Juan Pablo Soto Quiros and Domingo Rodriguez

    —This work presents a computational matrix framework in terms of tensor signal algebra for the formulation of discrete chirp Fourier transform algorithms. These algorithms are used in this work to estimate the point target functions (impulse response functions) of multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) systems. This estimation technique is being studied as an alternative to the estimation of point target functions using the discrete cross-ambiguityfunctionforcertaintypesof environmental surveillance applications. The tensor signal algebra is presented as a mathematics environment composed of signal spaces, finite dimensional linear operators, and special matrices where algebraic methods are used to generate these signal transforms as computational estimators. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms. An instantiation of the framework was performed by using the MATLAB Parallel Computing Toolbox, where all the algorithms presented in this paper were implemented.

    Index Terms—Discrete chirp Fourier transform, MATLAB, parallel computing, tensor signal algebra.

    1. Introduction

    This work deals with the fundamental issue of fast and efficient treatment of microwave remote sensed data of objects modeled as point targets in order to extract information important to a surveillance user. Great advances in active sensor technology, communications, and signal processing technology are demanding new computational theories and methods to improve our rapid awareness of our physical sensory reality. For the particular case of synthetic aperture radar (SAR) systems[1], this implies the need for faster and efficient means for signal intelligence.

    The work presents here concentrates on the formulation of a computational matrix framework in terms of tensor signal algebra, which is as a set consisting of signal spaces, operators, and special matrices for algebraic modeling of point target response functions using point estimates of discrete chirp Fourier transforms (DCFTs) of echo returns modeled as multi-component polynomial phase signals. The tensor signal algebra has been demonstrated to be instrumental in the analysis, design, and implementation of different classes of algorithms for SAR computational signal processing applications[2]-[4].

    We concentrate our effort on the matrix formulation of algorithms for the computation of discrete chirp Fourier transforms. This computational matrix framework allows the systematic study of variants of discrete chirp Fourier transforms formulations under a unified setting, which is considered as one of the major contributions of this work. Also, an instantiation of this computational matrix framework was implemented by using the MATLAB Parallel Computing Toolbox.

    The paper is organized as follows. In Section 2, we explain preliminaries concepts: matrix notations, tensor signal algebra definitions, and the definition for the discrete Fourier transform operator. In Section 3, we describe the different DCFTs definitions. In Section 4, we develop a matrix formulation for DCFTs algorithms using tensor signal algebra. Also, a proof of DCFTs matrix inverses is developed. In Section 5, we provide an implementation of DCFT algorithms using the MATLAB Parallel Computing Toolbox. Finally, we present our conclusions in Section 6.

    2. Preliminaries

    2.1 Matrix Notation

    2.2 Tensor Signal Algebra

    In this paper, we define tensor signal algebra as a mathematics environment composed of signal spaces, operators, and special matrices where algebraic methods are used to develop algorithms to perform signal processing operations. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms for signal processing applications. Now, we proceed to define some operators and matrices associated with tensor signal algebra.

    Let N RS= , the stride permutation matrix,permutes the elements of the input vectorasThe vector operator,transforms a matrix of dimension M N× into a vector of dimensionMN, by stacking, in order, all the columns of this matrix one underneath the other. The vector inverse operator,, transforms a vector of dimension MNinto a matrix of sizethenis the matrix indefined by

    The operators and matrices mentioned above have been used in several research associated with signal processing in [2], [3], and [5]-[10].

    2.3 Discrete Fourier Transform

    3. Discrete Chirp Fourier Transform

    DCFT defined by Xia in [11] matches the multiple chirp rates in a chirp-type signal with multiple chirp components. Also, the DCFT can be used to transform signals that are not sparse in either time or frequency, such as linear chirps, into sparse signals[12].. The DCFT ofxis defined as the map with domainand co-domain ?. Here, we formulate three types of DCFTs definitions:

    When the signal length is prime, the magnitudes of all the sidelobes of the DCFT-1 of a quadratic chirp signal are 1, whereas the magnitude of the mainlobe of the DCFT-1 isWhen the signal length is12N N= ,1N prime, the magnitudes of all the sidelobes of the DCFT-2 of a quadratic chirp signal arewhereas the magnitude of the mainlobe of the DCFT-2 isWhen the signal length isprimes, the magnitudes of all the sidelobes of the DCFT-3 of a single chirp signal are N1,N2or 1, whereas the magnitude of the mainlobeof the DCFT-3 isthen the DCFT-1, DCFT-2, and DCFT-3 can be represented as:

    4. Matrix Formulation of DCFTs

    The DCFTs are bi-dimensional functions and we can express each of them as a matrix. Forthe DCFT-nis defined asThe following theorem formulates the DCFTs matrices using tensor signal algebra.

    Proof: We provide a proof ofThe proofs ofare similar.

    Multiplying the parentheses, we obtain

    such that

    A study of the inverse of DCFT-1 was developed in [11] and [15]. Now, we present an alternative proof for the DCFT-1 inverse and the DCFT-3 through matrix representations.

    Then,

    Proof. We provide a proof forThe proof foris similar. For fixedand from (3), we obtain a system of linear equations of order N. The matrix representation of this system is shown in (8) and (9). From the coefficient matrixM, we obtainandare invertible, we then have

    The DCFT-2 is not invertible, because it is not injective (see Appendix B). However, Theorem 3 will obtain the best signal approximation for the original signal, such that the norm-2 of the signal approximation is less than norm-2 of the original signal.

    Proof. Similarly to the proof of Theorem 2, we obtain

    5. Implementation of DCFT Algorithms with Parallel Computing Toolbox?

    Owing to the close relation between DFT and DCFTs, Theorem 1 presents the matrix representation of DCFTs. Also, asis called parallel operation[2], the implementation of DCFTs can be performed by using parallel computing. From Theorem 1, the DCFT-1 matrix can be computed in parallel, since each (:,)mAof (7) can be computed independently and in parallel.

    In this paper, we perform an implementation of DCFTs using the MATLAB Parallel Computing Toolbox, through the basic command parfor, as shown in below. The parfor divides the loop iterations into groups so that each lab executes in parallel some portion of the total number of iterations. Here, a lab is an independent instance of MATLAB that runs separately.

    % DCFT-1: An implementation in parallel MATLAB

    N=67; w=exp(2*pi*1i/N); t=0:N-1; C=zeros(N);

    m0=25; k0=30; m1=5; k1=63;

    x=w.?(m0*t.?2+k0*t) + w.?(m1*t.?2+k1*t);

    matlabpool open 2

    parfor m=0:N-1

    f=w.?(-m*t.?2); v=x.*f;

    C(:,m+1)=fft(v);

    end

    C=C.’;

    matlabpool close

    surface(t, t, abs(C)).

    6. Conclusions

    This work presented a computational matrix framework for the formulation of DCFTs algorithms by using the tensor signal algebra. An instantiation of the framework was performed by using the Parallel Computing Toolbox?of Matlab?, where all the algorithms presented in this work were implemented.

    Appendix A: Pseudocodes of DCFTs Algorithms

    Algorithm 1: DCFT-1 Algorithm

    2. (,:)m←vF(see (3) for(,:)mFvalues)

    3: ←fxv⊙

    5: end for

    Algorithm 2: DCFT-2 Algorithm

    2. (,:)m←vG(see (4) for (,:)mGvalues)

    3: ←gxv⊙

    5: end for

    Algorithm 3: DCFT-3 Algorithm

    2. (,:)m←vH(see (5) for (,:)mΗvalues)

    3: ←hxv⊙

    5: end for

    6: ←Ddiagonal matrix such that (,) (1)nD n n=-

    Appendix B: Auxiliary Result

    [1] G. Krieger, N. Gebert, and A. Moreira, “Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing,” IEEE Trans. on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 31-46, 2008.

    [2] D. Rodriguez, “A computational kronecker-core array algebra SAR raw data generation modeling system,” in Proc. of the Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, 2001, pp. 116-120.

    [3] J. Johnson, R. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology for designing, modifying, and implementing Fourier transform algorithms on various architectures,” Proc. of Circuits, Systems, and Signal Processing, vol. 9, no. 4, 1990, pp. 449-500.

    [4] P. M. Woodward, Probability and Information Theory, With Applications to Radar, New York: McGraw-Hill, 1953.

    [5] C. V. Loan, Computational Framework for the Fast Fourier Transform, Philadelphia: SIAM, 1992.

    [6] B. Yang, “A study of inverse short-time Fourier transform,”in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Las Vegas, 2008, pp. 3541-3544.

    [7] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura, “Discrete Fourier transform on multicore,”IEEE Signal Processing Magazine, vol. 26, no. 6, 2009, pp. 90-102.

    [8] M. An, A. K. Brodzik, and R. Tolimieri, Ideal Sequence Design in Time-Frequency Space, Berlin: Birkh?user Basel, 2009.

    [9] D. Marquez, J. Valera, A. Camelo, C. Aceros, M. Jimenez, and D. Rodriguez, “Implementations of cyclic crossambiguity functions in FPGAs for large scale signals,” in Proc. of IEEE Second Latin American Symposium on Circuits and Systems, Bogotá, 2011, pp. 1-4.

    [10] J. P. S. Quiros and D. Rodriguez, “Representación matricial de algoritmos en paralelo de la transformada discreta de fourier, la función discreta de ambigüedad y la distribución discreta de Cohen,” La Gaceta, vol. 16, no. 3, pp. 479-500, 2013.

    [11] X.-G. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. on Signal Processing, vol. 48, no. 11, pp. 3122-3133, 2000.

    [12] P. Fan and C. Feng, “A new discrete chirp Fourier transform,” in Proc. of the 6th Int. Conf. on Signal Processing, Beijing, 2002, pp. 49-53.

    [13] P. Fan and X.-G. Xia, “A modified discrete chirp-Fourier transform scheme,” in Proc. of the 5th Int. Conf. on Signal Processing, Beijing, 2000, pp. 57-60.

    [14] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications, Berlin: Springer, 2003.

    [15] O. Alkishriwo and L. Chaparro, “A discrete linear chirp transform (DLCT) for data compression,” in Proc. of the 11th Int. Conf. on Information Science, Signal Processing and Their Applications, Montreal, 2012, pp. 1283-1288.

    The authors’ photographs and biographies are not available at the time of publication.

    Manuscript received April 19, 2013; revised June 31, 2013.

    J. P. S. Quiros is with the Department of Mathematics, Costa Rica Institute Technology, 159-7050 Cartago, Costa Rica (Corresponding author e-mail: jusoto@itcr.ac.cr).

    D. Rodríguez is with the Department of Electrical and Computer Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA (e-mail: domingo@ece.uprm.edu).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.02.013

    嘟嘟电影网在线观看| 国产乱人视频| 欧美人与善性xxx| 80岁老熟妇乱子伦牲交| 日本黄色片子视频| 国产成人aa在线观看| 日韩成人av中文字幕在线观看| 有码 亚洲区| 久久久久久久久大av| 日本色播在线视频| 日本与韩国留学比较| 亚洲欧美一区二区三区黑人 | 国产黄片视频在线免费观看| 97超视频在线观看视频| 国产成人91sexporn| 3wmmmm亚洲av在线观看| 国产永久视频网站| 在线看a的网站| 天堂中文最新版在线下载 | 国产精品成人在线| 1000部很黄的大片| 人妻夜夜爽99麻豆av| 免费观看av网站的网址| 在线a可以看的网站| 网址你懂的国产日韩在线| 五月开心婷婷网| 国产一区二区三区综合在线观看 | av在线天堂中文字幕| 欧美少妇被猛烈插入视频| 各种免费的搞黄视频| 色吧在线观看| 一级毛片 在线播放| 少妇人妻久久综合中文| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久久久电影网| 欧美bdsm另类| 五月伊人婷婷丁香| av国产免费在线观看| 欧美bdsm另类| 亚洲天堂av无毛| 亚洲欧美精品专区久久| 街头女战士在线观看网站| 国产乱人视频| 亚洲精品,欧美精品| 少妇人妻一区二区三区视频| 日本与韩国留学比较| 亚洲成人精品中文字幕电影| 久久热精品热| 人妻夜夜爽99麻豆av| 成人毛片60女人毛片免费| 国产高潮美女av| 麻豆久久精品国产亚洲av| 久久精品人妻少妇| 欧美日韩在线观看h| 丰满人妻一区二区三区视频av| 少妇的逼好多水| 亚洲内射少妇av| 男女边吃奶边做爰视频| 狂野欧美激情性xxxx在线观看| 在线观看美女被高潮喷水网站| 午夜免费鲁丝| av在线播放精品| 免费观看无遮挡的男女| 欧美性猛交╳xxx乱大交人| 久久影院123| 91久久精品国产一区二区成人| 成人无遮挡网站| 99久久精品国产国产毛片| 国产精品嫩草影院av在线观看| 亚洲最大成人手机在线| 丝袜脚勾引网站| 韩国av在线不卡| 久热久热在线精品观看| 国产久久久一区二区三区| 国产亚洲av片在线观看秒播厂| 涩涩av久久男人的天堂| 国产欧美日韩精品一区二区| 亚洲精华国产精华液的使用体验| 伦精品一区二区三区| 人妻制服诱惑在线中文字幕| 黄色配什么色好看| 免费av不卡在线播放| 制服丝袜香蕉在线| 午夜福利高清视频| 一区二区三区精品91| 99热国产这里只有精品6| 日韩精品有码人妻一区| 免费电影在线观看免费观看| 国产精品一及| 国产视频首页在线观看| 亚洲av一区综合| 免费观看无遮挡的男女| 男男h啪啪无遮挡| 欧美日韩国产mv在线观看视频 | 久久影院123| 观看美女的网站| 天天躁日日操中文字幕| 国产亚洲av嫩草精品影院| 男人爽女人下面视频在线观看| 青春草国产在线视频| 精品99又大又爽又粗少妇毛片| 男女那种视频在线观看| 亚洲伊人久久精品综合| 深夜a级毛片| 精品久久久久久电影网| 一边亲一边摸免费视频| 午夜亚洲福利在线播放| 亚洲精品影视一区二区三区av| 在线 av 中文字幕| 天堂俺去俺来也www色官网| 直男gayav资源| 欧美一级a爱片免费观看看| 国产精品国产av在线观看| 看免费成人av毛片| 亚洲第一区二区三区不卡| 2022亚洲国产成人精品| 日韩不卡一区二区三区视频在线| 日韩大片免费观看网站| 亚洲av福利一区| 青春草亚洲视频在线观看| 久久6这里有精品| 老司机影院成人| 成年免费大片在线观看| 精品亚洲乱码少妇综合久久| 小蜜桃在线观看免费完整版高清| 国产精品99久久久久久久久| 亚洲最大成人中文| 国产有黄有色有爽视频| 日日啪夜夜撸| 国产精品久久久久久精品电影| 免费不卡的大黄色大毛片视频在线观看| 噜噜噜噜噜久久久久久91| 成人无遮挡网站| 免费黄色在线免费观看| 亚洲精品中文字幕在线视频 | 国产成人精品久久久久久| 国产精品偷伦视频观看了| 亚洲国产av新网站| 成人特级av手机在线观看| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 韩国av在线不卡| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区| 国产男女超爽视频在线观看| 日韩av不卡免费在线播放| 亚洲欧洲国产日韩| 久久久久久久久大av| 亚洲最大成人av| 久久午夜福利片| 亚洲精品成人av观看孕妇| 久久久久久久大尺度免费视频| 成人美女网站在线观看视频| 欧美人与善性xxx| 国产亚洲一区二区精品| 久久久久性生活片| 久久久久久久大尺度免费视频| 国产欧美日韩精品一区二区| 精品国产一区二区三区久久久樱花 | 亚洲怡红院男人天堂| 大码成人一级视频| 超碰av人人做人人爽久久| 亚洲四区av| 午夜激情福利司机影院| 久久精品国产鲁丝片午夜精品| 成人综合一区亚洲| 伊人久久精品亚洲午夜| 99久久九九国产精品国产免费| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 99热国产这里只有精品6| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 久久99热6这里只有精品| 成人美女网站在线观看视频| 亚洲最大成人中文| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 啦啦啦在线观看免费高清www| 在线观看美女被高潮喷水网站| 亚洲四区av| 中文字幕免费在线视频6| 秋霞伦理黄片| 看十八女毛片水多多多| 国产精品国产三级专区第一集| 18禁裸乳无遮挡动漫免费视频 | 可以在线观看毛片的网站| 国产成人freesex在线| 男女边摸边吃奶| 丰满人妻一区二区三区视频av| 深爱激情五月婷婷| 中文乱码字字幕精品一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲丝袜综合中文字幕| 三级经典国产精品| 91aial.com中文字幕在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩在线高清观看一区二区三区| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 国产精品精品国产色婷婷| 亚洲欧美日韩卡通动漫| 97精品久久久久久久久久精品| tube8黄色片| 插逼视频在线观看| 亚洲熟女精品中文字幕| 精品久久国产蜜桃| 丝袜美腿在线中文| 中文乱码字字幕精品一区二区三区| av线在线观看网站| 中国美白少妇内射xxxbb| 日本-黄色视频高清免费观看| 黄片无遮挡物在线观看| 久久久精品94久久精品| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 网址你懂的国产日韩在线| 只有这里有精品99| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 美女视频免费永久观看网站| 亚洲无线观看免费| 交换朋友夫妻互换小说| 亚洲伊人久久精品综合| 国产黄片视频在线免费观看| 国产亚洲一区二区精品| 成人一区二区视频在线观看| 人体艺术视频欧美日本| 26uuu在线亚洲综合色| 久久综合国产亚洲精品| 国产黄色视频一区二区在线观看| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说 | 91久久精品国产一区二区三区| 精品久久久精品久久久| 久久久久久久大尺度免费视频| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 26uuu在线亚洲综合色| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人与动物交配视频| 观看免费一级毛片| 99精国产麻豆久久婷婷| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 小蜜桃在线观看免费完整版高清| 我的老师免费观看完整版| 久久久久久伊人网av| 欧美xxxx黑人xx丫x性爽| 又爽又黄a免费视频| 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 嫩草影院精品99| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 国产高清不卡午夜福利| 亚洲美女视频黄频| 亚洲精品久久午夜乱码| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 亚洲av欧美aⅴ国产| 亚洲av福利一区| 91久久精品国产一区二区成人| 亚洲成人一二三区av| 色5月婷婷丁香| 国产黄色免费在线视频| 成人特级av手机在线观看| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 精品人妻偷拍中文字幕| 高清av免费在线| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频| 日本免费在线观看一区| 国产精品一及| 婷婷色综合www| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 亚洲精品久久午夜乱码| 国产精品伦人一区二区| 99re6热这里在线精品视频| 97人妻精品一区二区三区麻豆| 国产黄片视频在线免费观看| 一级av片app| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 欧美一区二区亚洲| 少妇人妻精品综合一区二区| 国产毛片在线视频| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| 少妇熟女欧美另类| a级一级毛片免费在线观看| 人妻夜夜爽99麻豆av| 国产男女内射视频| 亚洲人与动物交配视频| 欧美97在线视频| 精品熟女少妇av免费看| 视频区图区小说| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲国产日韩一区二区| 99热国产这里只有精品6| 男男h啪啪无遮挡| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 夫妻性生交免费视频一级片| 99热国产这里只有精品6| 天天躁日日操中文字幕| av线在线观看网站| 人体艺术视频欧美日本| 亚洲自偷自拍三级| 男人爽女人下面视频在线观看| 国产淫语在线视频| 亚洲精品自拍成人| 综合色av麻豆| 国产黄色视频一区二区在线观看| 小蜜桃在线观看免费完整版高清| 欧美亚洲 丝袜 人妻 在线| 久久影院123| 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 亚洲婷婷狠狠爱综合网| videos熟女内射| 日本黄大片高清| 久久久精品94久久精品| 久久99热6这里只有精品| 看免费成人av毛片| 国产精品一及| 久久久色成人| 秋霞伦理黄片| 2021天堂中文幕一二区在线观| 国产av国产精品国产| 国产乱人偷精品视频| 全区人妻精品视频| 九色成人免费人妻av| 免费黄色在线免费观看| 在线播放无遮挡| 美女主播在线视频| 性色avwww在线观看| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 精品少妇久久久久久888优播| 亚洲不卡免费看| 免费观看av网站的网址| 色哟哟·www| 久久精品夜色国产| 在线精品无人区一区二区三 | 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 直男gayav资源| 国产精品一区二区性色av| 国产男女内射视频| 少妇熟女欧美另类| www.av在线官网国产| 一级毛片 在线播放| 老司机影院成人| 欧美人与善性xxx| 久久99热这里只有精品18| av女优亚洲男人天堂| 91狼人影院| 3wmmmm亚洲av在线观看| 亚洲,一卡二卡三卡| 国产亚洲av片在线观看秒播厂| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 青春草国产在线视频| 99精国产麻豆久久婷婷| 国产亚洲91精品色在线| 亚洲人与动物交配视频| 久久久久国产网址| 七月丁香在线播放| 亚洲成人久久爱视频| 亚洲国产精品999| 日韩伦理黄色片| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 精品国产三级普通话版| 热99国产精品久久久久久7| 尾随美女入室| 日韩中字成人| 免费观看的影片在线观看| 18+在线观看网站| 少妇丰满av| 能在线免费看毛片的网站| 免费看不卡的av| 99热国产这里只有精品6| 好男人在线观看高清免费视频| 日韩欧美一区视频在线观看 | 免费在线观看成人毛片| 亚洲国产日韩一区二区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影小说 | 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 精品人妻偷拍中文字幕| 亚洲精品影视一区二区三区av| 黄色欧美视频在线观看| 只有这里有精品99| 国产成人a∨麻豆精品| 国产色婷婷99| 3wmmmm亚洲av在线观看| 一区二区三区乱码不卡18| 亚洲人成网站在线观看播放| 日本wwww免费看| 亚洲成人久久爱视频| 黄色配什么色好看| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 成年女人看的毛片在线观看| 偷拍熟女少妇极品色| 丝袜喷水一区| 国产极品天堂在线| 久久97久久精品| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 国产黄片视频在线免费观看| 久久久a久久爽久久v久久| 亚洲欧美精品专区久久| 色播亚洲综合网| 国产色婷婷99| 免费观看a级毛片全部| 六月丁香七月| 欧美高清成人免费视频www| 亚洲综合色惰| 少妇熟女欧美另类| 国产熟女欧美一区二区| 中国国产av一级| 久久久a久久爽久久v久久| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 少妇 在线观看| 欧美区成人在线视频| 国产黄a三级三级三级人| 香蕉精品网在线| 天堂中文最新版在线下载 | 韩国av在线不卡| 亚洲成人av在线免费| 国产精品精品国产色婷婷| 久久精品国产鲁丝片午夜精品| 午夜福利在线在线| 欧美成人a在线观看| 免费少妇av软件| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 国产精品一区二区性色av| 嫩草影院精品99| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 99久久精品国产国产毛片| 中国美白少妇内射xxxbb| 亚州av有码| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线 | 欧美日韩一区二区视频在线观看视频在线 | 国产成人一区二区在线| 99精国产麻豆久久婷婷| 男女国产视频网站| 国产色婷婷99| 3wmmmm亚洲av在线观看| 一本一本综合久久| 大香蕉久久网| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 女人被狂操c到高潮| 中文天堂在线官网| 性色avwww在线观看| 亚洲欧美日韩东京热| 舔av片在线| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 国产精品一二三区在线看| 成人毛片60女人毛片免费| videossex国产| 国产探花极品一区二区| 高清av免费在线| tube8黄色片| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的 | 春色校园在线视频观看| 国产成人freesex在线| 久久久久久久午夜电影| av黄色大香蕉| 国内揄拍国产精品人妻在线| 建设人人有责人人尽责人人享有的 | 最近手机中文字幕大全| 女人久久www免费人成看片| 狂野欧美激情性xxxx在线观看| 国产亚洲av片在线观看秒播厂| 免费播放大片免费观看视频在线观看| 欧美xxxx性猛交bbbb| 国产老妇女一区| 毛片一级片免费看久久久久| 日本熟妇午夜| 久久人人爽av亚洲精品天堂 | 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 精品国产露脸久久av麻豆| 一个人观看的视频www高清免费观看| 人妻一区二区av| 夫妻午夜视频| 成年女人在线观看亚洲视频 | 欧美极品一区二区三区四区| 午夜日本视频在线| 禁无遮挡网站| 国产老妇女一区| 国产成人免费无遮挡视频| 内射极品少妇av片p| 2018国产大陆天天弄谢| 99热这里只有是精品50| 精品久久久久久电影网| 国产一级毛片在线| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 国产爱豆传媒在线观看| 国内精品宾馆在线| 高清午夜精品一区二区三区| 美女内射精品一级片tv| h日本视频在线播放| 久久综合国产亚洲精品| 日韩成人伦理影院| 亚洲欧洲日产国产| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av| 国产在线一区二区三区精| 日本wwww免费看| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 欧美bdsm另类| 女人被狂操c到高潮| 中文欧美无线码| 久久人人爽人人片av| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 男的添女的下面高潮视频| 亚洲国产色片| 边亲边吃奶的免费视频| 大香蕉97超碰在线| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 亚洲成人av在线免费| 色播亚洲综合网| 天天一区二区日本电影三级| 日本av手机在线免费观看| 国产伦理片在线播放av一区| 国产精品精品国产色婷婷| 免费看不卡的av| av在线天堂中文字幕| 欧美老熟妇乱子伦牲交| 国产精品精品国产色婷婷| 另类亚洲欧美激情| 中国国产av一级| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 国产av国产精品国产| 女人久久www免费人成看片| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说 | 伊人久久国产一区二区| 国产成人91sexporn| 黄色欧美视频在线观看| 亚洲内射少妇av| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 日韩欧美一区视频在线观看 | 久久久久久久久久成人| 一区二区三区四区激情视频| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 日韩欧美精品免费久久| 亚洲国产高清在线一区二区三| 在现免费观看毛片| 欧美精品一区二区大全| 在线免费十八禁| av在线观看视频网站免费| 精品久久久久久久久av| 日韩电影二区| av在线天堂中文字幕| 国产一区二区三区综合在线观看 | 亚洲精品aⅴ在线观看| 男人和女人高潮做爰伦理| 午夜福利网站1000一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品久久久久久婷婷小说| 建设人人有责人人尽责人人享有的 | 狂野欧美激情性bbbbbb| 日本与韩国留学比较| 欧美成人精品欧美一级黄| 精品久久久久久电影网| 久久久a久久爽久久v久久| 亚洲欧洲日产国产| 熟女av电影| 日韩成人av中文字幕在线观看| 国产精品一区二区在线观看99| 97热精品久久久久久|