• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Partial Volume Effects on Accurate Measurement of the Hippocampus Volume

    2014-03-01 10:19:32MaryamHajiesmaeiliJamshidDehmeshkiandTimEllis

    Maryam Hajiesmaeili, Jamshid Dehmeshki, and Tim Ellis

    Analysis of Partial Volume Effects on Accurate Measurement of the Hippocampus Volume

    Maryam Hajiesmaeili, Jamshid Dehmeshki, and Tim Ellis

    —Hippocampal volume loss is an important biomarker in distinguishing subjects with Alzheimer’s disease (AD) and its measurement in magnetic resonance images (MRI) is influenced by partial volume effects (PVE). This paper describes a post-processing approach to quantify PVE for correction of the hippocampal volume by using a spatial fuzzyC-means (SFCM) method. The algorithm is evaluated on a dataset of 20 T1-weighted MRI scans sampled at two different resolutions. The corrected volumes for left and right hippocampus (HC) which are 23% and 18% for the low resolution and 6% and 5% for the high resolution datasets, respectively are lower than hippocampal volume results from manual segmentation. Results show the importance of applying this technique in AD detection with low resolution datasets.

    Index Terms—Hippocampus, magnetic resonance images, partial volume effects, spatial fuzzyC-means.

    1. Introduction

    Accurate quantification of structures in medical imageries can provide essential details for diagnosis, treatment planning, and follow-up comparisons. Increasingly, image analysis needs to generate reliable quantitative information to support clinical decisions and feature analysis is an important step, enabling robust extraction of structures of interest. Reconstruction of 3-dimansion (3D) brain scans allows volumetric quantification of anatomical structures such as the hippocampus. The magnetic resonance imaging (MRI) intensity at each voxel is summed over the corresponding anatomical volume, as determined by the (finite) spatial resolution of the imaging scanner. However, at the boundary more than one tissue type is presented in each voxel (i.e. it is a mixed voxel), and signals from different tissue types contribute to the partial volume effect (PVE), where an unknown proportion of the voxel can be associated with the tissue of interest. This paper proposes a method for estimating PVE in order to generate more accurate measurements of the hippocampal volumes.

    The progression of Alzheimer’s disease (AD) is detectable as subtle changes of the hippocampal volumes, but the detection requires accurate and robust image segmentation. In a previous paper[1], we have proposed a level set approach, but because of multiple imaging artifacts, such as intensity in homogeneities and PVE, the resulting volumetric measurements are not sufficiently accurate to reliably detect these changes.

    In this paper, we present a pre-segmentation step to provide for bias correction of nonuniform image intensity’s using a fuzzy C-means method (BCFCM) and a post-segmentation step to account for the PVE on hippocampal volume quantification. The PVE correction uses a spatial fuzzy C-means (SFCM) algorithm to estimate the proportion of a bounding surface voxel corresponding to HC (internal) or other tissue external to the bounding surface. Section 2 provides a review of the literature related to PVE estimation. Section 3 presents a description of the proposed method by introducing bias corrected fuzzy C-means and spatial fuzzy C-means as post-processing. Section 4 evaluates the performance of the PVE correction algorithm on 20 MRI patient datasets acquired at two different spatial resolutions and describes the experimental results. Finally, Section 5 provides conclusions.

    2. Literature Review

    In the last two decades, increasing attention has been paid to minimizing the effect of partial volumes in order to improve the accuracy of quantitative measurements. The PVE is an important image-related factor to be estimated in order to obtain subvoxel accuracy. Choi et al.[2]derived an algorithm based on a Markov random field (MRF) model that is made less sensitive to noise by smoothing the result, whilst Mazinani[3]applied a hybrid Markovian fuzzy C-means approach by considering spatial information for segmentation of the blood vessel. However, both methods, which are based on MRF, suffer from a high computation cost in determining the correct parameters and theweighting between the prior and the data. Zadeh et al.[4]developed a method that depends on registered image sequences to create images with intensities proportional to the quantity of a certain tissue in each voxel. Roll et al.[5]assigned a tissue type tag to each voxel by applying an intensity thresholding segmentation approach and correction of PVE depending on all voxels in an image, not just the PVE voxels.

    Using a statistical approach, [6] and [7] described the behavior of the proportion of each tissue in mixed voxels by using a Gaussian model with a uniform distribution for the tissue classes based on the tissue mean intensity and variance. Alternatively, [8] and [9] employed the same tissue model with the same variance for all tissues and presented an algorithm for mean estimation to fit the distribution to the histogram of the whole image. However, the results without any quantitative comparison with other methods do not give a reliable method for a small structure such as the hippocampus. Reference [10] presented a regression algorithm that corrected for PVE in arterial spin labeling (ASL) where the voxel intensities were computed as a weighted sum of the pure tissue contribution and the weighting coefficients were the tissue’s fractional volumes in the voxel. However, this approach is not applicable for a T1-weighted dataset. Reference [11] presented a method with the same drawback as [6], but the tissue distributions were not limited to Gaussian’s with a common variance. In [12], an expectation-maximization (EM) approach was used to simultaneously estimate the parameters of the resulting model and perform a papillomavirus (PV) classification in brain MR images. However, it is difficult to estimate the EM parameters for a small structure like the HC because EM (as the maximum likelihood model) does not consider the spatial information. Estimation of PVE is required to separate HC tissue from the other tissues while considering uncertainties in the boundary of regions. In particular, the fuzzy C-means algorithm has been used for quantifying PVE[13],[14]. In this method, an objective function for partitioning voxels into different clusters is achieved without consideration of the effect of neighboring voxels. In [15], Dehmeshki proposed a modified expectation-maximization (MEM) that is less sensitive to noise and PVE to determine the volume of calcium in the calcified region of the coronary vessel wall, for computed tomography (CT) images which is superior to the voxel-based (130) HU thresholding method but is not appropriate for the volumetric quantification of the HC in a MRI brain scan.

    3. Methods

    Fig. 1 illustrates the program flow of our algorithm. In MR images, homogeneities in the magnetic field caused by nonuniform tissue intensities are typically characterized by a slowly varying gain field called the bias field. Bias correction based on a fuzzy C-means method (BCFCM)[16]can be used in a pre-processing step prior to level set segmentation. The hippocampal volumes obtained from the level set segmentation results are unreliable because of PVE. Hence, we need to account for this effect with a volume correction. Using manually annotated ground truth images, it is possible to evaluate the quality of our level set segmentation compared with the ‘true’ hippocampal volumes using the Dice metric. The Dice metric takes values from zero to one, where higher values indicate better agreement. Hence, for the threshold of the proposed method is 85%, sets on segmentation alleviate the effect of poor results (over-segmentation or under-segmentation) and encourage the algorithm to employ reliable results for PVE correction. For PVE estimation, spatial fuzzy C-means (SFCM) is presented to find the membership degree for each tissue contributes to determine voxel intensity. To measure the corrected volumes of HC, the nontissue border volumes with respect to achieved membership degree will be deducted from the segmentation result volumes.

    3.1 Bias Correction

    The application of a logarithmic transformation to the intensities allows the artifact to be modelled as an additive bias field:

    where xland ylare the true and observed log-transformed intensities at the lth voxel and βlis the bias field at the lth voxel.

    We use an iterative algorithm based on fuzzy logic to estimate the unknown gain field. The standard FCM objective function for partitioninginto c clusters is

    Fig. 1. Algorithm for implementing proposed approach.

    By considering (2) and adding a regularizer term, the modified objective function is given by

    The parameter p determines the amount of fuzziness of the resulting classification, Nlis the set of neighbours around xland the cardinality of Nlis NR. The parameter αcontrols the effect of the neighbor term. Taking the first derivative of Jmwith respect to βland setting it to zero, the bias field estimator is expressed as

    3.2 Partial Volume Correction by Spatial FuzzyC-Means (SFCM)

    A region-based level set formulation is applied to the bias corrected image for HC segmentation, for which the curve evolution equation is derived for energy minimization[1]as follows:

    The stopping condition for the level set algorithm compares the evolving boundary with the manually annotated ground truth using the Dice metric to determine the degree of overlap. An empirical threshold of 85% is used to terminate the curve evolution.

    A. Spatial Fuzzy C-Mean

    The spatial relationship of pixels is an important element that is lacking in a conventional fuzzy C-means approach. SFCM uses pixel intensities, the location, and the correlation between neighboring pixels in order to address this deficiency, as defined in:

    where p and q are parameters to control the relative importance of both functions. Hence, the average degree of membership over all the voxels in boundary estimates the partial contribution of each tissue to the voxel intensity.

    B. Volume Correction

    The HC volumes measurement resulting from level set segmentation Vsis corrected by subtracting each the volume of border voxels Vbweighted by the average membership degree of non-tissue (AMDN):

    4. Experimental Results

    Experimental results are evaluated on 20 T1-weighted MRI head scans acquired using two different spatial resolutions. Ten scans were acquired with a General Electric 1.5T (GE Medical Systems, Milwaukee WI) with a pixel size of 0.78 mm×0.78 mm and a slice thickness of 2.00 mm. A further ten scans were acquired with a General Electric 3.0 T system with a pixel size of 0.39 mm×0.39 mm and slice thickness of 2.00 mm. The dataset including manual annotation of the left and right HC was generated by the Department of Diagnostic Radiology at the Henry Ford Hospital (HFH)[17]. The annotations were used as comparative segmentation ground-truth. Fig. 2 shows the result of bias correction for a sagittal slice of one of the MRI scans. Fig. 3 shows the result of the level set segmentation of the bias corrected slice shown in Fig. 2 and its correspondent binary result.

    Fig. 2. Bias field correction: (a) original image, (b) estimated bias image, and (c) bias corrected image.

    Fig. 3. Segmentation result: (a) HC boundary detected by level set segmentation and (b) resulting binary image.

    Refinement of the segmentation results are vital to access high accuracy results and avoid propagating segmentation errors to the PVE correction step. Hence the Dice value is used for making decision to return poor results for resegmentation or to shift for PVE correction. In the proposed algorithm, any result with the Dice value 0.85 or higher is adequate for PVE step. For instance, the Dice value for the left HC of dataset HFH_001 is 0.86 which is acceptable for applying post-processing technique while the same value for dataset HFH_008 is 0.79 and then resegmentation is required.

    Each acceptable result should be classified into two clusters using SFCM: the HC as a tissue and the rest as nontissue. This technique applied to 20 datasets and the average of membership degree for HC and nontissue are obtained 0.11 and 0.89, respectively. Table 1 and Table 2 show the corrected volume estimates for the left and right HC of 10 low resolution and 10 high resolution MRI scans.

    Multiplication of the percentage of volumes by segmentation volumes gives PVE volume correction and the comparisons of these results in Table 1 indicates lower amount for percentages of volumes in low resolution datasets, which are 72% for left and 74% for right HC and then more reduction for segmentation volume results more PVE. On the other hand, Table 2 for high resolution datasets shows greater volumes percentages in high resolution datasets, which are 86% for left and 88% for right HC, so it will obtain less reduction in segmentation volumes and also less PVE. Consequently, the corrected volumes of left and right HC for Table 1 are 23% and 18% less than ground truth volumes of HC but the same amount for high resolution datasets in Table 2 are 6% and 5% less than ground truth volumes.

    In addition, to detect Alzheimer’s disease, HC volumes for low resolution datasets which are more significant, is compared with the HC volumes in [18], which can be used as criteria (CR) to distinguish patient ones.

    Table 1: Original and corrected volumes (mm3) for left and right HC for 10 low resolution MRI scans

    Table 2: Original and corrected volumes (mm3) for 10 high resolution MRI scans

    Table 3: Average volume for 10 patient MRI datasets with low resolution and the comparison with results in [18] (mm3) for CR

    Table 3 shows the average range of HC volumes for subjects with AD and the results for HC volumes for the proposed method before correction and after considering PVE. Segmentation volumes for the left and right HC in the first column compare with the CR volumes in the third column then it will be considered as the normal subject because they are not in the CR interval while the comparison between PVE volumes in the second column and CR volumes recognizes this scan as the patient subject.

    5. Conclusions

    In this paper, we proposed a technique for correction of PVE to obtain accurate measurement of left and right HC volumes to track subtle changes in volumes as a main biomarker for the detection of Alzheimer’s disease. Bias corrected fuzzy C-means was applied for bias estimation as preprocessing and spatial fuzzy C-means as post-processing to find membership degree for nontissue cluster to measure PVE for each voxel. This technique was tested on MRI images and evaluated by HC ground truth volumes for two different resolution datasets and the experimental results show the importance of applying the proposed method for low resolution datasets.

    [1] M. Hajiesmaeili, B. Bagheri, J. Dehmeshki, and T. Ellis,“Segmentation of the Hippocampus for detection of Alzheimer’s disease,” in Advances in Visual Computing, Rethymnon: Springer, 2012, pp. 42-50.

    [2] H. S. Choi, D. R. Haynor, and Y. Kim, “Partial volume tissue classification of multichannel magnetic resonance images-a mixel model,” IEEE Trans. on Medical Imaging, vol. 10, no. 3, pp. 395-407, 1991.

    [3] M. Mazinani, “Computer aided detection and measurement of coronary artery disease from computed tomography angiography images,” Ph.D. dissertation, Faculty of Science, Engineering and Computing, School of Computing and Information Systems, Kingston University London, 2012.

    [4] H. Soltanian-Zadeh, J. P. Windham, and A. E. Yagle,“Optimal transformation for correcting partial volume averaging effects in magnetic resonance imaging,” in Proc. of Nuclear Science Symposium and Medical Imaging Conf., Orlando, 1992, 1289-1291.

    [5] S. A. R?ll, A. C. F. Colchester, P. E. Summers, and L. D. Griffin, “Intensity-based object extraction from 3D medical images including a correction of partial volume errors,” in Proc. of British Machine Vision Conf.,Edinburgh, 1994, pp. 205-214

    [6] P. Santago and H. D. Gage, “Quantification of MR brain images by mixture density and partial volume modeling,”IEEE Trans. on Medical Imaging, vol. 12, no. 3, pp. 566-574, 1993.

    [7] P. Santago and H. D. Gage, “Statistical models of partial volume effect,” IEEE Trans. on Image Processing, vol. 4, no. 11, pp. 1531-1540, 1995.

    [8] D. H. Laidlaw, K. W. Fleischer, and A. H. Barr,“Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms,” IEEE Trans. on Medical Imaging, vol. 17, no. 1, pp. 74-86, 1998.

    [9] C. Jaggi, S. Ruan, and D. Bloyet, “Mixture modeling applied to the partial volume effect in MRI data,” in Proc. of the 20th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Berlin, 1998, pp. 693-695

    [10] I. Asllani, A. Borogovac, and T. R. Brown, “Regression algorithm correcting for partial volume effects in arterial spin labeling MRI,” Magnetic Resonance in Medicine, vol. 60, no. 6, pp. 1362-1371, 2008.

    [11] M. á. G. Ballester, A. P. Zisserman, and M. Brady,“Estimation of the partial volume effect in MRI,” Medical Image Analysis, vol. 6, no. 4, pp. 389-405, 2002.

    [12] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens,“A unifying framework for partial volume segmentation of brain MR images,” IEEE Trans. on Medical Imaging, vol. 22 no. 1, pp. 105-119, 2003.

    [13] M. E. Brandt, T. P. Bohant, L. A. Kramer, and J. M. Fletcher,“Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images,” Computerized Medical Imaging and Graphics, vol. 18, no. 1, pp. 25-34, 1994.

    [14] D. L. Pham and J. I. Prince, “Partial volume estimation and the fuzzy C-means algorithm [brain MRI application],” in Proc. of Int. Conf. on Image Processing, Chicago, 1998, pp. 819-822.

    [15] J. Dehmeshki, X. Ye, H. Amin, M. Abaei, X. Lin, and S. D. Qanadli, “Volumetric quantification of atherosclerotic plaque in CT considering partial volume effect,” IEEE Trans. on Medical Imaging, vol. 26, no. 3, pp. 273-282, 2007.

    [16] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Trans. on Medical Imaging, vol. 21, no. 3, pp. 193-199, 2002.

    [17] K. Jafari-Khouzani, K. Elisevich, S. Patel, and H. Soltanian-Zadeh, “Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques,”Neuroinformatics, vol. 9, no. 4, pp. 335-346, 2011.

    [18] L. Wang, J. S. Swank, I. E. Glick, M. H. Gado, M. I. Miller, J. C. Morris, and J. G. Csernansky, “Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging,” NeuroImage, vol. 20, no. 2, pp. 667-682, 2003.

    Maryam Hajiesmaeiliwas born in Tehran, Iranian in 1980. She received B.S. and M.S. degrees in applied mathematics from Azad University, Karaj, Iran in 2002 and 2004, respectively. Since 2011, she has studied for her Ph.D. degree in medical image processing with Kinston University,London,United Kingdom (U.K.). She is currently doing her research as part of the Ph.D. in accurate segmentation of the hippocampus. She is a member of Medical Imaging International Institute (QMI3) and Digital Imaging Research Centre (DIRC), Faculty of Science, Engineering and Computing, Kingston University London, U.K.

    Jamshid Dehmeshkireceived the Ph.D. degree in image processing from the University of Nottingham, Nottingham, U.K. in 1997. He joined Kingston University, London, U.K., and leads the QMI3. He joined the Nuclear Magnetic Resonance (NMR) Research Unit, Institute of Neurology,University College London, as a senior research fellow and lecturer in 1999. From 2001 to 2006, as a Chief Technology Off i cer of the company Medicsight, he established and led research and development on image processing, scientif i c research, software development, and testing. His main research interests include developing computer-aided detection/diagnostic and measurement algorithms for quantitative analysis of medical images. He is also a member of DIRC, Faculty of Science, Engineering and Computing, Kingston University London, U.K.

    Tim Ellisreceived the fi rst degree in physics from the University of Kent, Canterbury, Kent, U.K. in 1974 and the Ph.D. degree in biophysics from London University, London, U.K. in 1981. He joined City University in 1979. In 2003, he moved to Kingston University, London, where he was, until recently, the Dean of the Faculty of Computing, Information Systems and Mathematics. His research interests include visual surveillance, industrial inspection, colour image analysis, and vision systems hardware. Professor Ellis cochaired the 2004 British Machine Vision Conference. He is a member of the Institution of Engineering and Technology and was the exchair of the British Machine Vision Association and he is also a member of QMI3 and, Faculty of Science, Engineering and Computing, Kingston University London, United Kingdom.

    Manuscript received March 19, 2013; revised June 16, 2013.

    M. Hajiesmaeili is with Quantitative Medical Imaging International Institute and Digital Imaging Research Centre, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, KT1 2EE, United Kingdom (Corresponding author e-mail: m.hajiesmaeili@kingston.ac.uk).

    J. Dehmeshki and T. Ellis are with Quantitative Medical Imaging International Institute and Digital Imaging Research Centre, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, KT1 2EE, United Kingdom (e-mail: J.Dehmeshki@kingston.ac.uk; T.Ellis@kingston.ac.uk).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.02.008

    免费日韩欧美在线观看| 老鸭窝网址在线观看| 国产主播在线观看一区二区| 纯流量卡能插随身wifi吗| 成年人午夜在线观看视频| 亚洲成人手机| 国产单亲对白刺激| 免费在线观看完整版高清| 午夜影院日韩av| 女人被躁到高潮嗷嗷叫费观| 国产成+人综合+亚洲专区| 国产精品成人在线| 久久久水蜜桃国产精品网| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲精品国产色婷小说| 亚洲avbb在线观看| 欧美日韩福利视频一区二区| 久久中文看片网| av天堂在线播放| 亚洲精品av麻豆狂野| 欧美丝袜亚洲另类 | 色婷婷久久久亚洲欧美| 日韩欧美在线二视频 | 99国产精品一区二区三区| 亚洲综合色网址| 午夜福利在线观看吧| 国产蜜桃级精品一区二区三区 | 日韩熟女老妇一区二区性免费视频| 亚洲 国产 在线| 天天躁日日躁夜夜躁夜夜| 日韩欧美在线二视频 | 在线观看www视频免费| 91九色精品人成在线观看| 久久人人爽av亚洲精品天堂| 搡老乐熟女国产| svipshipincom国产片| 日韩欧美在线二视频 | 一区二区三区激情视频| 欧美日韩精品网址| av免费在线观看网站| 免费在线观看日本一区| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷av一区二区三区视频| 国产亚洲欧美98| 欧美乱妇无乱码| 色94色欧美一区二区| 一级a爱片免费观看的视频| 久久国产精品影院| 美女国产高潮福利片在线看| 中文字幕精品免费在线观看视频| 在线观看舔阴道视频| 伦理电影免费视频| 中文字幕人妻熟女乱码| а√天堂www在线а√下载 | 在线观看免费午夜福利视频| 亚洲七黄色美女视频| 露出奶头的视频| 19禁男女啪啪无遮挡网站| 色在线成人网| 好男人电影高清在线观看| 在线十欧美十亚洲十日本专区| 日日夜夜操网爽| 久久青草综合色| 9色porny在线观看| 国产aⅴ精品一区二区三区波| av有码第一页| 又紧又爽又黄一区二区| 欧美不卡视频在线免费观看 | 亚洲精品在线观看二区| 在线国产一区二区在线| www.熟女人妻精品国产| 三级毛片av免费| 视频在线观看一区二区三区| 91av网站免费观看| 国产不卡av网站在线观看| 欧美亚洲日本最大视频资源| 老汉色∧v一级毛片| 欧美国产精品va在线观看不卡| 看免费av毛片| 中出人妻视频一区二区| 久9热在线精品视频| 99国产精品一区二区蜜桃av | 国产精品永久免费网站| 久久久精品国产亚洲av高清涩受| 久9热在线精品视频| 国产成人精品久久二区二区91| 中文字幕另类日韩欧美亚洲嫩草| 99精国产麻豆久久婷婷| 国产精品自产拍在线观看55亚洲 | 精品国内亚洲2022精品成人 | 悠悠久久av| 热re99久久国产66热| 黄色丝袜av网址大全| xxxhd国产人妻xxx| 亚洲av成人一区二区三| 热99国产精品久久久久久7| 国产99久久九九免费精品| 免费观看a级毛片全部| 欧美在线一区亚洲| 久久国产精品大桥未久av| 一个人免费在线观看的高清视频| 免费观看人在逋| 大型黄色视频在线免费观看| 午夜91福利影院| 亚洲精品av麻豆狂野| 最近最新中文字幕大全电影3 | 午夜免费观看网址| 欧美老熟妇乱子伦牲交| 欧美精品高潮呻吟av久久| 亚洲专区中文字幕在线| 国产精品影院久久| 国产高清视频在线播放一区| 久久人人97超碰香蕉20202| 极品少妇高潮喷水抽搐| 天天影视国产精品| 高清视频免费观看一区二区| 午夜免费观看网址| 色在线成人网| av中文乱码字幕在线| 欧美av亚洲av综合av国产av| 丰满的人妻完整版| 亚洲精品国产精品久久久不卡| 成人亚洲精品一区在线观看| 午夜福利在线免费观看网站| 亚洲av日韩在线播放| 别揉我奶头~嗯~啊~动态视频| 视频区图区小说| 又大又爽又粗| 亚洲欧美一区二区三区黑人| 免费高清在线观看日韩| 大陆偷拍与自拍| 51午夜福利影视在线观看| 啪啪无遮挡十八禁网站| 一区二区三区精品91| 久久99一区二区三区| 亚洲中文av在线| 亚洲精品国产精品久久久不卡| 亚洲熟妇中文字幕五十中出 | 怎么达到女性高潮| 亚洲精品国产一区二区精华液| av天堂久久9| 日日爽夜夜爽网站| 日日摸夜夜添夜夜添小说| 精品第一国产精品| 人人妻人人添人人爽欧美一区卜| xxx96com| 伦理电影免费视频| 真人做人爱边吃奶动态| 香蕉久久夜色| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av又大| 欧美日韩成人在线一区二区| 久99久视频精品免费| 成熟少妇高潮喷水视频| 美女扒开内裤让男人捅视频| www.熟女人妻精品国产| 高清在线国产一区| √禁漫天堂资源中文www| 欧美国产精品一级二级三级| 久久影院123| 真人做人爱边吃奶动态| 757午夜福利合集在线观看| 国产精品国产高清国产av | av中文乱码字幕在线| 亚洲国产毛片av蜜桃av| 精品国产美女av久久久久小说| 岛国毛片在线播放| 国产欧美日韩精品亚洲av| 欧美午夜高清在线| 亚洲精品久久成人aⅴ小说| 一a级毛片在线观看| 久久精品国产亚洲av香蕉五月 | 欧美丝袜亚洲另类 | 妹子高潮喷水视频| 少妇 在线观看| 又紧又爽又黄一区二区| 女同久久另类99精品国产91| 又紧又爽又黄一区二区| 亚洲三区欧美一区| 在线视频色国产色| 老熟女久久久| 久久久国产欧美日韩av| videos熟女内射| 天天影视国产精品| 日韩 欧美 亚洲 中文字幕| 国产主播在线观看一区二区| 在线永久观看黄色视频| 国产一卡二卡三卡精品| 免费在线观看完整版高清| 亚洲熟妇中文字幕五十中出 | 久久精品国产清高在天天线| 亚洲成人国产一区在线观看| 亚洲久久久国产精品| 国产一区二区激情短视频| 久久久久久久久久久久大奶| 视频在线观看一区二区三区| 久久这里只有精品19| 国产男女内射视频| 一级毛片精品| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 在线天堂中文资源库| 日本黄色日本黄色录像| 男女床上黄色一级片免费看| 久久狼人影院| 欧美在线黄色| 99精品欧美一区二区三区四区| 免费高清在线观看日韩| 国产精华一区二区三区| 欧美黄色淫秽网站| 大片电影免费在线观看免费| 男女高潮啪啪啪动态图| 人人妻人人添人人爽欧美一区卜| 成人精品一区二区免费| 亚洲av成人一区二区三| 国产亚洲一区二区精品| 精品久久久久久,| 老汉色av国产亚洲站长工具| 女性生殖器流出的白浆| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区91| 一区二区三区精品91| 亚洲熟女精品中文字幕| 亚洲精品乱久久久久久| 国产高清国产精品国产三级| 丁香六月欧美| 麻豆乱淫一区二区| 伊人久久大香线蕉亚洲五| 午夜免费成人在线视频| 亚洲精品一二三| 国产有黄有色有爽视频| 久久亚洲真实| 在线观看日韩欧美| 成熟少妇高潮喷水视频| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| 久久久久久久国产电影| 欧美日韩亚洲高清精品| 欧美日韩亚洲高清精品| 巨乳人妻的诱惑在线观看| 亚洲熟妇中文字幕五十中出 | 在线视频色国产色| av在线播放免费不卡| 国产精品香港三级国产av潘金莲| 国产精品国产av在线观看| 亚洲久久久国产精品| 岛国毛片在线播放| 久久中文字幕人妻熟女| 电影成人av| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 99精品在免费线老司机午夜| 看片在线看免费视频| 在线观看舔阴道视频| 亚洲国产精品合色在线| 麻豆乱淫一区二区| 中文字幕制服av| av天堂在线播放| avwww免费| 国产精品二区激情视频| 美女高潮到喷水免费观看| 日本a在线网址| 在线观看午夜福利视频| 午夜精品久久久久久毛片777| 国产精品秋霞免费鲁丝片| 国产单亲对白刺激| 国产高清videossex| 精品国内亚洲2022精品成人 | 一级a爱视频在线免费观看| 精品国产亚洲在线| 伊人久久大香线蕉亚洲五| 免费看a级黄色片| 久久亚洲精品不卡| 日韩欧美三级三区| 亚洲中文av在线| 欧美在线一区亚洲| 久久精品成人免费网站| 日韩有码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 王馨瑶露胸无遮挡在线观看| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 人成视频在线观看免费观看| e午夜精品久久久久久久| 亚洲av片天天在线观看| 色婷婷久久久亚洲欧美| 一区二区三区激情视频| 日本欧美视频一区| 欧美激情极品国产一区二区三区| 又大又爽又粗| 老司机午夜福利在线观看视频| 国产aⅴ精品一区二区三区波| 精品国产乱子伦一区二区三区| 王馨瑶露胸无遮挡在线观看| 777久久人妻少妇嫩草av网站| 午夜精品国产一区二区电影| 亚洲,欧美精品.| 久久人妻熟女aⅴ| 国产欧美日韩一区二区精品| 中出人妻视频一区二区| 精品一区二区三区av网在线观看| 高清欧美精品videossex| 少妇 在线观看| 巨乳人妻的诱惑在线观看| 老司机影院毛片| 成人手机av| 91大片在线观看| 午夜激情av网站| 一a级毛片在线观看| 最近最新中文字幕大全免费视频| 操出白浆在线播放| 免费久久久久久久精品成人欧美视频| 一级毛片高清免费大全| 97人妻天天添夜夜摸| 久久国产精品男人的天堂亚洲| 岛国毛片在线播放| 电影成人av| 777米奇影视久久| 热99国产精品久久久久久7| 亚洲第一av免费看| 丝袜美腿诱惑在线| 免费在线观看黄色视频的| 久久久久精品国产欧美久久久| 人人妻人人添人人爽欧美一区卜| 久久精品亚洲熟妇少妇任你| 成人国产一区最新在线观看| 99热只有精品国产| 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 最近最新中文字幕大全电影3 | 欧美日韩乱码在线| 中文欧美无线码| 高清av免费在线| 国产1区2区3区精品| 黑人巨大精品欧美一区二区mp4| 免费少妇av软件| 老鸭窝网址在线观看| 欧美乱妇无乱码| 高清在线国产一区| 777久久人妻少妇嫩草av网站| av中文乱码字幕在线| a级片在线免费高清观看视频| 精品国产一区二区三区久久久樱花| 男人的好看免费观看在线视频 | 国产精品免费视频内射| 免费看a级黄色片| 男女床上黄色一级片免费看| 亚洲黑人精品在线| aaaaa片日本免费| 黄色怎么调成土黄色| 国产精品一区二区精品视频观看| 12—13女人毛片做爰片一| 亚洲片人在线观看| 俄罗斯特黄特色一大片| 在线观看免费午夜福利视频| 国产精品欧美亚洲77777| 亚洲一区二区三区不卡视频| 999久久久精品免费观看国产| 亚洲精品久久成人aⅴ小说| 成在线人永久免费视频| 免费在线观看黄色视频的| 亚洲欧洲精品一区二区精品久久久| 亚洲专区字幕在线| 少妇粗大呻吟视频| 无遮挡黄片免费观看| 在线永久观看黄色视频| 亚洲av第一区精品v没综合| 国产成人一区二区三区免费视频网站| 国产精品一区二区免费欧美| 欧美日韩精品网址| 无遮挡黄片免费观看| 国产精品一区二区在线观看99| 欧美日韩福利视频一区二区| www.熟女人妻精品国产| 欧美精品啪啪一区二区三区| 国产一区有黄有色的免费视频| 欧美在线一区亚洲| 多毛熟女@视频| 又紧又爽又黄一区二区| 99国产精品免费福利视频| 成人黄色视频免费在线看| netflix在线观看网站| 在线观看一区二区三区激情| 91av网站免费观看| 国产成人一区二区三区免费视频网站| 国产成人av激情在线播放| 亚洲三区欧美一区| 亚洲熟妇中文字幕五十中出 | 日本a在线网址| 久久久久视频综合| 啦啦啦在线免费观看视频4| 精品少妇一区二区三区视频日本电影| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费在线观看的高清视频| 夜夜夜夜夜久久久久| 超碰成人久久| 一区福利在线观看| 韩国精品一区二区三区| 美女高潮喷水抽搐中文字幕| 1024视频免费在线观看| 午夜久久久在线观看| av免费在线观看网站| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 成人影院久久| 国产视频一区二区在线看| 亚洲精品美女久久av网站| aaaaa片日本免费| 老司机亚洲免费影院| 久久精品国产a三级三级三级| 在线天堂中文资源库| 日本vs欧美在线观看视频| 99国产精品一区二区三区| 一区福利在线观看| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区 | 久久久国产欧美日韩av| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3 | 一进一出抽搐动态| 美女福利国产在线| 精品人妻1区二区| 免费女性裸体啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 国产视频一区二区在线看| 黄色视频,在线免费观看| 麻豆国产av国片精品| 日本撒尿小便嘘嘘汇集6| 免费日韩欧美在线观看| 午夜影院日韩av| 久久香蕉国产精品| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 看片在线看免费视频| 国产精品综合久久久久久久免费 | 亚洲av电影在线进入| 久久久国产成人精品二区 | 日日摸夜夜添夜夜添小说| 波多野结衣av一区二区av| 亚洲精华国产精华精| av天堂久久9| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 色婷婷av一区二区三区视频| 欧美乱码精品一区二区三区| 免费看a级黄色片| 99在线人妻在线中文字幕 | 欧美 亚洲 国产 日韩一| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索| 免费日韩欧美在线观看| 国产高清激情床上av| 视频在线观看一区二区三区| 精品第一国产精品| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 少妇被粗大的猛进出69影院| 99久久国产精品久久久| 亚洲av片天天在线观看| av线在线观看网站| 亚洲精品中文字幕一二三四区| 欧美久久黑人一区二区| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 男女午夜视频在线观看| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 男男h啪啪无遮挡| 免费看a级黄色片| 黄频高清免费视频| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 中亚洲国语对白在线视频| 啦啦啦在线免费观看视频4| www.自偷自拍.com| 国产有黄有色有爽视频| 一级片'在线观看视频| 欧美日韩黄片免| 精品国产一区二区三区久久久樱花| 亚洲成国产人片在线观看| av免费在线观看网站| 大陆偷拍与自拍| 精品一区二区三区av网在线观看| 久久狼人影院| 欧美日韩一级在线毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av电影在线进入| 丰满迷人的少妇在线观看| 一级a爱片免费观看的视频| 波多野结衣一区麻豆| 757午夜福利合集在线观看| 日韩欧美免费精品| 欧美最黄视频在线播放免费 | 欧美久久黑人一区二区| 国产一区有黄有色的免费视频| 久99久视频精品免费| 麻豆成人av在线观看| 午夜福利在线免费观看网站| 两个人看的免费小视频| 亚洲国产精品sss在线观看 | 久久中文看片网| 国产成人免费观看mmmm| 999精品在线视频| 免费人成视频x8x8入口观看| 精品国产国语对白av| 亚洲久久久国产精品| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 欧美激情高清一区二区三区| 免费在线观看日本一区| av视频免费观看在线观看| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 91大片在线观看| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 亚洲精品自拍成人| 欧美乱色亚洲激情| 国产精品.久久久| 人人澡人人妻人| 少妇被粗大的猛进出69影院| 久久草成人影院| 日韩欧美国产一区二区入口| 欧美乱妇无乱码| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 看片在线看免费视频| 亚洲av美国av| 成人18禁在线播放| 久久亚洲精品不卡| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 亚洲精品成人av观看孕妇| 黄频高清免费视频| 亚洲av片天天在线观看| 欧美日本中文国产一区发布| 久久ye,这里只有精品| 国产淫语在线视频| 99热网站在线观看| 久久久久久久国产电影| 青草久久国产| 国产99白浆流出| 两性夫妻黄色片| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 美女国产高潮福利片在线看| 免费观看人在逋| 在线观看舔阴道视频| 女人久久www免费人成看片| 我的亚洲天堂| 日韩欧美三级三区| 成人影院久久| 久久久精品免费免费高清| 亚洲综合色网址| 无遮挡黄片免费观看| 色婷婷av一区二区三区视频| 亚洲全国av大片| 69精品国产乱码久久久| 妹子高潮喷水视频| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 一级片免费观看大全| 成年版毛片免费区| 99国产精品一区二区蜜桃av | 宅男免费午夜| 在线播放国产精品三级| 国产一区在线观看成人免费| 亚洲精品乱久久久久久| 亚洲美女黄片视频| 国产成人免费观看mmmm| 99国产极品粉嫩在线观看| 国产国语露脸激情在线看| 精品电影一区二区在线| 欧美日韩福利视频一区二区| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利在线免费观看网站| 少妇猛男粗大的猛烈进出视频| 国产精品九九99| 在线观看免费高清a一片| 露出奶头的视频| 午夜福利影视在线免费观看| 一夜夜www| 老司机亚洲免费影院| 天天操日日干夜夜撸| 精品少妇一区二区三区视频日本电影| 亚洲精品自拍成人| 亚洲欧美激情在线| 后天国语完整版免费观看| 国产高清视频在线播放一区| bbb黄色大片| 新久久久久国产一级毛片| 少妇的丰满在线观看| 国产淫语在线视频| 国产高清国产精品国产三级|