• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Actuator characterization of a man-portable precision maneuver concept

    2014-02-09 10:06:55IlmrsCELMINSFrnkFRESCONIBryntNELSON
    Defence Technology 2014年2期

    Ilmrs CELMINS*,Frnk E.FRESCONIBrynt P.NELSON

    aUS Army Research Laboratory,Aberdeen Proving Ground,MD,USA

    bBowhead Science and Technology,Belcamp,MD,USA

    1.Introduction

    The motivation for this paper is to maneuver man-portable precision munitions.In-flight airframe maneuvers are required to overcome uncompensated ballistic error sources such as launch variation and atmospheric disturbances or to engage targets in defilade and ultimately improve lethality.Manportable precision capability provides enhanced lethality at the squad level.

    Various methods have been devised to course-correct the flight of projectiles[1-11].Aerodynamic[1,3,4,6,8-11]or mass[5]asymmetries are often utilized.Lateral jet thrusters are another means[2,7].Providing maneuver technologies in the man-portable,gun-launched environment is extremely challenging.The loads imparted to the electro-mechanical components during the gun launch event are high[12,13].Size,weight,power,and cost needs are difficult to meet.Manportable weapons are about 80 mm in diameter or smaller.Maneuver systems,which usually include a power source,actuators,sensors,processors,and associated electronics,must fit along with other sub-systems in this small package.Cost of these technologies must be low to ensure high volume proliferation to individual Soldiers on the battle field.Depending on caliber,the dynamic pressure available for aerodynamic control authority(essentially the projectile velocity)may be limited due to gun recoil limits on the human shoulder.Lastly,rifled guns often induce high spin rates(hundreds or thousands of cycles per second)in the projectile which can significantly stress the bandwidth requirements of maneuver technologies.This study proposes a class of maneuver concepts,based on rotational actuation,to overcome these challenges for the manportable precision problem.

    Comprehensive investigation of a projectile maneuver concept implies consideration of aeromechanics,flight control,structural dynamics,and actuation technology.Actuators,the focus of this study,underpin the maneuver concept and are essential to guided flight.Actuator performance requirements are met through a fundamental understanding of actuator behavior.The response of actuators can be described with theoretical models which are driven with empirically-derived data.Electric motors are commonly applied in rotational actuation schemes and often model response by considering the applied torques(e.g.,motor,friction)in Newton’s 2nd law.Experiments conducted on actuation system assemblies(e.g.,motor,linkages,aerodynamic surfaces)can be combined with theoretical models to obtain the critical actuation technology parameters.

    This study focuses on characterizing actuation technologies specific to the proposed class of maneuver concepts.Actuator experiments are conducted to identify theoretical models and to estimate the parameters of these models.Actuator performance metrics for the present application include torque,response,friction,and power requirements.Characterization of the actuation technology permits feasibility assessment,simulation of guided flight performance,and design for guided projectile demonstration.This study provides a somewhat general actuator characterization to cover a wider application space.Specific applications dictate performance requirements for more detailed actuator design.

    This paper is organized as follows:maneuver concepts are first outlined,followed by a discussion of actuator experiments to include the setup,raw and manipulated data,experimental uncertainty,theoretical modeling,parameter estimation algorithm,and then the results are presented prior to summarizing the paper with conclusions and future work.

    2.Concepts

    While the intent is to research a maneuver technology with a wide applicability,a few general constraints may be imposed.The application under investigation is a spinstabilized projectile.Spin rates are in the range of 50-300 Hz.For the purposes of preliminary design,a 40 mm projectile was used.

    Given this information,some concepts were formulated around a central theme.The common element is a rotational actuator.The idea is that small linear actuators may not be able to move the aerodynamic surfaces at rates of 50-300 Hz with high precision at low cost,but rotational actuators may.This is because a linear(reciprocating)actuator would need to constantly change direction,resulting in large accelerations which in turn require large forces,thereby driving up the actuator power.A rotational actuator would be operating at a fairly constant rotation once it is up to speed,resulting in much lower power requirements.

    Fig.1 illustrates a concept using one or more wings fixed to a rotational actuator.As the projectile spins,the actuator rotates at the same rate in the opposite direction.Over one spin cycle,the wing rotates from being stowed internally within the projectile body to being fully exposed to the airstream to affect lateral maneuver(as shown in Fig.1)to again being stowed within the projectile.When the wings are exposed to the airflow,lift and drag forces are generated,which will cause the projectile linear and angular motions to change.Shifting the phase of the rotational actuator relative to the projectile spin enables maneuvering in any direction.

    The magnitude of the control force can be moderated in several different ways.After adequate trajectory diversion is achieved,the wings can be rotated at a frequency different than the projectile roll rate so that no additional cumulative lateral net force is generated.Alternatively,the relative phasing of the two wings can be adjusted to reduce the net force.For example,if the wings are 180-degrees out of phase,no net transverse force would be generated since the wings would counterbalance each other.Adjusting the out of phase angle to other amounts would result in net force values between 0 and maximum.The system could be allowed to always generate the maximal diversion and then reverse the diversion direction if over steer occurs.

    Fig.1.Rotating wing maneuver concept.

    Fig.2 depicts the manner in which a two-actuator variant of this concept operates over a complete cycle of spin.The maneuver concept is viewed from the base of the projectile at eight snapshots(corresponding to a change in roll angle of 45 )throughout the spin cycle.Successive snapshots of the concept throughout the spin cycle proceed in the counter-clockwise manner around the figure.When viewed from the base the projectile spins in the clockwise direction,the actuator assembly rotates in the counter-clockwise direction.In this manner,the wings attached to each actuator rotate in and out of the projectile to provide a consistent maneuver direction.

    Another concept with this rotational actuator theme is presented in Fig.3.Here,a single rotational actuator is mounted to a projectile base assembly featuring a pair of deflected fins which deploy after launch.The actuator rotates the finned base opposite the projectile spin so that the aerodynamic asymmetry of the deflected fins produces a lateral maneuver.Again,phase shifting the finned base rotation relative to the projectile rotation yields maneuvers in any direction.

    Fig.2.Snapshots(viewed from the base in earth-fixed reference frame)over one revolution of rotating wing maneuver concept with two actuators.

    These maneuver concepts are on the rear of the projectile to facilitate packaging within the mouth of the cartridge case to reduce the handling and storage burden.The specific configuration of the maneuver system and aerodynamic surfaces to achieve control authority requirements for these concepts depends on the mission(e.g.,launch and flight conditions,system errors,etc.)

    Fig.3.Rotating finned base maneuver concept.

    3.Actuator characterization

    Experiments were conducted to characterize the actuation technology for this class of maneuver concepts.Small,low cost gun hard motors were obtained and assembled into the prototype maneuver systems.Theoretical actuator dynamics were identified by collecting data on the input(motor)and output(spin rate)of the system.Experimental parameters included motor size,commanded spin rate,rotational direction,and inertial load.This analysis quantified the key performance metrics such as response,friction,and power requirements which can be used in maneuver concept refinement for a particular application.

    3.1.Experimental setup

    An apparatus was created for data collection.A market survey yielded some viable motors(manufactured by Maxon).An image of one of these brushless DC motors along with a model of the rotating wing concept and a prototype 40 mm projectile which was fired through the spark range[14]is shown in Fig.4.This motor product line goes down to 6 mm in diameter with satisfactory cost,speed and torque specifications.Electrical(e.g.,torque constant KT)and inertial(moment of inertia Ix,diameter D)data for some of these motors is given in Table 1.Shock table experiments also indicated favorable survivability characteristics.

    An experimental setup was created to operate these motors unloaded and with various control mechanism(inertial and aerodynamic)loadings at different speeds in the laboratory.Fig.5 provides a schematic of the setup.A speed controller(E-flite 10-Amp Pro Brushless Electronic Speed Controller)was used to drive the three motor commutator input lines.This controller inputs a pulse width modulated(PWM)signal from a signal generator proportional to the desired spin rate and uses the voltage generated by the spinning motor to infer the spin rate(back electromotive force)for feedback control purposes.The motor was equipped with 3 Hall effect sensors for measuring response.A data acquisition board(National Instruments USB-6259)run by LabView software was used to collect the input PWM and motor signals and the output Hall sensor data.An image of this setup on the bench in the laboratory is shown in Fig.6.

    Fig.4.Image of motor with rotating wing concept and prototype 40 mm projectile.

    Fig.5.Schematic of experimental setup.

    Fig.6.Experimental setup.

    Table 1Motor electrical and inertial data.

    3.2.Raw experimental data

    Collection of actuation system input and output is necessary to derive theoretical models and to estimate model parameters.An example of the raw input data scaled to about 10 V in the data acquisition from an experiment is provided in Fig.7.The leading and trailing edge times of the motor driving signal were interrogated to within a half-sample time resolution for determining the pulse width.The motor spin rate was controlled using the pulse width of the input signal rather than the amplitude of the input signal.

    A sample of the output from one of the channels of Hall sensor data is shown in Fig.8.A cycle of low(0 V)and high(5 V)signals represents one rotation.Interrogation of the Hall pulse leading and trailing edges over one rotation permits calculation of the spin rate.The sample data in Fig.8 corresponds to a spin rate of about 35.7 Hz.

    Fig.7.Raw input signal.

    Fig.8.Raw output signal.

    3.3.Experimental uncertainty

    Consideration of the experimental uncertainty in spin rate is merited,especially since only Hall sensor pulses(i.e.,not a high resolution encoder)are used.A simple equation is used to relate the primary experimental measurement(time to complete one rotation,Δt)to the spin rate(˙φ)in Hz,we have

    The relationship between the uncertainty in the spin rate measurement(w˙φ)to the uncertainty in the primary measurement(wΔt)is given by the following equation

    This expression highlights the importance of a high data sample rate(fs).Uncertainty in spin rate on the order of 0.1 Hz may be expected at a 10 kHz sample rate for a 50 Hz spin rate.A sample rate of 200 kHz was used in the experiments(w˙φ~0.001 Hz).

    3.4.Conversion to engineering units

    The motor driving signals were used to obtain the system input data shown in Fig.9.The pulse width for all three signals to the motor and an average are provided.In this experiment,the controller calls for higher demand when spinning the control mechanism up followed by a lower control effort once the assembly reaches a steady-state spin rate.

    The Hall sensor output was manipulated to determine spin rate.Additionally,an average spin rate was found by averaging the spin rate and time of individual Hall sensors.An example of these data is provided in Fig.10.The spin rate of the actuator reaches over 100 Hz within about 0.1 s.Fluctuation in the steady-state spin rate may be due to controller performance at this low load.One Hall sensor was not recorded during this experiment.

    Fig.9.Manipulated input signal.

    Fig.10.Manipulated output signal.

    3.5.Data modeling

    Inspection of the spin rate response in Fig.10 suggests that a simple model may capture the experimental data.A first order system was used to model the data in preliminary experiments.A lag,dictated by the time constant(),prescribes the manner in which the spin rate adjusts to a commanded spin rate().

    Pulse width(P),rather than commanded spin rate,is the driving input in experiments due to the manner in which the experiments were conducted(=fpP).These inputs relate through a scaling(fp).

    3.6.Physical modeling

    Newtonian kinetics is applied about the spin axis of the maneuver system to derive the dynamic equation of motion from first principles.The dynamics are driven by the total axial moment of inertia,friction moment(friction coefficient KF),and the driving moment(torque constant KTand average current i)[15-17].

    Inspection of the equivalent models in Equations(3)and(4)permits relationships between model parameters to be defined.

    The time constant in the data model does not adhere to the classic definition of time constant.A more traditional time constant may by derived from the model parameters (τ =IX/KF).

    3.7.Parameter estimation

    Parameters in the physical models must be characterized for actuator performance evaluation and for multi-disciplinary modeling and simulation of other aspects(maneuver system control,aeromechanics,flight control)of a man portable precision munition.A variety of parameter estimation routines may be formulated for the current problem.The maximum likelihood method[18-22]was chosen based on the ease of use and attractiveness for this application.In this scheme,a likelihood function is defined.

    Here,the residual(e=xM?xC)is the difference between measurements and theoretical model calculations and the residual covariance(R=E[eeT?)for the current problem represents experimental uncertainty. The number of measurements are NM.The goal of this parameter identification algorithm is to find the model parameters which optimize the likelihood function(and thereby minimize the difference between measurements and model calculations).

    If model noise is neglected then some simplifications to the general maximum likelihood method can be made.The algorithm starts by inputting estimates of the initial states,parameters,and measurement uncertainty.The model is integrated with states(xC),controls(u),and parameters(θj).

    This method accommodates nonlinear models.For the current problem the equation of motion in Equation(3)was used as the model withand

    At times when the measurements are available,the Newton-Raphson method is used to optimize the likelihood function.Calculations are performed for the residual and Jacobian((?xC/?θ)).

    The number of parameters is NP.The Jacobian may be found analytically or numerically.Forward differencing was used in the present problem.

    Parameters are corrected through the following expression.

    The number of measurement samples is N.The termis often referred to as the information matrix and represents the content of useful data.The parameter estimation problem is ill-conditioned when the determinant of the information matrix is zero.

    Corrections are applied to update the parameter estimates.

    The model is integrated again with the updated parameters.

    The residual is re-calculated.This process is iterated at each measurement update until some convergence criterion(e.g.,magnitude of residual below some threshold)is reached.Once convergence is satisfied,the updated parameter estimates are used to integrate the model forward in time until the cycle repeats at the next measurement update.In this manner,the calculated response and parameter estimates are obtained over the entire measurement history.

    4.Results and discussion

    Actuator experiments were conducted over a variety of conditions and multiple samples at a given condition to assess full spectrum performance and perform statistical analysis.Independent parameters were motors(6 mm,16 mm),commanded spin rate(approximately 50 Hz,100 Hz),rotation(clockwise(CW),and counter-clockwise(CCW))direction,and inertial load(motor only,added inertial).Spin rate and input pulse width data were collected for each experiment.Next,the parameter estimation routine was used to match this collected data with data model parameters(time constant,input scaling).The collected data and data model parameters,along with the derivation of the physical model[Eqs.(4)-(6)],enabled the physical model parameters(e.g.,friction,average current)to be determined.This section of the paper shows a typical example of this analysis process along with a table summarizing the results for all experiments.

    An example of the measured spin rate and spin rate calculated from the parameter estimation algorithm is provided in Fig.11.The model matches the ramp-up and steady state portions of the experimental data.Errors in spin rate were usually less than 1 Hz across experimental results.Agreement between the theory and experiment validates the models and data driving the models.

    Fig.11.Measured and calculated spin rates.

    The resulting parameter estimates and input data can be used to determine the current sent to the motor.Fig.12 shows that the current is higher when the actuator spins upward from rest before leveling off as the spin rate holds constant.All results indicate the power requirements are modest.

    Fig.12.Current history.

    Parameter estimates across the different experimental conditions are provided in Table 2.All parameters are consistent for a given condition over multiple trials.The input scaling and average current varied with commanded spin rate and motor size as expected.The direction of rotation also changed the input scaling and average current mainly for the 6 mm diameter motor at low commanded spin rate.When an additional inertia load was added to the motor assembly,its performance degraded.For this reason,a few results with higher uncertainty are presented in Table 2 for this situation.

    Table 3Summary statistics of maneuver system parameters.

    Friction coefficient and time constant only varied according to the physical configuration.For this reason,the statistics were calculated and are given in Table 3.Inspection of these data demonstrates that the friction and time constants increase with motor size.The standard deviations of all parameters are within 10%of the mean.

    The estimates of friction coefficient are useful for predicting and manipulating the dynamic response of the maneuver system.The average current permits battery sizing.The input scaling allows precise spin rate setting for future experiments.Finally,the time constant provides a metric for the system response time.The average current,input scaling,and time constant are specific to the commercial speed controller used in the experiments.

    This study provides general actuator performance indicators for a class of maneuver concepts.Overall,the results indicate that the battery requirements and the friction and spin rate characteristics of this actuation scheme are satisfactory for low loadings.

    The practical inertial(and potentially aerodynamic)loading,however,may demand an improved controller or motor with higher torque.Maneuver concept refinement for a particular application dictates the detailed actuator design.

    5.Conclusions and future work

    This paper outlined the actuator characterization of maneuver concepts for man-portable precision munitions.Multiple concepts,based on a common theme of aerodynamic control with a rotational actuator,were formulated.The specific details regarding practical implementation of these concepts for a particular mission must consider additional factors such as the control authority needed to deliver the lethal payload.

    Table 2Individual Experiment maneuver system parameters.

    Experiments were conducted to assess actuator performance.This paper provided the experimental setup along with the raw and manipulated data.Experimental uncertainty was considered.The data and physics-based models of the actuation system were composed.A parameter estimation algorithm was introduced.Satisfactory matches between the experimental data and theory provided some verification of the actuator models as well as numeric values for the parameters.These models and data are essential to achieve the actuation performance goals and multi-disciplinary simulation of the man portable precision munition.

    The electro-mechanical design and analysis of actuator technologies in this paper suggest feasibility with regard to cost,size,bandwidth,response and power(even with a commercial controller).Overall,the preliminary results indicated the favorable characteristics of these maneuver concepts;however,further investigations must be performed.The dynamic behavior of the maneuver concept within a spinning body and under realistic aerodynamic loadings(e.g.,in a wind tunnel)must be examined.The rotating wing and finned base concepts also need further refinement of electro-mechanical and control design.A careful survivability assessment must be made.The final task to enabling the maneuver of a manportable precision munition is free-flight experimentation.

    [1]McMichael J,Lovas A,Plostins P,Sahu J,Brown G,Glezer A,Microadaptive flow control applied to a spinning projectile,AIAA-2004-2512.

    [2]Cooper G,Costello M.Flight dynamic response of spinning projectiles to lateral impulsive loads.J Dyn Syst Meas Control 2004;126:605-13.

    [3]Moorhead JS.Precision guidance kits(PGKs):improving the accuracy of conventional cannon rounds.Field Artill;Jan.-Feb.2007:31-3.

    [4]Celmins I.Design and evaluation of an electromechanical actuator for projectile guidance.Aberdeen Proving Ground,MD:U.S.Army Research Laboratory MR-672;2007.

    [5]Rogers J,Costello M.Control authority of a projectile equipped with a Controllable Internal Translating mass.J Guid Control Dyn 2008;31(5):1323-33.

    [6]Massey KC,Silton SI.Combining experimental data,computational fluid dynamics,and six-degree of freedom simulation to develop a guidance actuator for a supersonic projectile.J Aerosp Eng 2009;223:341-55.

    [7]Davis B,Malejko G,Dorhn R,Owens S,Harkins T,Bischer G.Addressing the challenges of a thruster-based precision guided mortar munition with the use of embedded telemetry instrumentation.ITEA J 2009;30:117-25.

    [8]Fresconi F,Cooper GR,Celmins I,DeSpirito J,Costello M.Flight mechanics of a novel guided spin-stabilized projectile concept.J Aerosp Eng 2011;226:327-40.

    [9]Fresconi FE.Guidance and control of a projectile with reduced sensor and actuator requirements.J Guid Control,Dyn 2011;34(6):1757-66.

    [10]Cooper GR,Fresconi FE,Costello MF.Flight stability of an asymmetric projectile with activating canards.J Spacecr Rockets 2012;49(1):130-5.

    [11]Fresconi FE,Harkins T.Experimental flight characterization of asymmetric and maneuvering projectiles from elevated gun firings.J Spacecr Rockets 2012;49(6):1120-30.

    [12]Brown TG,Davis B,Hepner D,Faust J,Myers C,Muller P,et al.Strapdown microelectromechanical(MEMS)sensors for high-g munition applications.IEEE Trans Magn 2001;37(1):336-42.

    [13]Carlucci DE,Frydman AM,Cordes JA.Mathematical description of projectile shot exit dynamics(set forward.J Appl Mech 2013;80.p.031501-1-9.

    [14]Guidos BG,Celmins I.The 40-mm M433 Projectile Aerodynamics Obtained from Spark Range Firings.Aberdeen Proving Ground,MD:U.S.Army Research Laboratory TR-4619;2008.

    [15]Pillay P,Krishnan R.Modeling,simulation,and analysis of permanentmagnet motor drives,part II:the brushless DC motor drive.IEEE Trans Ind Appl 1989;25(2):274-9.

    [16]Hemati N,Leu M.A complete model characterization of brushless DC motors.IEEE Trans Ind Appl 1992;28(1):172-80.

    [17]Rigatos GG.Particle and Kalman filtering for state estimation and control of DC motors.ISA Trans 2009;48:62-72.

    [18]Chapman G,Kirk D.A new method for extracting aerodynamic coefficients from free-flight data.AIAA J 1970;8(4):753-8.

    [19]Whyte RH,Mermagen WH.A method for obtaining aerodynamic coefficients from Yawsonde and radardata.J Spacecr Rockets 1973;10(6):384-8.

    [20]Hathaway W,Whyte R.Aeroballistic research Facility free flight data analysis using the maximum Likelihood Method.Eglin Air Force Base,FL:AFATL-TR-79-98;Air Force Armament Laboratory;December 1979.

    [21]Iliff K.Parameter estimation for flight Vehicles.J Guid 1989;12(5):609-22.

    [22]Klein V,Morelli EA.Aircraft System Identification.Reston,VA:AIAA Education Series;2006.

    免费在线观看视频国产中文字幕亚洲 | 久久久久网色| 亚洲图色成人| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 日本午夜av视频| 国产人伦9x9x在线观看 | 人成视频在线观看免费观看| 极品人妻少妇av视频| 精品第一国产精品| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 1024香蕉在线观看| 国产极品天堂在线| 国产片内射在线| 女性被躁到高潮视频| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| 欧美日韩精品成人综合77777| av一本久久久久| av电影中文网址| 久久人人97超碰香蕉20202| 亚洲国产精品999| 久久久亚洲精品成人影院| 日韩中文字幕视频在线看片| 又黄又粗又硬又大视频| 少妇精品久久久久久久| 免费女性裸体啪啪无遮挡网站| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 久热久热在线精品观看| 欧美老熟妇乱子伦牲交| 国产精品 国内视频| 少妇被粗大猛烈的视频| 午夜激情久久久久久久| 国产成人aa在线观看| 亚洲国产毛片av蜜桃av| 天天操日日干夜夜撸| 777米奇影视久久| 夜夜骑夜夜射夜夜干| 亚洲国产精品国产精品| 狠狠婷婷综合久久久久久88av| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| www.自偷自拍.com| 老司机影院成人| 国产乱人偷精品视频| 亚洲成色77777| 成人国产麻豆网| 啦啦啦在线免费观看视频4| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 国产一区二区 视频在线| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 午夜福利网站1000一区二区三区| 色哟哟·www| 老司机影院成人| 青春草视频在线免费观看| 久久精品国产亚洲av高清一级| 十分钟在线观看高清视频www| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 男女啪啪激烈高潮av片| av天堂久久9| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 男女高潮啪啪啪动态图| 亚洲精品国产av成人精品| 中文字幕亚洲精品专区| 国产av码专区亚洲av| 成人国产av品久久久| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 最新中文字幕久久久久| 亚洲欧美一区二区三区久久| 男人添女人高潮全过程视频| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 亚洲欧美精品综合一区二区三区 | 亚洲av男天堂| 国产精品嫩草影院av在线观看| 国产xxxxx性猛交| 男女免费视频国产| 免费久久久久久久精品成人欧美视频| 日本欧美国产在线视频| 人妻 亚洲 视频| 边亲边吃奶的免费视频| 亚洲av福利一区| 亚洲国产精品成人久久小说| 考比视频在线观看| 日本色播在线视频| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 亚洲经典国产精华液单| 国产精品免费大片| 国产精品久久久久久精品古装| 在线天堂中文资源库| 99热国产这里只有精品6| 丝袜美足系列| 亚洲第一av免费看| 国产成人精品久久久久久| av网站在线播放免费| 国产精品熟女久久久久浪| 天天影视国产精品| 久久99蜜桃精品久久| 美女xxoo啪啪120秒动态图| 黄网站色视频无遮挡免费观看| 日韩欧美一区视频在线观看| 亚洲精品自拍成人| 国产1区2区3区精品| 自线自在国产av| 伦理电影大哥的女人| 观看av在线不卡| 美女福利国产在线| 亚洲国产看品久久| 如日韩欧美国产精品一区二区三区| 久久97久久精品| 99久久人妻综合| 中文字幕另类日韩欧美亚洲嫩草| 久久久久人妻精品一区果冻| 女人被躁到高潮嗷嗷叫费观| 寂寞人妻少妇视频99o| 亚洲综合色网址| 亚洲国产色片| 欧美激情 高清一区二区三区| 国产精品无大码| 天堂8中文在线网| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区 | a 毛片基地| 免费在线观看完整版高清| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 欧美97在线视频| 老鸭窝网址在线观看| av天堂久久9| 久久精品久久久久久久性| 亚洲精品美女久久av网站| 精品久久久久久电影网| 欧美日韩精品网址| 国产精品二区激情视频| 性少妇av在线| 欧美成人午夜精品| 国产高清不卡午夜福利| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美| av.在线天堂| 97在线视频观看| 999精品在线视频| 亚洲成色77777| 大码成人一级视频| 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看 | 欧美精品亚洲一区二区| 人妻一区二区av| 日韩不卡一区二区三区视频在线| 人妻少妇偷人精品九色| 国产在线免费精品| 一本色道久久久久久精品综合| 一级a爱视频在线免费观看| 捣出白浆h1v1| 亚洲综合色惰| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 国产成人精品福利久久| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 丁香六月天网| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 亚洲国产色片| 99国产精品免费福利视频| 亚洲美女视频黄频| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 各种免费的搞黄视频| 亚洲欧美一区二区三区国产| 亚洲av电影在线进入| 亚洲av福利一区| 久久久久视频综合| 成人二区视频| 欧美精品一区二区大全| 美女福利国产在线| 国产又色又爽无遮挡免| 精品国产一区二区久久| 国产 精品1| 十八禁网站网址无遮挡| 高清av免费在线| 久久久精品区二区三区| 黄频高清免费视频| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区| 国产免费一区二区三区四区乱码| 男女无遮挡免费网站观看| 日本色播在线视频| 国产老妇伦熟女老妇高清| 国产毛片在线视频| 亚洲内射少妇av| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 成年女人毛片免费观看观看9 | 亚洲欧洲精品一区二区精品久久久 | 一区二区三区乱码不卡18| 秋霞伦理黄片| 久久久久久伊人网av| 韩国av在线不卡| 黑丝袜美女国产一区| 男女国产视频网站| 波多野结衣av一区二区av| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 精品卡一卡二卡四卡免费| 久热这里只有精品99| 看非洲黑人一级黄片| 9热在线视频观看99| www.av在线官网国产| 啦啦啦在线观看免费高清www| 蜜桃国产av成人99| 亚洲激情五月婷婷啪啪| 超碰成人久久| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 欧美成人午夜免费资源| 午夜av观看不卡| 在线 av 中文字幕| 老司机影院毛片| 久久ye,这里只有精品| 涩涩av久久男人的天堂| 欧美日韩精品成人综合77777| 久久久久精品性色| 久久国产精品大桥未久av| 搡老乐熟女国产| 97在线人人人人妻| 26uuu在线亚洲综合色| 五月天丁香电影| 久久鲁丝午夜福利片| 亚洲内射少妇av| 韩国精品一区二区三区| 香蕉国产在线看| 久久久久网色| 肉色欧美久久久久久久蜜桃| 91精品国产国语对白视频| 在线观看免费视频网站a站| 亚洲美女视频黄频| 久久久久久人人人人人| 一区二区三区精品91| 热99国产精品久久久久久7| 老汉色av国产亚洲站长工具| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 久久精品国产自在天天线| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 精品少妇内射三级| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 十八禁高潮呻吟视频| 只有这里有精品99| 国产精品免费视频内射| 欧美xxⅹ黑人| 9191精品国产免费久久| 国产一区二区激情短视频 | 亚洲在久久综合| 日韩三级伦理在线观看| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 青春草国产在线视频| 成人亚洲欧美一区二区av| 观看美女的网站| 国产xxxxx性猛交| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 久久99一区二区三区| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区免费开放| 人妻少妇偷人精品九色| 亚洲av日韩在线播放| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 春色校园在线视频观看| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| videos熟女内射| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 国产有黄有色有爽视频| 丝袜美足系列| av有码第一页| 免费观看性生交大片5| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看 | 午夜福利视频在线观看免费| 欧美bdsm另类| 久久久久久人人人人人| 亚洲天堂av无毛| 九色亚洲精品在线播放| 黄频高清免费视频| videossex国产| 久久av网站| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 亚洲伊人久久精品综合| 99久久人妻综合| 中文字幕人妻熟女乱码| 久久久精品区二区三区| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 最近最新中文字幕大全免费视频 | 观看美女的网站| 精品国产一区二区三区四区第35| 成年女人毛片免费观看观看9 | 日本vs欧美在线观看视频| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 免费日韩欧美在线观看| 欧美日韩一区二区视频在线观看视频在线| 精品久久久精品久久久| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 免费看不卡的av| 亚洲国产欧美网| 亚洲在久久综合| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 多毛熟女@视频| 国产精品久久久av美女十八| 成人国产av品久久久| 成年女人在线观看亚洲视频| 大片电影免费在线观看免费| 一区福利在线观看| 国产男女内射视频| 成年动漫av网址| 欧美精品国产亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久视频综合| 精品一区二区三卡| 亚洲内射少妇av| 亚洲第一av免费看| 欧美精品国产亚洲| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站 | 男女无遮挡免费网站观看| 日韩大片免费观看网站| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 久久久久久久国产电影| 欧美bdsm另类| 999久久久国产精品视频| 成人黄色视频免费在线看| 99热全是精品| 两性夫妻黄色片| 秋霞在线观看毛片| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 欧美国产精品va在线观看不卡| 国产av码专区亚洲av| 天天躁日日躁夜夜躁夜夜| 色94色欧美一区二区| 91精品伊人久久大香线蕉| 在线天堂中文资源库| 免费观看性生交大片5| 捣出白浆h1v1| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀 | 国产精品免费大片| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 在线观看免费视频网站a站| 桃花免费在线播放| 极品少妇高潮喷水抽搐| 国产一区二区在线观看av| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 久久狼人影院| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 精品少妇黑人巨大在线播放| 色视频在线一区二区三区| 精品少妇黑人巨大在线播放| 亚洲精品av麻豆狂野| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 宅男免费午夜| 国产精品一区二区在线不卡| 亚洲第一青青草原| 91在线精品国自产拍蜜月| 18禁国产床啪视频网站| 9色porny在线观看| 伦精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| 国产精品不卡视频一区二区| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 高清不卡的av网站| 欧美最新免费一区二区三区| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 一本久久精品| 日本-黄色视频高清免费观看| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 老司机亚洲免费影院| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 电影成人av| 黄网站色视频无遮挡免费观看| 汤姆久久久久久久影院中文字幕| 香蕉精品网在线| 久久久久精品久久久久真实原创| 老女人水多毛片| 日韩中文字幕视频在线看片| 午夜福利一区二区在线看| 久久午夜综合久久蜜桃| av有码第一页| 又黄又粗又硬又大视频| 午夜日本视频在线| 超碰97精品在线观看| 制服诱惑二区| 亚洲图色成人| 少妇的丰满在线观看| 午夜免费观看性视频| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 在线天堂中文资源库| 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 综合色丁香网| 波野结衣二区三区在线| 一本久久精品| 制服丝袜香蕉在线| 秋霞在线观看毛片| 日韩不卡一区二区三区视频在线| 国产免费又黄又爽又色| 中文字幕最新亚洲高清| videosex国产| 国产精品嫩草影院av在线观看| freevideosex欧美| 999久久久国产精品视频| 18禁裸乳无遮挡动漫免费视频| 日韩欧美一区视频在线观看| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 久久精品国产鲁丝片午夜精品| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 在线观看免费高清a一片| 香蕉丝袜av| 亚洲一区中文字幕在线| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美精品济南到 | 大香蕉久久网| 99久国产av精品国产电影| 欧美亚洲 丝袜 人妻 在线| 女的被弄到高潮叫床怎么办| 久久这里只有精品19| tube8黄色片| 搡老乐熟女国产| 久久精品人人爽人人爽视色| av女优亚洲男人天堂| 久久精品亚洲av国产电影网| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频| 免费看不卡的av| 男男h啪啪无遮挡| 人成视频在线观看免费观看| 欧美 日韩 精品 国产| 爱豆传媒免费全集在线观看| 亚洲国产精品999| av国产久精品久网站免费入址| 母亲3免费完整高清在线观看 | 国产黄色免费在线视频| 伊人久久大香线蕉亚洲五| 在线观看三级黄色| 欧美黄色片欧美黄色片| 一本久久精品| 在线观看免费日韩欧美大片| 国产亚洲精品第一综合不卡| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 国产 精品1| 欧美bdsm另类| 在线观看免费视频网站a站| 久久青草综合色| 欧美激情高清一区二区三区 | 欧美人与善性xxx| 美国免费a级毛片| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 女性生殖器流出的白浆| 日韩 亚洲 欧美在线| 欧美日韩一级在线毛片| 精品一品国产午夜福利视频| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91 | 国产成人精品一,二区| 交换朋友夫妻互换小说| 香蕉精品网在线| 国产男人的电影天堂91| 国产一区二区三区综合在线观看| 免费日韩欧美在线观看| 五月伊人婷婷丁香| 美女午夜性视频免费| 日韩成人av中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 啦啦啦啦在线视频资源| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 在线 av 中文字幕| 日韩伦理黄色片| 久久狼人影院| 卡戴珊不雅视频在线播放| 久久久久久久久久久久大奶| 韩国精品一区二区三区| 国产人伦9x9x在线观看 | 狂野欧美激情性bbbbbb| 免费播放大片免费观看视频在线观看| 成人午夜精彩视频在线观看| 亚洲成人手机| 日产精品乱码卡一卡2卡三| 国产亚洲精品第一综合不卡| 国产综合精华液| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| 色哟哟·www| 波野结衣二区三区在线| 青春草国产在线视频| 免费不卡的大黄色大毛片视频在线观看| 伦精品一区二区三区| 免费日韩欧美在线观看| 26uuu在线亚洲综合色| 午夜福利一区二区在线看| 精品国产国语对白av| 亚洲一区二区三区欧美精品| 国产亚洲精品第一综合不卡| 国产成人av激情在线播放| 在线看a的网站| 纯流量卡能插随身wifi吗| 久久久久国产一级毛片高清牌| 亚洲国产日韩一区二区| 老司机影院成人| 欧美日韩视频精品一区| 国产免费又黄又爽又色| 观看美女的网站| 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 欧美激情极品国产一区二区三区| 777久久人妻少妇嫩草av网站| 欧美精品一区二区免费开放| 精品一区二区三卡| 毛片一级片免费看久久久久| 超色免费av| 免费少妇av软件| 久久韩国三级中文字幕| 免费高清在线观看视频在线观看| 少妇精品久久久久久久| 亚洲精品av麻豆狂野| 亚洲精品视频女| 久久久a久久爽久久v久久| 色视频在线一区二区三区| 美女大奶头黄色视频| av线在线观看网站| 久久热在线av| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 国产精品女同一区二区软件| 欧美日韩综合久久久久久| 老汉色∧v一级毛片| 97在线视频观看| www.av在线官网国产| 国产精品免费视频内射| 免费不卡的大黄色大毛片视频在线观看| 免费大片黄手机在线观看| 秋霞在线观看毛片| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人澡人人爽人人夜夜| 丰满饥渴人妻一区二区三| 一边亲一边摸免费视频| 国产高清不卡午夜福利| 久热久热在线精品观看| 亚洲精品国产色婷婷电影| 寂寞人妻少妇视频99o| 国产深夜福利视频在线观看|