王 雯,李 曼,王麗紅,周 青
江南大學(xué)環(huán)境與土木工程學(xué)院,江蘇 無錫 214122
WANG Wen, LI Man, WANG Lihong, ZHOU Qing*
School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
酸雨對全生育時期水稻葉綠素?zé)晒獾挠绊?/p>
王 雯,李 曼,王麗紅,周 青*
江南大學(xué)環(huán)境與土木工程學(xué)院,江蘇 無錫 214122
酸雨是全球關(guān)注的重大環(huán)境污染問題之一,中國亦繼西歐和北美之后,成為當(dāng)今世界第三大酸雨區(qū)。光合作用是植物生物量和作物經(jīng)濟(jì)產(chǎn)量形成的生理基礎(chǔ),葉綠素?zé)晒獬S脕砼袛嗄婢趁{迫對植物光合作用造成的傷害。有研究表明,酸雨會對植物葉綠素?zé)晒庠斐捎绊懀徊煌L階段植物對逆境的抵抗能力亦存在差異,采用模擬酸雨(酸雨pH值梯度為4.5、3.5、2.5)或模擬天然降水持續(xù)脅迫(每隔3天噴施1次)水稻(Oryza sativa)(從幼苗期至灌漿期),利用原位無損傷葉綠素?zé)晒鉁y定技術(shù)(德國Walz公司PAM-210脈沖調(diào)制式熒光儀)分別探測和分析幼苗期、分蘗期、孕穗期和灌漿期水稻葉片(處理組和對照組),研究酸雨對全生育期水稻葉綠素?zé)晒獾挠绊懀嚓P(guān)研究未見報道。結(jié)果表明,與CK相比,pH 4.5酸雨使幼苗期和孕穗期初始熒光(Fo)顯著提高了7.69%、8.84%,使幼苗期、分蘗期和孕穗期非光化學(xué)猝滅參數(shù)(qN)顯著提高了8.64%、4.86%、6.09%,使幼苗期和孕穗期最大光化學(xué)量子產(chǎn)量(Fv/Fm),PSII電子傳遞速率(ETR),實際原初光能捕獲效率(ΦPSII),光化學(xué)猝滅參數(shù)(qP)顯著降低,幼苗期、孕穗期降幅依次為Fv/Fm(3.01%、6.88%)、ETR(8.40%、10.24%)、ΦPSII(8.39%、12.23%)、qP(3.79%、12.55%);pH 3.5、pH 2.5酸雨不同程度地顯著降低了各生育時期Fv/Fm、ETR、ΦPSII、qP,幼苗期和孕穗期qN,顯著提高了各生育時期Fo,且隨酸雨pH值降低,變化幅度增大。同時,pH 4.5或pH 3.5酸雨持續(xù)脅迫下,水稻受到傷害大小規(guī)律為灌漿期<幼苗期<分蘗期<孕穗期;pH 2.5酸雨持續(xù)脅迫下,水稻受到傷害大小規(guī)律為分蘗期<幼苗期<灌漿期<孕穗期??傊?,酸雨脅迫強度與水稻葉綠素?zé)晒鈪?shù)存在劑量-效應(yīng)關(guān)系,酸雨持續(xù)脅迫會對不同生育時期水稻光合作用造成影響,并且不同生育時期水稻光合作用對酸雨脅迫敏感性存在差異,這些是評價酸雨脅迫對植物影響時需考慮因素。
酸雨;水稻;全生育期;持續(xù)脅迫;葉綠素?zé)晒?/p>
酸雨(Acid rain,AR)是當(dāng)代全球重大環(huán)境問題之一,受到廣泛關(guān)注(Menz和Seip,2004)。繼西歐和北美之后,中國已成為當(dāng)今世界第三大酸雨區(qū)(Larssen等,2006)。中國酸雨區(qū)主要分在長江以南和青藏高原以東(解淑艷等,2012),且近年來酸雨污染仍有加重趨勢(環(huán)境保護(hù)部,2010)。眾多研究表明酸雨會直接或間接影響作物生長發(fā)育和產(chǎn)量(Hu等,2009;Koricheva等,1997;Wood和Bormann,1974;Wyrwicka和Sk?odowska,2006;Yu等,2002;童貫和,2005)。光合作用是植物體內(nèi)中心同化路徑,是植物生物量和作物經(jīng)濟(jì)產(chǎn)量形成的生理基礎(chǔ)。研究酸雨對作物光合作用的影響理應(yīng)更受關(guān)注。葉綠素?zé)晒庾鳛楣夂献饔醚芯康奶结槪梢杂脕碓u價光合作用主要的光合化學(xué)反應(yīng)、PSII效率和電子載體上電子傳遞效率(Kummerová等,2006),推測光合作用中心PSI與PSII的結(jié)構(gòu)是否受到破壞等。目前國際上植物體內(nèi)葉綠素?zé)晒鈩恿W(xué)的研究已成為熱點,并在逆境生理研究中得到廣泛應(yīng)用(Kooten和Snel,1990;Massacci等,1995)。Vialita等通過葉綠素?zé)晒鈪?shù)研究表明,pH 1.8模擬酸雨造成菜豆(Phaseolus vulgaris)PSII失活,電子傳遞受阻,光能利用率降低(Velikova等,1999)。Sun等(Sun等,2012)通過葉綠素?zé)晒鈪?shù)研究發(fā)現(xiàn)鎘和酸雨復(fù)合脅迫阻礙了大豆(Glycine max)幼苗葉片光能吸收,電子傳遞,光能轉(zhuǎn)化等過程。
作物的生長不僅受到外界脅迫的影響,還與作物自身生長發(fā)育時期密切相關(guān)。逆境生物學(xué)研究表明,不同生長階段植物對逆境的抵抗能力亦存在差異(Kooten和Snel,1990)模擬酸雨分別處理拔節(jié)期(姚桃峰等,2010)、孕穗期(王潤年等,2011)和灌漿期(姚桃峰等,2010)小麥(Triticum aestivum Linn),發(fā)現(xiàn)其對光合特性的影響不同,表明酸雨脅迫不同生育時期植物,光合速率發(fā)的變化不同。然而,在酸雨區(qū),持續(xù)生長在酸雨環(huán)境中的作物各生育時期光合作用會發(fā)生怎樣的變化尚不清楚。這往往會給準(zhǔn)確評價污染物致害效果,并由此建立該污染物的環(huán)境安全相關(guān)結(jié)論造成困難。水稻作為重要的糧食作物,是國內(nèi)外科學(xué)家作物研究的焦點(Liu等,2013;Nakamura等,2013;Niu等,2013;Yang等,2013)。鑒于此,本文以水稻為試材,采用葉綠素?zé)晒饧夹g(shù),研究持續(xù)酸雨脅迫對全生育時期水稻葉綠素?zé)晒獾挠绊?,為科學(xué)評價酸雨對全生育期植物環(huán)境安全性提供基礎(chǔ)實驗數(shù)據(jù)與參考。
1.1 試材培養(yǎng)
挑選籽粒飽滿水稻(Oryza sativa,淮稻8號)種子,用0.1% HgCl2消毒10 min,去離子水沖洗去除表面殘留HgCl2,去離子水浸泡后置于25 ℃恒溫光照培養(yǎng)箱中催芽2 d,將發(fā)芽種子移入苗床,待幼苗長至兩葉一心時移入周轉(zhuǎn)箱(320 mm×215 mm×100 mm)中水培,周轉(zhuǎn)箱上置15穴的泡沫板,每穴定植2株水稻幼苗,營養(yǎng)液每隔3 d更換1次,直至三葉一心。
營養(yǎng)液采用國際水稻研究所(IRRI)常規(guī)營養(yǎng)液配方并略作修改(Zhu等,2009)。Fe以Fe-EDTA形式配入并保持營養(yǎng)液中Fe質(zhì)量濃度為2.00 mg·L-1,同時加入NaSiO3·9H2O保持營養(yǎng)液中SiO2質(zhì)量濃度為120 mg·L-1,NH4+-N中加入5.89 mg·L-1雙氰胺作為硝化抑制劑,用H2SO4或NaOH將營養(yǎng)液pH調(diào)至5.5。
1.2 模擬酸雨配置和實驗處理
根據(jù)中國酸雨現(xiàn)狀和趨勢,選擇3個酸雨pH值2.5、3.5、4.5,并以pH 5.5為對照(CK)。根據(jù)東南地區(qū)天然降水離子水平(孔然等,2012),去離子水中分別添加一定量CaCl2、NaCl、K2SO4、NH4NO3作為模擬天然降水,其中Ca2+,Na+,K+,Mg2+,SO42-,NO3-和Cl-含量分別為0.83、1.32、0.15、5.34、0.36、0.64、0.47、0.69和1.80 μmol·L-1。用體積比為1.1∶1的硫酸和硝酸配制pH 1.0酸雨母液(孔然等,2012;解淑艷等,2012)。用酸雨母液調(diào)節(jié)模擬天然降水pH值至2.5、3.5和4.5,并經(jīng)FE-20實驗pH計校準(zhǔn)(Yoshida等,1971),作為噴施的酸雨溶液。并用酸雨母液調(diào)節(jié)營養(yǎng)液至pH 4.5,3.5,2.5作為培養(yǎng)酸性營養(yǎng)液。
培育至三葉一心后,將水稻幼苗移入含酸性營養(yǎng)液的蛭石中持續(xù)酸雨脅迫處理,同時對葉面噴淋與營養(yǎng)液pH值相同的模擬酸雨溶液,CK噴施模擬天然降水,每隔3 d噴1次酸雨,根據(jù)東南地區(qū)降雨量和蒸發(fā)量,計算得每盒每次噴淋酸雨300 mL,每3 d補加1次營養(yǎng)液。
1.3 指標(biāo)測定
各生育時期選取主莖上完全展開的第1、2片水稻葉子進(jìn)行測定,每個處理組重復(fù)測定3次。實驗采用德國Walz公司生產(chǎn)的PAM-210脈沖調(diào)制式熒光儀進(jìn)行水稻葉片活體熒光測定。實驗測定前首先將葉片暗適應(yīng)20 min,照射檢測光(<0.05 μmol·m-2·s-1)后測得初始熒光Fo,照射飽和脈沖光(12000 μmol·m-2·s-1)測得最大光化學(xué)量子產(chǎn)量Fv/Fm,打開內(nèi)源光化光 (180 μmol·m-2·s-1)后,一次照射檢測光合飽和脈沖光(1個脈沖),每隔一定時間測定光適應(yīng)下熒光參數(shù)及熒光猝滅曲線,待實際原初光能捕獲效率ΦPSII(作用光存在時PSII的原初光能捕獲效率)穩(wěn)定后,關(guān)閉作用光,立即照射遠(yuǎn)紅外光,光化學(xué)猝滅參數(shù)qP、非光化學(xué)猝滅參數(shù)qN、PSII的電子傳遞速率ETR也由儀器自動計算給出。
1.4 數(shù)據(jù)處理
各處理組與對照組設(shè)置3次重復(fù),所有數(shù)據(jù)為3次獨立試驗平均值±標(biāo)準(zhǔn)誤差(Mean±SD),運用SPSS 16.0軟件,通過LSD檢驗(P<0.05)分析處理間的差異顯著性。
2.1 酸雨對幼苗期熒光參數(shù)的影響
表1顯示了酸雨對幼苗期水稻葉綠素?zé)晒鈪?shù)的影響。與CK相比,pH 4.5酸雨使Fv/Fm,ETR,ΦPSII,qP顯著降低,qN、Fo顯著升高;pH 3.5酸雨使Fv/Fm、ETR、ΦPSII、qP、qN顯著降低,F(xiàn)o顯著升高;pH 2.5酸雨使Fv/Fm、ETR、ΦPSII、qP、qN顯著降低,F(xiàn)o顯著升高。
2.2 酸雨對分蘗期熒光參數(shù)的影響
表2顯示了酸雨對分蘗期水稻葉綠素?zé)晒鈪?shù)的影響。與CK相比,pH 4.5酸雨使qP顯著降低,F(xiàn)v/Fm、ETR、ΦPSII、Fo變化不顯著,qN顯著升高;pH3.5酸雨使Fv/Fm、ETR、ΦPSII、qP顯著降低,qN變化不顯著,F(xiàn)o顯著升高;pH2.5酸雨使Fv/Fm、ETR、ΦPSII、qP、qN顯著降低,F(xiàn)o顯著升高。
2.3 酸雨對孕穗期熒光參數(shù)的影響
表3顯示了酸雨對孕穗期水稻葉綠素?zé)晒鈪?shù)的影響。與CK相比,pH 4.5酸雨使Fv/Fm、ETR、ΦPSII、qP顯著降低,F(xiàn)o、qN顯著升高;pH 3.5酸雨使Fv/Fm、ETR、ΦPSII、qP、qN顯著降低,F(xiàn)o顯著升高;pH 2.5酸雨使Fv/Fm,ETR,ΦPSII,qP,qN顯著降低,F(xiàn)o顯著升高。
表1 酸雨對幼苗期水稻葉綠素?zé)晒鈪?shù)的影響Table1 Effects of acid rain on chlorophyll fluorescence parameters in rice at seedling stages
表2 酸雨對分蘗期水稻葉綠素?zé)晒鈪?shù)的影響Table2 Effects of acid rain on chlorophyll fluorescence parameters in rice at tillering stages
表3 酸雨對孕穗期水稻葉綠素?zé)晒鈪?shù)的影響Table3 Effects of acid rain on chlorophyll fluorescence parameters in rice at booting stage
表4 酸雨對灌漿期水稻葉綠素?zé)晒鈪?shù)的影響Table4 Effects of acid rain on chlorophyll fluorescence parameters in rice at filling stage
2.4 酸雨對灌漿期熒光參數(shù)的影響
表4顯示了酸雨對灌漿期水稻葉綠素?zé)晒鈪?shù)的影響。與CK相比,pH 4.5酸雨處理下,F(xiàn)o、Fv/Fm、ETR、ΦPSII、qP、qN變化均不顯著顯著;pH 3.5酸雨使Fv/Fm、ETR、ΦPSII、qP顯著降低,qN變化不顯著顯著,F(xiàn)0顯著升高;pH 2.5酸雨使Fv/Fm、ETR、ΦPSII、qP、qN顯著降低,F(xiàn)o顯著升高。
葉綠素?zé)晒夥磻?yīng)可通過無損傷原位葉片測定方法快速測定逆境污染脅迫下植物葉片葉綠素?zé)晒鈪?shù),用以評價光合機構(gòu)功能和環(huán)境脅迫對植物的影響,探明光合機構(gòu)受影響的部位(Speranza等,2011;李曉等,2006;蘇行等,2002),廣泛應(yīng)用于逆境脅迫對植物光合作用影響的研究(洪濤等,2005)。初始熒光Fo是PSII反應(yīng)中心全部開放時的熒光,其升高源于PSII反應(yīng)中心可逆或不可逆失活(李霞等,2002);Fv/Fm是最大光化學(xué)量子產(chǎn)量,反映PSII反應(yīng)中心原初光能轉(zhuǎn)換效率,正常條件下該參數(shù)不受物種和生長條件影響,逆境時明顯下降(郭春芳和孫云,2006);ΦPSII是環(huán)境脅迫下,PSII反應(yīng)中心部分關(guān)閉時的實際原初光能捕獲效率,亦為PSII反應(yīng)中心光化學(xué)反應(yīng)實際效率;ETR反映實際光強下的表觀電子傳遞效率。qP和qN均增加有利于逆境中對光合系統(tǒng)起到保護(hù)作用,qP降低表明光能轉(zhuǎn)化效率和通過PSII的能流減少,必然會使光合電子傳遞能力減弱,葉片暗反應(yīng)受阻;qN降低表明PSII的保護(hù)機制受到損傷,而過剩激發(fā)能會進(jìn)一步對PSII中心造成傷害(Sharma等,1998)。
水稻幼苗期,pH 4.5酸雨脅迫下Fo和qN升高,F(xiàn)v/Fm、ΦPSII、ETR、qP下降,表明pH 4.5酸雨導(dǎo)致水稻幼苗PSII反應(yīng)中心損壞,光合電子傳遞受阻,光合作用受抑制,通過增加熱耗散來消除因光化學(xué)效率降低所累積的過量光能(李曉等,2006),與前人提出的“PSII反應(yīng)中心受損會減弱電子傳遞和增加熱耗散來耗散過量光能而保護(hù)PSI”( Arbinson等,1990)的觀點一致,推測原因可能是較高濃度H+影響了水稻葉綠體功能,進(jìn)而對PSII造成影響。當(dāng)酸雨pH降至3.5或2.5時,水稻幼苗Fo升高,F(xiàn)v/Fm、ΦPSII、ETR、qP和qN下降,PSII活性中心和保護(hù)機制受損,且隨酸雨pH值降低損害加重,表明酸雨(pH 3.5和pH 2.5)導(dǎo)致過量活性氧累積,細(xì)胞抗氧化能力降低(Livingstone等,2001),光合色素及類囊體膜受損(Hattab等,2009),光能利用效率降低,QA-重新氧化為質(zhì)體醌QA的量減少,電子傳遞能力下降,而過剩激發(fā)能也會進(jìn)一步對PSII中心造成傷害,最終降低了光合作用(Qiu等,2013)。這可能是處于幼苗期的水稻根少葉小,光合產(chǎn)物較少,葉綠體中PSII易受酸雨污染影響,當(dāng)受到較高強度酸雨脅迫時,光合系統(tǒng)易受到傷害,表現(xiàn)為水稻葉綠素?zé)晒夥磻?yīng)對酸雨脅迫較為敏感。
水稻分蘗期,pH 4.5酸雨持續(xù)脅迫下Fo、Fv/Fm、ΦPSII、ETR無顯著差異,qP下降,qN升高,表明pH 4.5酸雨脅迫下,PSII捕獲的光能不能充分地轉(zhuǎn)化為植物所需要的化學(xué)能將其用于光化學(xué)反應(yīng),多余的光能以熱的形式耗散掉,啟動了能量耗散機制來保護(hù)光合機構(gòu)以免于受到酸雨脅迫的傷害(Horton等,1991;Demmig-Adams等,1990;Demmig-Adams和Adams等,1992),且下降幅度小于幼苗期,這可能由于分蘗期水稻生長代謝旺盛,抗逆能力隨著酸雨持續(xù)脅迫并未小于幼苗期所致。當(dāng)酸雨pH值降至3.5或2.5時,水稻分蘗期Fo升高,F(xiàn)v/Fm、ΦPSII、ETR、qP、qN下降,表明水稻的PSII原初光能轉(zhuǎn)化率降低,光合電子傳遞受阻,熱耗散機制未啟動,導(dǎo)致光合作用受抑制,且下降幅度小于幼苗期,表明高強度酸雨下分蘗期水稻抗逆性大于幼苗期,這可能由于水稻分蘗期屬于旺盛生長的營養(yǎng)生長期,不斷出葉和分蘗,發(fā)根能力強,根群生命力強,故抗逆性較幼苗期強,PSII受酸雨影響沒有幼苗期敏感。
水稻孕穗期,在pH 4.5、3.5和2.5酸雨持續(xù)脅迫下Fo均升高,F(xiàn)v/Fm、ΦPSII、ETR、qP均下降,而qN在pH 4.5酸雨脅迫時升高,在pH 3.5和2.5酸雨脅迫時下降,隨pH值降低降幅增大,表明隨酸雨pH值的降低,孕穗期水稻PSII受損越來越嚴(yán)重;且同pH值酸雨脅迫時,孕穗期各指標(biāo)幅度變化均大于幼苗期和分蘗期,表明孕穗期對酸雨脅迫最敏感,這可能由于孕穗期水稻葉層發(fā)生功能分工,酸雨導(dǎo)致的下層葉片早枯影響了根部對礦質(zhì)元素和N素的吸收,進(jìn)而影響了水稻的抗逆性和適應(yīng)性,表現(xiàn)為葉片PSII對酸雨污染敏感。
水稻灌漿期,pH 4.5酸雨持續(xù)脅迫下各指標(biāo)均無顯著差異,pH 3.5酸雨持續(xù)脅迫下Fo升高,F(xiàn)v/Fm、ΦPSII、ETR、qP下降,qN無顯著差異,且出現(xiàn)灌漿期上述各指標(biāo)變化幅度小于幼苗期、分蘗期和孕穗期,即pH 4.5或3.5酸雨持續(xù)脅迫下水稻受到傷害大小規(guī)律為灌漿期<幼苗期<分蘗期<孕穗期。這有可能是灌漿期水稻已完成營養(yǎng)生長,進(jìn)入生殖生長后期,生長發(fā)育趨于穩(wěn)定,對酸雨脅迫耐受性強;還可能由于長時間的酸雨脅迫使水稻對酸雨的抗逆性增強所致。而pH 2.5酸雨持續(xù)脅迫下灌漿期水稻Fo升高,F(xiàn)v/Fm、ΦPSII、ETR、qP、qN下降,與其他三生育期相比,水稻受到傷害大小規(guī)律為分蘗期<幼苗期<灌漿期<孕穗期,這可能由于pH 2.5酸雨使水稻葉片PSII嚴(yán)重受損,酸雨持續(xù)脅迫至灌漿期造成更嚴(yán)重的傷害,從而表現(xiàn)為灌漿期水稻受傷害最嚴(yán)重。
酸雨脅迫下,pH 4.5酸雨顯著影響了幼苗期,孕穗期葉綠素?zé)晒鈪?shù),對分蘗期和灌漿期葉綠素?zé)晒鈪?shù)無顯著影響。pH 3.5酸雨卻不同程度造成各生育時期水稻熒光參數(shù)的顯著變化,故此pH值下它們的變化程度可以用來辨別各生育期間抗性差異,實驗結(jié)果表明孕穗期水稻最敏感。
酸雨污染脅迫下,酸雨酸度與水稻葉片葉綠素?zé)晒夥磻?yīng)存在劑量-效應(yīng)關(guān)系;對比不同生育期水稻熒光參數(shù)變幅可知,酸雨對孕穗期水稻熒光參數(shù)影響最大,孕穗期水稻最敏感,表明不同生育時期水稻光合作用對酸雨脅迫抗性存在差異。同時持續(xù)酸雨脅迫下,酸雨對不同生育時期水稻光合作用的影響也會發(fā)生改變,特別是高強度酸雨脅迫(pH 2.5酸雨),這些是評價酸雨對植物脅迫時需考慮因素。
ARBINSON J, GENTY B, BAKER N R. 1990. The relationship between CO2assimilation and electron transport in leaves[J]. Photosynthesis Research, 25(3): 213-224.
DEMMIG-ADAMS B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin[J]. Biochimica Biophysica Acta, 1020(1): 1-24.
DEMMIG-ADAMS B, ADAMS I. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Biology, 1992, 43(1): 599-626.
HATTAB S, DRIDI B, CHOUBA L, et al. 2009. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress[J]. Journal of Environmental Sciences, 21(11): 1552-1556.
HORTON P, RUBAN A V, REES D, et al. 1991. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll—protein complex[J]. FEBS Letters, 292(1): 1-4.
HU X, HU C, SUN X, et al. 2009. Effects of simulated acid rain on soil acidification, availabilities and temporal and spatial variations of Cu and Pb in a vegetable field under natural conditions[J]. Journal of Food Agriculture and Environment, 7(1): 92-96.
KOOTEN O, SNEL J F. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 25(3): 147-150.
KORICHEVA J, ROY S, Vranjic J A, et al. 1997. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings[J]. Environmental Pollution, 95(2): 249-258.
KUMMEROVA M, KRULOVA J, ZEZULKA ?, et al. 2006. Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence[J]. Chemosphere, 65(3): 489-496.
LARSSEN T, LYDERSEN E, TANG D, et al. 2006. Acid rain in China[J]. Environmental Science and Technology, 40(2): 418-425.
LIU D, WANG X, ZHANG X. 2013. Effects of lanthanum on growth and accumulation in roots of rice seedlings[J]. Plant Soil and Environment, 59(5): 196-200.
LIVINGSTONE D. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms[J]. Marine Pollution Bulletin, 42(8): 656-666.
MASSACCI A, PIETRINI F, LORETO F. 1995. The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves[J]. Journal of Experimental Botany, 46(1): 119-127.
MENZ F C, SEIP H M. 2004. Acid rain in Europe and the United States: an update[J]. Environmental Science and Policy, 7(4): 253-265.
NAKAMURA K, AKIYAMA H, KAWANO N, et al. 2013. Evaluation of real-time PCR detection methods for detecting rice-products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct[J]. Food Chemistry, 141(3): 2618-2624.
NIU Y, GAO B, SLAVIN M, et al. 2013. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang[J]. LWT-Food Science and Technology, 54(2): 521-527.
QIU Z Y, WANG L H, ZHOU Q. 2013. Effects of bisphenol A on growth photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings [J]. Chemosphere, 90(3): 1274-1280.
SHARMA P K, ANAM P, SANKHALKAR S, et al. 1998.Photochemical and biochemical changes in wheat seedlings exposed to supplementary ultraviolet-B radiation[J]. Plant Science, 132(1): 21-30.
SPERANZA A, CROSTI P, MALERBA M, et al. 2011. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen[J]. Plant Biology, 13(1): 209-217.
SUN Z, WANG L, CHEN M, et al. 2012. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings[J]. Ecotoxicology and Environmental Safety, 79(1): 62-68.
VELIKOVA V, TSONEV T, YORDANOV I. 1999. Light and CO2responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain[J]. Physiologia Plantarum, 107(1): 77-83.
WOOD T, BORMANN F. 1974. The effects of an artificial acid mist upon the growth of Betula alleghaniensis Britt.[J]. Environmental Pollution, 7(4): 259-268.
WYRWICKA A, SKLODOWSKA M. 2006. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves[J]. Environmental and Experimental Botany, 56(2): 198-204.
YANG Y, ZHONG J, OUYANG Y D, et al. 2013. The integrative expression and co-expression analysis of the AGO gene family in rice[J]. Gene, 528(2): 221-235.
YOSIHDA S, FORNO D A, COCK J, et al. 1976. Laboratory manual for physiological studies of rice[M]. Third Edition. The International Rice Research Institute: 61-65.
YU J, YE S, HUANG L. 2002. Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L.[J]. Photosynthetica, 40(3): 331-335.
ZHU Y, DI T, XU G, et al. 2009. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition[J]. Plant, Cell and Environment, 32(10): 1428-1440.
郭春芳, 孫云. 2006. 葉綠素?zé)晒鈩恿W(xué)在植物抗性生理研究中的應(yīng)用[J]. 福建教育學(xué)院學(xué)報, 7(7): 119-123.
洪濤, 劉世琦, 精高斌. 2005. 光質(zhì)對彩色甜椒幼苗生長及葉綠索熒光特性的影響[J]. 西北農(nóng)業(yè)學(xué)報, 14(1): 41-45.
中華人民共和國環(huán)境保護(hù)部. 2010. 2010年中國環(huán)境狀況公報[R]. 北京:中華人民共和國環(huán)境保護(hù)部: 27-33.
解淑艷, 王瑞斌, 鄭皓皓. 2012. 2005—2011年全國酸雨狀況分析[J]. 環(huán)境監(jiān)控與預(yù)警, 4(5): 33-37.
孔然, 鄭祥民, 黃文丹, 等. 2012. 上海市區(qū)與郊區(qū)降水的離子組成特征及來源[J]. 城市環(huán)境與城市生態(tài), 25(5): 22-27.
李霞, 焦德茂, 劉友良, 等. 2002. 自然條件下不同高產(chǎn)稻生育后期劍葉葉綠素?zé)晒夂湍ぶ^氧化的表現(xiàn)[J]. 植物學(xué)報, 44(4): 413-421.
李曉, 馮偉, 曾曉春. 2006. 葉綠素?zé)晒夥治黾夹g(shù)及應(yīng)用進(jìn)展[J]. 西北植物學(xué)報, 26(10): 2186-2196.
蘇行, 胡迪琴, 林植芳, 等. 2002. 廣州市大氣污染對兩種綠化植物葉綠素?zé)晒馓匦缘挠绊慬J]. 植物生態(tài)學(xué)報, 26(5): 599-604.
童貫和. 2005. 模擬酸雨致酸土壤對小麥幼苗生長發(fā)育的影響[J]. 農(nóng)村生態(tài)環(huán)境, 21(1):47-50.
王潤年, 姚桃峰, 王鶴齡, 等. 2011. 孕穗期模擬酸雨對春小麥葉片光合氣體交換特性及產(chǎn)量的影響[J]. 草業(yè)學(xué)報, 20(1): 237-241.
姚桃峰, 王潤年, 王鶴齡, 等. 2010. 拔節(jié)期模擬酸雨對春小麥葉片光合特性的影響[J]. 安徽農(nóng)業(yè)科學(xué), 38(15): 8069-8073.
姚桃峰, 王潤元, 王鶴齡, 等. 2010. 半干旱雨養(yǎng)農(nóng)業(yè)區(qū)灌漿期模擬酸雨對春小麥葉片光合特性及產(chǎn)量的影響[J]. 地球科學(xué)進(jìn)展, 25(6): 638-646.
Effects of acid rain on the chlorophyll fluorescence reaction in rice at the whole growth stages
Acid rain is one of the global environmental issues. China has become the third largest acid rain region behind Western Europe and North America. Photosynthesis is the physiological basis of biomass and yield formation of plants, and chlorophyll fluorescence is commonly used for evaluating the damage of stress to photosynthesis of plants. Previous studies showed that acid rain influences the chlorophyll fluorescence of plants. However, the stress resistance of plants varies with the growth stage of plants. In the present work, the effects of acid rain on chlorophyll fluorescence of rice (Oryza sativa) at the whole growth stages (from seedling stage, tillering stage, booting stage and filling stage) were investigated, and none relevant reports have been published so far. Rice (from seedling stage to filling stage) were continuously treated with simulated acid rain (pH value of acid rain were 4.5, 3.5, 2.5) or control rain (sprayed every three days). The control leaves and acid rain-treated leaves of rice were sampled at seedling stage, tillering stage, booting stage and filling stage, respectively, to measure the chlorophyll fluorescence parameters with an in situ nondestructive testing technology (pulse modulation Chlorophyll Fluorometer PAM-210, Heinz Walz GmbH, Germany). The results showed that when rice was treated with acid rain at pH 4.5, initial fluorescence (Fo) at seedling stage and booting stage were significantly increased 7.69% and 8.84%, non-photochemical quenching coefficient (qN) at seedling stage, tillering stage and booting stage were significantly increased 8.64%, 4.86% and 6.09%, maximal chlorophyll fluorescence (Fv/Fm), electron transport rate of PSII (ETR), effective quantum yield of photochemical energy conversion of PSII (ΦPSII), photochemical quenching coefficient (qP) at seedling stage and booting stage were significantly decreased, the decreased degrees were 3.01% and 6.88% (Fv/Fm), 8.40% and 10.24% (ETR), 8.39% and 12.23% (ΦPSII), 3.79% and 12.55% (qP), respectively. Acid rain at pH 3.5 and pH 2.5 significantly decreased the Fv/Fm, ETR, ΦPSII, qP and qN in rice at whole stages except increases in the qN at booting stage/filling stage and Fo at all stages of rice, moreover, the change degrees were increased as the pH value of acid rain was decreased. In addition, when rice was continuously treated with acid rain at pH 4.5 or pH 3.5, the extents of damage to rice at different growth stages showed the following order: filling stage <seedling stage <tillering stage <booting stage, however, when rice was continuously treated with acid rain at pH 2.5, the extents of damage to rice at different growth stages showed the following order: tillering stage <seedling stage<filling stage <booting stage. In conclusion, acid rain performed a dose-effect relationship on chlorophyll fluorescence parameters in rice. The continued stress of acid rain had obvious effects on photosynthesis in rice at whole stages, but the sensitivity of photosynthesis in rice to the stress of acid rain varied with the growth stage of rice. These differences should be considered in evaluating the effects of acid rain on plants.
acid rain; rice; whole growth stages; sustained; chlorophyll fluorescence
WANG Wen, LI Man, WANG Lihong, ZHOU Qing*
School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
X503.231
A
1674-5906(2014)01-0080-06
王雯,李曼,王麗紅,周青. 酸雨對全生育時期水稻葉綠素?zé)晒獾挠绊慬J]. 生態(tài)環(huán)境學(xué)報, 2014, 23(1): 80-85.
WANG Wen, LI Man, WANG Lihong, ZHOU Qing. Effects of acid rain on the chlorophyll fluorescence reaction in rice at the whole growth stages [J]. Ecology and Environmental Sciences, 2014, 23(1): 80-85.
國家自然科學(xué)基金項目(31170477);江蘇省教育廳研究生創(chuàng)新基金(CXLX12_0735)
王雯(1989年生),女,碩士研究生,研究方向為環(huán)境生態(tài)學(xué)。E-mail:wangwensmil@163.com
*通信作者:周青(1957年生)。E-mail:zhouqeco@126.com
2013-11-25