• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Curvature Theory for Point-Path and Plane-Envelope in Spherical Kinematics by New Adjoint Approach

    2014-02-07 12:44:56WANGWeiandWANGDelun

    WANG Wei and WANG Delun*

    Department of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China

    1 Introduction1

    HUNT[1]indicated that the fixed and moving centrodes together form a logical starting-point,on which a theory of instantaneous planar kinematics of a lamina is built.But apart from limited success,nobody had yet succeeded in fully developing a unified axode-based theory of spatial kinematics.Although several papers[2–4]related to the spherical and spatial kinematics have been published and the axodes are referred to by some research work[5–11],the axodes did not play a due role.For a rigid body in spatial motion,the moving and fixed axodes are both ruled surfaces and contact tangentially along the instantaneous screw axis(ISA).A point,a straight line or a plane of the moving body is viewed as adjoint to the moving and fixed axodes,respectively,in the moving and fixed Cartesian frames.The planar Cesaro’s adjoint approach[12]is naturally extended to a spatial problem to reveal the kinematic invariants of the axodes and build the relationship of the axodes and the trajectory traced by the point,line or plane.Spherical motion cannot only be taken as the extension of plane motion but also be viewed as the special form of spatial motion.With regard to the spherical motion,the axodes are conical surfaces with their vertexes coincident at the rotation center.The geometrical properties of the axodes are totally reflected by spherical image curves of the straight generatrices.The spherical image curves of the axodes are spherical centrodes for spherical motion of the rigid body.Thus research on spherical kinematics can set up a bridge from the centrode-based planar kinematics to the axode-based spatial kinematics.

    The spherical kinematics was previously studied by DOBROVOLSKII[13],CAPELLEN,et al[14],MULLER[15].VELDKAMP[16]extended the right-angle theorem from plane kinematics to spherical kinematics,and obtained the spherical Euler-Savary equation and Bobillier theorem.The instantaneous angular velocity vector and its derivative were applied to the spherical slider-crank mechanism by KAMPHUIS[17].YANG,et al[18],defined the characteristic numbers to describe the spherical curve to a given order.Then the points of the rigid body in spherical motion,whose loci have the same characteristic number,can be located.SODHI,et al[19],derived the algebraic equations of the axodes for the spherical 4R mechanism and determined the order is 16.DOWLER,et al[20–21],extended the multiply separated position concept to spherical kinematics and designed the four-bar spherical mechanism through Burmester theory.MCCARTHY[22]used the Euler parameters to define a kinematic mapping of the spherical displacement to a point on a hypersphere of unit radius.The instantaneous properties of spherical motion were reflected by the differential geometry of curves on a hypersphere.TING,et al[23–24],pioneered the study of the instantaneous kinematics of a plane in spherical motion through the canonical systems.CHIANG,et al[25–27],systematically studied the kinematics of spherical mechanism.Although the complicated and lengthy algebraic equations of the axodes for the spherical motion were derived[19],the kinematic invariants and the geometric significance haven’t been thoroughly demonstrated.Actually,the axodes can occupy an important fundamental place not only in the kinematics but also in the mesh principle of the gear transmission.For instance,the mesh principle of the parallel cylindrical gears was established on the centrode-based Euler-Savary equation.WANG,et al[28],extended the planar adjoint approach to spatial problems.On this basis,a new spherical adjoint approach is introduced to set up the systematical groundwork for the axode-based curvature theories of spherical motion.

    This paper is structured as follows.Section 2 shows how to describe the spherical motion by the adjoint approach.The vector equations of the instant center are derived in a concise form.The kinematic meanings of the invariant-induced geodesic curvature are presented to reveal the intrinsic properties of the spherical centrodes in section 3.In section 4,the spherical centrodes are taken as original curves to study the point-path based on the Darboux frame and fixed point conditions.For the plane-envelope,the Frenet frame and the construction parameters can be utilized to locate the planes whose envelope surfaces have the higher order osculating properties with specific surfaces.The spherical four-bar linkage is taken as an example in section 6 to demonstrate the effectiveness of the spherical adjoint approach.

    2 Spherical Adjoint Approach

    The spherical relative motion of a rigid body to a fixed body can be described by the moving Cartesian coordinates{RO;im,jm,km}attached to the moving body to the fixed coordinates{RO;if,jf,kf}.If a reference line of the moving body through the sphere center O is chosen,the spherical motion of the rigid body can be viewed as the motion along with the line and the rotation about the line.In particular,the reference line is collinear with the coordinate vector kmof{RO;im,jm,km}.As shown in Fig.1,the direction angles of kmin{RO;if,jf,kf}are(θ1,θ2).The angular displacement θ3of the moving body relative to the fixed body about kmcan be defined by the inclined angle of coordinate vectors imand iton the coordinate plane RO-itjtof the Cartesian coordinate system{RO;it,jt,km},of which the coordinate vector itis determined by it=km×kf.The relative position relation of the moving and fixed coordinate systems is

    where s and c are the abbreviations of sine and cosine.

    With the spherical motion of the rigid body,the reference line traces a conical surface Skin{RO;if,jf,kf},which intersects with the spherical surface with radius R at spherical curve Γk.The vector equation of Γkin{RO;if,jf,kf}is

    where s is the arc length of Γkand n(s)is the unit normal vector of the spherical surface at point Ok.

    For a point P on the spherical surface of the moving body,it can be viewed as adjoint to the reference line.In the spherical adjoint approach,the conical surface Skis taken as original ruled surface and spherical curve ΓPtraced by P is spherical adjoint curve to Sk.Since Skis a conical surface,its geometrical characteristics can be totally reflected by Γk.As shown in Fig.2,we can set up the Darboux frame{Rk;α,n,v}on Γk,whose three coordinate vectors are

    The differential formulas of{Rk;α,n,v}are

    where invariant kgkis the geodesic curvature of Γk.

    Fig.2.Spherical point-path adjoint to the original ruled surface

    Based on the spherical adjoint approach,the vector equation of ΓPcan be described by{Rk;α,n,v}as

    where(x1,x2,x3)are the relative coordinates of P in{Rk;α,n,v}.The position relation of{Rk;α,n,v}and{RO;im,jm,km}is

    where θ is the angle between vectors α and im,and is function of the arc length s.The position vector of P in{RO;im,jm,km}is written in terms of the Cartesian coordinates(xPm,yPm,zPm)or the spherical coordinates(R,ξPm,ηPm)as

    Taking the derivative of Eq.(5)with respect to the arc length s and substituting the so-obtained equation into Eq.(6),we have

    where the variable with an overdot represents the derivative with respect to s,and similarly hereinafter.In particular,if P is a fixed point on the spherical surface in{RO;if,jf,kf},the relative coordinates(x1,x2,x3)must satisfy the spherical fixed point conditions A1=A2=A3=0.Using the chain rule of differentiation,we have dRP/ds=VP·dt/ds=0.It means P is a spherical instant center of the moving body and is defined as P0.Through Eqs.(8)and(9),the relative coordinates(x1,x2,x3)of P0in{Rk;α,n,v}at any instant can be determined by

    Then the condition equations of the spherical coordinates(ξP0,ηP0)of P0in{RO;im,jm,km}are

    Through the above equation and the Darboux frame{Rk;α,n,v},we can see the instant center P0locates on the great circle on the normal plane of Γkat the point Ok.

    3 Moving and Fixed Spherical Centrodes

    MOZZI[30]firstly introduced the concept of ISA,and CHASLES[31]definitely pointed out the spatial motion of a rigid body is the composite of the rotation about the ISA and the translation along the ISA,or the screw motion.For spherical motion,the ISA is determined by the vector RP0and passes through the rotation center.As the motion of the rigid body,the ISA generates ruled surfaces Sfin{RO;if,jf,kf}and Smin{RO;im,jm,km},which are called the fixed axode and the moving axode respectively.The geometrical features of the two axodes can reflect motion features of the rigid body,or the axodes are geometric representation of the motion.

    In the spherical adjoint approach,the axodes can be taken as original ruled surfaces to describe the kinematic properties of the rigid body.For spherical motion,both the axodes are conical surfaces with their vertexes at the rotation center and the geometrical properties of the axodes are totally reflected by the geodesic curvature of the spherical image curves of the straight generatrices.The fixed and moving axodes can be mapped onto unit sphere to obtain two spherical curves,which correspond to the fixed and moving centrode traced by the spherical velocity center respectively in the fixed and moving system,as shown in Fig.3.

    Fig.3 Spherical centrodes mapped by the two axodes

    3.1 Spherical moving centrode and

    its geodesic curvature

    The relative coordinates(x1,x2,x3)of P0in{Rk;α,n,v}can be transformed into{RO;im,jm,km}and equation of the spherical moving centrode Cmcan be obtained.Through Eqs.(5),(8)and(11),the vector equation of Cmis

    In{RO;im,jm,km},vector n is a fixed vector and vectors α=eI(θ),v=eII(θ)are vector functions of a unit circle on coordinate plane RO-imjm.Based on the properties of vector function of a unit circle,the derivatives of α and v with respect to θ are dα/dθ=v and dv/dθ=-α.Then the differential relationship between s and arc length σmof Cmis

    Darboux frame{Rm;αm,nm,vm}of Cmis established as

    The geodesic curvature kgmof Cmcan be calculated as

    3.2 Spherical fixed centrode and its geodesic curvature

    The instant velocity center of the rigid body in spherical motion forms spherical fixed centrode Cfin{RO;if,jf,kf}for all instants.According to Eq.(12),the vector equation of Cfis

    Through Eq.(4),the differential relationship between s and arc length σfof Cfis

    Comparing Eqs.(13)and(17),we find that the differential arc length of Cfis equal to that of Cm,or dσf=dσm=dσ.Thus Cmrolls on Cfon the unit sphere without sliding.Darboux frame{Rf;αf,nf,vf}of Cfis set up as

    Comparing above equation with Eq.(14),we can see that{Rf;αf,nf,vf}of Cfcoincides with{Rm;αm,nm,vm}of Cmat the instant center.By taking derivative of the first expression of above equation with respect to σf,we have geodesic curvature of Cf,which is

    The induced geodesic curvature kg*of the spherical fixed and moving centrodes can be deduced by subtracting Eq.(15)from Eq.(19),that is

    The relative coordinates of point Okin{Rk;α,n,v}are all zero,so the velocity vector of Okis obtained as

    Since the spherical motion of rigid body can be viewed as the rotation around the ISA instantaneously,the velocity vector of Okcan be deduced in another way,that is

    where ω is the angular velocity vector of the moving body around the ISA.Through Eqs.(21)and(22),the angular velocity ω is

    The above equation demonstrates the kinematic meanings of the kinematic invariant-induced geodesic curvature kg*of the axodes(spherical centrodes).From Eqs.(13)and(17),Eqs.(14)and(18),we obtain the following conclusions:

    For the relative spherical motion of the moving body to the fixed body,there exist a spherical moving centrode in the moving body and a spherical fixed centrode in the fixed body respectively.The two centrodes’Darboux frames are coincident with each other and the differential arc lengths of the two centrodes are equal.The spherical moving centrode rolls on the fixed centrode without sliding.

    The above conclusions can be expressed as

    4 Curvature Theory for a Point in Spherical Motion

    4.1 Geodesic curvature of a spherical point-path

    The moving and fixed axodes(spherical centrodes)together imply intrinsic properties of the spherical motion of a rigid body.Based on the axodes,the curvature theories for spherical motion can be established in an intuitive and concise way.Without loss of generality,we focus on point-path on the unit sphere.

    For a point P of rigid body in spherical motion,it traces a spherical curve ΓPin{RO;if,jf,kf},which can be designated as an spherical adjoint curve to the fixed axode Sfor the spherical fixed centrode Cf,as shown in Fig.4.

    Fig.4 Spherical point-path adjoint to the spherical centrodes

    Through the spherical adjoint approach,the vector equation of ΓPis

    where(v1,v2,v3)are relative coordinates of P in{Rf;αf,nf,vf}of Cf.The first derivative of the vector equation of ΓPwith respect to σ is

    In{RO;im,jm,km},point P can be regarded as adjoint to P0on Cm.The position vector of P is

    where(u1,u2,u3)are relative coordinates of P in{Rm;αm,nm,vm}of Cm.Because point P is fixed on the moving body,its position in{RO;im,jm,km}does not change at all,or dRPm/dσ=0.Based on Eq.(9),coordinates(u1,u2,u3)meet the following spherical fixed point conditions:

    Because Eq.(24)holds true for the spherical moving and fixed centrodes at any instant,point P has the same relative coordinates and their change rates in the two Darboux frames of the centrodes.The condition equations are

    Substituting Eqs.(28)and(29)into Eq.(26),we can simplify the first derivative of the vector equation of ΓP,that is

    Point P can also be described by coordinate parameters(δP,θP)in the Darboux frame,of which δPis angle between vectors RPand RP0,and θPis inclined angle of αfand projection vector of RPon coordinate plane Rf-αfnf.The relative coordinates of P in{Rf;αf,nf,vf}are

    Substituting above equation into Eq.(28),we obtain

    The Darboux frame{RP;αP,nP,vP}of ΓPis set up as

    The relationship between arc length σPof ΓPand σ of the centrodes can be deduced from first expression of above equation,that is dσP=kg*sinδPdσ.

    The geodesic curvature of ΓPis

    If kgPis replaced by reciprocal of geodesic curvature radius ρg,the above equation can be rewritten as

    4.2 Curvature theories for spherical point-path

    As shown in Fig.5,the geodesic curvature center OPof ΓPis located on the binormal vector vPwith a distance ρgto point P.The inclined angle δ of vectors RPand ROPmeets equation tanδ=ρg.Then Eq.(35)can be rewritten as

    The above equation is the Euler-Savary analogue for spherical motion.

    If kgPof ΓPis equal to zero at an instant,we have

    A spherical curve of the moving body can be determined by the above equation at any instant,which is called spherical geodesic inflection curve.Any point on the curve will trace a spherical trajectory curve in{RO;if,jf,kf},which contacts a great circle on the unit sphere to the second order.

    The first derivative of kgPwith respect to σ can be derived through Eq.(34).By letting dkgP/dσ=0,we can obtain the condition equation as

    where

    The above equation corresponds to a spherical curve at an instant,which is called spherical cubic of stationary curvature.The spherical path traced by any point on the curve contacts a spherical circle to the third order.

    Letting kgP=0 and dkgP/dσ=0 hold true simultaneously,we obtain the intersection points of the spherical geodesic inflection curve and the spherical cubic of stationary curvature,which are called spherical Ball points.The spherical Ball points can be located through Eqs.(37)and(38).Combining the two equations,we have

    where

    Eq.(39)has eight solutions for the parameter δPand then eight spherical Ball points can be determined.But due to the symmetry of spherical motion,each spherical Ball point has the corresponding symmetrical one among the eight points about the sphere center.It means at most four spherical Ball points can be found at any instant.

    By taking the second derivative of kgPwith respect to σ and letting it be zero,we have

    At any instant,the parameters M,N and their derivatives have definite values,and not more than six values of θPcan be solved through the above equation.The points,whose parameters δP,θPmeet Eqs.(38)and(40)simultaneously,are called spherical Burmester points.The spherical path traced by any spherical Burmester point contacts a spherical circle to the fourth order.

    If the parameter θPof point P is zero at an instant,P locates on the coordinate plane Rf-αfnf.Through Eq.(33),the Darboux frame{RP;αP,nP,vP}of ΓPis

    The above equation indicates that vectors nP,vPboth lie on the common tangent plane Rf-αfnfof the moving and fixed axodes.The normal of the point-path ΓPis also located on the plane and tangent to the axodes.Based on the relational expression kP2=knP2+kgP2,the normal of ΓPperpendicular intersects with the ISA at point OP,which is just the curvature center of ΓP,as shown in Fig.6.

    In particular,the base cone of an involute bevel gear is regarded as the fixed axode and the generating plane is taken as the moving axode.With the rolling of the generating plane on the base cone without sliding,a point P on the generating plane traces a spherical curve ΓP,which is just the spherical involute and has the analogue properties to the plane involute.Based on the spherical adjoint approach,the geometric properties of the spherical involute can be studied.For the meshing of two spherical involute bevel gears with spherical involute as the tooth curve,the transmission characteristics can be reflected by the two axodes-pitch cones,as shown in Fig.7.Thereby,based on the axodes,the meshing principle of the spherical involute bevel gear,similar to that of involute cylindrical gear can be developed.The general conjugation model for planar gearing transmission[32]can also be extended to spherical gearing transmission by the axode-based adjoint approach.

    Fig.7 Meshing of two spherical involute bevel gear

    5 Curvature Theory for a Plane in Spherical Motion

    5.1 Vector equation and construction parameters of the plane-envelope

    In this section,the spherical centrodes are still adopted to study the geometrical properties of the plane-envelope.

    As shown in Fig.8,a plane T of the rigid body in spherical motion can be described by the unit normal vector n and the distance e from the sphere center O to the plane.The perpendicular from O to the plane intersects it at point P,whose position vector is

    where(n1,n2,n3)are relative components of n in{Rf;αf,nf,vf}and there exists a relational expression n12+n22+n32=1.

    With the spherical motion of the rigid body,T traces a family of planes in{RO;if,jf,kf}.By taking Cfas original curve and T as adjoint plane,we can write the vector equation of the family of planes as

    where(a1,a2,a3)are the relative coordinates of any point on T in{Rf;αf,nf,vf}.The first derivative of n with respect to σ is

    On the other hand,Cmcan be visualized as the original curve to describe the adjoint motion of T in{RO;im,jm,km}.Since T is inscribed in the moving body,the fixed plane condition dnm/dσ=0 should be satisfied.Based on Eq.(44),we have

    Combining Eqs.(44)and(45),we have

    For the family of planes,the envelope surface Slshould meet the following equations:

    At any instant,a straight line L is determined by Eq.(47).It is the intersection line of two consecutive trajectory planes.Slis naturally a ruled surface with L as the generatrix.Through Eq.(47),the unit vector l of L is

    The position vector RPof point P meets Eq.(47),so P lies on the generatrix L.The trajectory ΓPof P can be viewed as directrix of Sland the vector equation of Slis

    The distance between the striction curve and the directrix of Slalong L,or striction directrix distance for short,is

    The vector equation of the striction curve of Slis

    The Frenet frame{ρl;E1,E2,E3}of Slis set up as

    Based on the differential formulas of the Frenet frame,the construction parameters of Slare

    The construction parameters αl,βland γlare the kinematic invariants of Sland totally determine its geometrical properties[12].The distribution parameter γlof Slis zero confirms that Slis developable.Then Slcan only be a cylindrical surface,a cone,or a tangent surface.The characteristics of Sl,such as the contact or approximating conditions of Sland some specific developable ruled surfaces,can be revealed by αl,βland their derivatives.

    5.2 Geometrical characteristic of the plane-envelope

    5.2.1 Circular cylindrical surface

    βlis the geodesic curvature of the spherical image curve of the generatrices of Sl.If βltends to infinity,a cusp exists on the spherical image curve.The three consecutive generatrices of Slare parallel.Through Eq.(53),the condition equation is

    The unit normal vector n can also be described in{Rf;αf,nf,vf}by the parameters(δn,θn),of which δnis the angle between n and RP0,and θnis the inclined angle of αfand the projection vector of n on plane Rf-αfvf.A group of parallel planes are obtained through Eq.(54)at any instant.With the spherical motion of the rigid body,the three consecutive trajectory planes traced by any of the parallel planes are all tangent with a circular cylindrical surface.In particular,if the radius of the circular cylindrical surface is zero,the three consecutive trajectory planes intersect at a common straight line,which becomes a stationary generatrix of the plane-envelope.

    For the osculating circular cylindrical surface of the plane-envelope,the direction vector of the axis is of course l and the position of the axis can be determined by a point A on it,whose position vector is RAin{RO;if,jf,kf}.A function f(σ)={RP-RA-[(RP-RA)·l]l}2-r2is defined to describe the deviations of the radius r of the circular cylindrical surface and the distances from the tracing plane to the axis.The condition equations f(σ)=df(σ)/dσ=d2f(σ)/dσ2=0 must be satisfied by the osculating circular cylindrical surface.Based on Eqs.(42)and(46),the radius r can be derived as e.It means the point A is coincident with the sphere center O.If a plane in spherical motion passes through the rotation center and the normal vector satisfies Eq.(54),the three consecutive trajectory planes intersect at a common line.

    If the parameters δPand θPin Eqs.(37)and(38)are replaced by δn,θn,and the two equations are concurrently satisfied by the normal vector n of a plane in spherical motion,the four consecutive trajectory planes will be tangent with a circular cylindrical surface.At most four sets of such parallel planes can be located in the moving body.

    5.2.2 Circular conical surface

    When the three consecutive trajectory planes of the tracing plane in spherical motion tangentially contact with a circular conical surface along a generatrix,αlof the envelope ruled surface should be equal to zero[29].Through Eq.(53),we have

    The condition e=0 indicates that the tracing plane passes through the rotation center.If this condition is not satisfied,the normal vector of the plane should meet Eq.(38)only with the parameters δP,θPreplaced by δn,θn.The vertex of the circular conical cone is just the striction point of the envelope surface at the instant.The direction vector of the axis is

    When the four consecutive trajectory planes of the tracing plane tangentially contact with a conical surface,the construction parameters of the plane-envelope need to meet condition equations αl=dαl/dσ=0,which are

    More strictly,if the conical surface is requested to be circular conical surface,the condition equations are αl=dαl/dσ=0,dβl/dσ=0.Through Eq.(53),we have

    6 Kinematic Property of Spherical Four-Bar Linkage

    6.1 Spherical adjoint motion of coupler link

    A spherical four-bar linkage consists of four connecting rods,which can be viewed as segments of great circle on a spherical surface with radius R.The length of the connecting rod is defined by the central angle of the corresponding great circular arc.A spherical four-bar linkage ABCD is given in Fig.9 and the dimensions of the driving link AB,coupler link BC,driven link CD and the frame link AD are respectively l1,l2,l3and l4.The fixed Cartesian coordinate system{RO;if,jf,kf}is established on AD with the coordinate plane RO-ifkfcoplanar with plane OAD.The moving Cartesian coordinate system{RO;im,jm,km}is set up on BC with the coordinate vector kmcoaxial with the axis OB of the revolute pair and coordinate plane RO-jmkmcoplanar with plane OBC.The input rotation angle φ of link AB around axis OA is defined by the dihedral angle of plane OAB and plane OAD,while the rotation angle ψ of link BC around axis OB is defined by the dihedral angle of plane OBC and plane OAB.

    For the spherical linkage,the axis OB of the revolute pair traces a cone,which intersects the spherical surface at a spherical curve ΓBin{RO;if,jf,kf}.The vector equation of ΓBis

    The coupler point is always adjoint to the axis OB with the motion of the coupler link.The cone traced by OB is logically taken as original ruled surface to study the geometrical properties of coupler curve.The Darboux frame{RB;αB,nB,vB}of ΓBis set up as

    A coupler point P with spherical coordinates(R,ξP,ηP)in{RO;im,jm,km}traces a spherical coupler curve ΓPin{RO;if,jf,kf}.The vector equation of ΓPcan be written as

    where(uP1,uP2,uP3)are the relative coordinates of P in{RB;αB,nB,vB}.They are

    6.2 Moving and fixed spherical centrodes

    For the spherical four-bar linkage,the angle θ in Eq.(6)is 2π-ψ.Based on Eq.(11),the position parameters of the velocity center P0of the coupler link meet

    where the variable with a prime represents the derivative with respect to the arc length σBof ΓB,and similarly hereinafter.

    During the motion period of the linkage,P0traces the spherical fixed centrode Cfin the frame link and the spherical moving centrode Cmin the coupler link.The vector equation of Cfis

    The geodesic curvature kgfof Cfis

    The vector equation of Cmis

    The geodesic curvature kgmof Cmis

    The induced geodesic curvature kg*can be deduced by subtracting Eq.(67)from Eq.(65),that is

    The link lengths of the spherical four-bar linkage on the unit sphere are designated as l1=π/6,l2=π/4,l1=π/3,l4=π/12.We can calculate the coordinates of the velocity center in{RO;if,jf,kf}and{RO;im,jm,km}by Eqs.(64)and(66)at any instant.The spherical centrodes Cmand Cfcan be drawn in Fig.10.At the instant φ=π/2,Cmand Cftangentially contact at the spherical instant center P0,which has the spherical coordinates(ξP0=0.970 7,ηP0=5.552 8)in{RO;im,jm,km}and Cartesian coordinates(0,-0.432 4,0.901 7)in{RO;if,jf,kf}.Through Eqs.(65)and(67),the geodesic curvatures kgfof Cfand kgmof Cmare respectively 2.495 9 and 1.102 3.Then the induced geodesic curvature kg*is 1.393 6.

    Fig.10 Spherical centrodes and coupler curve

    6.3 Spherical geodesic inflection curve and ball curve

    For the coupler point P with Cartesian coordinates(0.353 6,0.353 6,0.866 0)in{RO;im,jm,km},the spherical trajectory curve ΓPis depicted in Fig.10.The parameters(δP,θP)of point P in{Rm;αm,nm,vm}of the moving centrode are(1.033 6,0.846 6).Through Eq.(34),the geodesic curvature kgPof ΓPat φ=π/2 is 1.323 8.We have the following Euler-Savary equation:

    When the rotation angle of the driving link AB is 2.5,the induced geodesic curvature kg*of the centrodes is 1.686 9.Based on Eq.(37),the equation of the geodesic inflection curve Γ1in the coupler link is

    The geodesic inflection curve Γ1is drawn in Fig.11.

    Similarly,when the rotation angle of the driving link is 3.1,the induced geodesic curvature is 2.181 0.The spherical geodesic inflection curve Γ2in Fig.11 has two branches.One branch is a closed curve,which starts from point P0and closes at point P1(δP1=0.580 3,θP1=-π/2).Another branch is an open curve,which starts from point P2(δP2=0.990 5,θP2=-π/2).The Cartesian coordinates of points P1and P2in{RO;im,jm,km}are respectively(0.918 6,0.294 1,0.263 8)and(0.883 1,0.456 6,-0.108 0).

    Fig.11 Geodesic inflection curves

    At the instant φ=2.928 0,the induced geodesic curvature is 2.As shown in Fig.11,the spherical geodesic inflection curve Γ3crosses itself at point P3(δP3=π/4,θP3=-π/2).The Cartesian coordinates of P3in{RO;im,jm,km}are(0.960 7,0.275 8,0.031 7).

    At any instant,at most four spherical Ball point can be located in the coupler link.When the rotation angle φ is π/2,kg*is 1.393 6.Based on Eqs.(37)and(38),the equations of the spherical Ball points in the coupler link are

    Through the above equation,we obtain two spherical Ball points PB1and PB2,whose coordinates parameters in{Rm;αm,nm,vm}are(δPB1=1.798 4,θPB1=0.311 3)and(δPB2=1.885 7,θPB2=2.718 7)respectively.The Cartesian coordinates of PB1and PB2in{RO;im,jm,km}are(0.290 5,0.936 3,0.197 1)and(-0.918 2,-0.389 8,0.071 0).

    7 Conclusions

    (1)The spherical adjoint approach provides a reliable instrument to study the axodes-based curvature theories of a point and a plane in spherical motion.The intrinsic connections among the point-path or the plane-envelope and the axodes(spherical centrodes)are revealed based on the spherical fixed point and plane conditions.

    (2)Based on the adjoint approach,the kinematic meaning of the induced geodesic curvature of spherical centrodes for spherical motion is present.The geometrical properties of the point-path and plane-envelope are examined,which include the Euler-Savary analogue for the point-path and the osculating conditions of the plane-envelope and the cylindrical surface or the circular conical surface.

    (3)The curvature theories of general spherical motion are directly applied to the spherical four-bar linkage to locate the specific characteristic points of the coupler link.The approach introduced in this paper can also be adopted to study the mesh principle of spherical bevel gears.

    [1]HUNT K H.Kinematic geometry of mechanisms[M].Oxford:Clarendon Press,1978.

    [2]BOTTEMA O,ROTH,B.Theoretical kinematics[M].New York:North-Holland Press,1979.

    [3]MCCARTHY J M.An introduction to theoretical kinematics[M].London:The MIT Press,1990.

    [4]CHIANG C H.Kinematics of spherical mechanisms[M].Cambridge:Cambridge University Presss,1988.

    [5]SKREINER M.A study of the geometry and the kinematics of instantaneous spatial motion[J].Journal of Mechanisms,1966,1(2):115–143.

    [6]BOKELBERG E H,HUNT K H,RIDLEY P R.Spatial motion—I:points of inflection and the differential geometry of screws[J].Mechanism and Machine Theory,1992,27(1):1–15.

    [7]RIDLEY P R,BOKELBERG E H,HUNT K H.Spatial motion—II:acceleration and the differential geometry of screws[J].Mechanism and Machine Theory,1992,27(1):17–35.

    [8]STACHEL H.Instantaneous spatial kinematics and the invariants of the axodes[C]//Proceedings of A Symposium Commemorating the Legacy,Works,and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws,2000,July 9–11:1–14.

    [9]DISTELI M.über das analogon der savaryschen formel und konstruktion in der kinematischen geometrie des raumes[J].Zeitschrift für Mathematic und Physik,1914,62:261–309.

    [10]DOONER D B,GRIFFIS M W.On spatial euler-savary equations for envelopes[J].ASME Journal of Mechanical Design,2006,129(8):865–875.

    [11]SCHUTTER J D.Invariant description of rigid body motion trajectories[J].ASME Journal of Mechanisms and Robotics,2009,2(1):011004.1–011004.9.

    [12]SASAKI S.Differential geometry[M].Tokyo:Kyolitsu Press,1956.(in Japanese)

    [13]DOBROVOLSKII V V.On spherical coupler curves[J].Prikl.Mat.Mekh.,1947,8(6):475–477.(in Russian)

    [14]CAPELLEN M W,DITTRICH G,JANSSEN B.Systematik und kinematik ebener und sph?rischer viergelenkgetriebe[M].K?ln und Opladen:Westdeutscher Verlag,1966.

    [15]MULLER H R.Sph?rische kinematik[M].Berlin:VEB-Verlag der Wissenschaften,1962.

    [16]VELDKAMP G R.An approach to spherical kinematics using tools suggested by plane kinematics[J].Mechanism and Machine Theory,1967,2(4):437–450.

    [17]KAMPHUIS H J.Application of spherical instantaneous kinematics to the spherical slide-crank mechanism[J].Journal of Mechanism,1969,4(1):43–56.

    [18]YANG A T,ROTH B.Higher order path curvature in spherical kinematics[J].ASME Journal of Engineering for Industry,1973,95(2):612–616.

    [19]SODHI R,SHOUP T E.Axodes for the four-revolute spherical mechanism[J].Mechanism and Machine Theory,1982,17(3):173–178.

    [20]DOWLER H J,DUFFY J,TESAR D.A generalized study of three multiply separated positions in spherical kinematic[J].Mechanism and Machine Theory,1976,11(6):395–410.

    [21]DOWLER H J,DUFFY J,TESAR D.A generalized study of four and five multiply separated positions in spherical kinematic—II[J].Mechanism and Machine Theory,1978,13(4):409–435.

    [22]MCCARTHY J M.The differential geometry of curves in an image space of spherical kinematics[J].Mechanism and Machine Theory,1987,22(3):205–211.

    [23]TING K L,BUNDUWONGSE R.Unified spherical curvature theory of point-,plane-,and circle-paths[J].ASME Journal of Mechanical Design,1991,113(2):142–149.

    [24]TING K L,SONI A H.Instantaneous kinematics of a plane in spherical motion[J].ASME Journal of Mechanisms,Transmissions,and Automation in Design,1983,105(3):560–567.

    [25]CHEN J S,CHIANG C H.On the coupler-great-circle envelopes of spherical four-bar linkages[J].Mechanism and Machine Theory,1988,23(5):393–399.

    [26]CHIANG C H.Spherical kinematics in contrast to planar kinematics[J].Mechanism and Machine Theory,1992,27(3):243–250.

    [27]FU T T,CHIANG C H.Simulating a given spherical motion by the polode method[J].Mechanism and Machine Theory,1994,29(2):237–249.

    [28]WANG Delun,LIU Jian,XIAO Dazhun.A unified curvature theory in kinematic geometry of mechanism[J].Science in China(Series E)1998,41(2):196–202.

    [29]WANG Delun,LIU Jian,XIAO Dazhun.Geometrical characteristics of some typical spatial constraints[J].Mechanism and Machine Theory,2000,35(10):1413–1430.

    [30]MOZZI G.Discorso matematico sopra il rotamento momentaneo dei corpi[M].Napoli:Stamperia di Donato Campo,1763.

    [31]CHASLES M.Note sur les proprietes generales du systeme de deux corps semblables entr’eux[J].Bullettin de Sciences Mathematiques,Astronomiques Physiques et Chimiques,Baron de Ferussac,Paris,1830:321–326.

    [32]DONG Huimin,TING K L.Differential contact path and conjugate properties of planar gearing transmission[J].ASME Journal of Mechanical Design,2012,134(6):06010.1–06010.11.

    欧美色视频一区免费| 亚洲午夜精品一区,二区,三区| 精品国产亚洲在线| 亚洲熟妇中文字幕五十中出| 99riav亚洲国产免费| 免费看日本二区| 欧美最黄视频在线播放免费| 三级国产精品欧美在线观看 | 日日干狠狠操夜夜爽| 久久久久性生活片| 国产激情偷乱视频一区二区| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| bbb黄色大片| 久久人妻av系列| 岛国在线观看网站| 婷婷六月久久综合丁香| www.www免费av| 久久伊人香网站| 欧美日韩国产亚洲二区| 五月伊人婷婷丁香| av超薄肉色丝袜交足视频| 特大巨黑吊av在线直播| 欧美日韩精品网址| 国产91精品成人一区二区三区| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 亚洲成人国产一区在线观看| 亚洲五月婷婷丁香| 国产探花在线观看一区二区| www.自偷自拍.com| 国产一区二区激情短视频| 真人一进一出gif抽搐免费| 观看免费一级毛片| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 午夜精品在线福利| 波多野结衣巨乳人妻| 国产精品综合久久久久久久免费| 变态另类丝袜制服| 国内精品久久久久久久电影| 欧美绝顶高潮抽搐喷水| 国产一区在线观看成人免费| 18美女黄网站色大片免费观看| √禁漫天堂资源中文www| 成人国产综合亚洲| av欧美777| 亚洲一码二码三码区别大吗| 精品久久蜜臀av无| 亚洲色图av天堂| av欧美777| 一级片免费观看大全| 99热这里只有精品一区 | 全区人妻精品视频| 哪里可以看免费的av片| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 蜜桃久久精品国产亚洲av| 岛国在线观看网站| 免费av毛片视频| a在线观看视频网站| 国产又黄又爽又无遮挡在线| 999精品在线视频| 久久精品影院6| 欧美日韩福利视频一区二区| 香蕉久久夜色| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| АⅤ资源中文在线天堂| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 五月伊人婷婷丁香| 亚洲五月婷婷丁香| 亚洲午夜理论影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精华国产精华精| 级片在线观看| 久久久久久人人人人人| 91av网站免费观看| 91麻豆av在线| 国产精品1区2区在线观看.| 他把我摸到了高潮在线观看| 别揉我奶头~嗯~啊~动态视频| 黄色毛片三级朝国网站| 亚洲国产精品999在线| 黄频高清免费视频| 久久午夜综合久久蜜桃| 亚洲 国产 在线| 最近视频中文字幕2019在线8| 国产97色在线日韩免费| 国产精品免费视频内射| 国产三级黄色录像| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 亚洲精品美女久久av网站| 操出白浆在线播放| 成人高潮视频无遮挡免费网站| 中文字幕人成人乱码亚洲影| 91国产中文字幕| 欧美最黄视频在线播放免费| 美女大奶头视频| 一个人观看的视频www高清免费观看 | 色综合站精品国产| 亚洲欧美精品综合久久99| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 久久久久国产一级毛片高清牌| 亚洲av五月六月丁香网| 黄色视频不卡| 国产区一区二久久| 黑人巨大精品欧美一区二区mp4| 深夜精品福利| 亚洲一区高清亚洲精品| 久久香蕉精品热| 久久精品影院6| 很黄的视频免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女视频黄频| 操出白浆在线播放| 国产精品99久久99久久久不卡| 久久中文看片网| 欧美色视频一区免费| 看黄色毛片网站| 村上凉子中文字幕在线| 18禁裸乳无遮挡免费网站照片| 看免费av毛片| 日韩精品免费视频一区二区三区| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 黄色女人牲交| 国产成人av教育| 亚洲一区二区三区不卡视频| 亚洲激情在线av| 真人一进一出gif抽搐免费| 亚洲av片天天在线观看| 男女做爰动态图高潮gif福利片| 亚洲五月婷婷丁香| 国产免费男女视频| 波多野结衣高清作品| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 亚洲美女视频黄频| 99热6这里只有精品| 欧美性长视频在线观看| 免费高清视频大片| 欧美成人免费av一区二区三区| 亚洲欧美精品综合一区二区三区| 露出奶头的视频| 人妻久久中文字幕网| 欧美成人午夜精品| 丝袜美腿诱惑在线| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 黄片小视频在线播放| 亚洲成人久久爱视频| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 午夜成年电影在线免费观看| av中文乱码字幕在线| 久久亚洲真实| 亚洲成av人片在线播放无| 国产真人三级小视频在线观看| 精品久久久久久久末码| 国产亚洲精品一区二区www| 国内揄拍国产精品人妻在线| 亚洲欧美激情综合另类| 欧美日韩精品网址| 亚洲精品美女久久av网站| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 听说在线观看完整版免费高清| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 中亚洲国语对白在线视频| 日日夜夜操网爽| 国产亚洲av高清不卡| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站 | e午夜精品久久久久久久| 老司机在亚洲福利影院| 丰满人妻一区二区三区视频av | 一本一本综合久久| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 国产精品久久电影中文字幕| 国产三级在线视频| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 久久中文看片网| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 91老司机精品| 久久这里只有精品中国| 亚洲免费av在线视频| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 亚洲欧洲精品一区二区精品久久久| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 国产精品久久久久久精品电影| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 人成视频在线观看免费观看| 国产伦在线观看视频一区| 亚洲av美国av| 欧美中文综合在线视频| 国产三级中文精品| 中国美女看黄片| 中文资源天堂在线| 国产黄a三级三级三级人| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 国产精品1区2区在线观看.| 露出奶头的视频| 正在播放国产对白刺激| 啦啦啦免费观看视频1| 久久香蕉激情| 亚洲熟女毛片儿| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 久久这里只有精品中国| 99久久综合精品五月天人人| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频 | 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 久久久国产精品麻豆| 中文在线观看免费www的网站 | 黑人欧美特级aaaaaa片| www日本黄色视频网| av福利片在线| 国产99白浆流出| 成人午夜高清在线视频| 欧美日本视频| 琪琪午夜伦伦电影理论片6080| 国产人伦9x9x在线观看| 一区福利在线观看| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 免费看十八禁软件| 亚洲最大成人中文| 久久久国产精品麻豆| 两个人看的免费小视频| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品v在线| 99riav亚洲国产免费| 国产av麻豆久久久久久久| 亚洲美女黄片视频| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 小说图片视频综合网站| 国产精品日韩av在线免费观看| 桃色一区二区三区在线观看| 国产黄片美女视频| 国产精品一及| 无人区码免费观看不卡| 亚洲色图av天堂| 久久精品综合一区二区三区| 老司机午夜十八禁免费视频| netflix在线观看网站| 欧美av亚洲av综合av国产av| 99久久无色码亚洲精品果冻| 日本一本二区三区精品| 又粗又爽又猛毛片免费看| 亚洲av熟女| 国产一区二区激情短视频| 欧美人与性动交α欧美精品济南到| 久久久久久久午夜电影| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 久久久久国产精品人妻aⅴ院| 国产一区二区在线观看日韩 | 国产片内射在线| 国产亚洲精品久久久久久毛片| 99久久精品热视频| 十八禁人妻一区二区| 91大片在线观看| 麻豆久久精品国产亚洲av| 亚洲精品国产精品久久久不卡| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 999久久久国产精品视频| 亚洲中文av在线| 无人区码免费观看不卡| 亚洲av成人一区二区三| 神马国产精品三级电影在线观看 | 真人做人爱边吃奶动态| 男女午夜视频在线观看| 欧美日韩乱码在线| 99久久综合精品五月天人人| 激情在线观看视频在线高清| 精品国产美女av久久久久小说| 给我免费播放毛片高清在线观看| 精品第一国产精品| 不卡一级毛片| 国产午夜精品久久久久久| 欧美成人性av电影在线观看| 色av中文字幕| 在线观看www视频免费| 99在线人妻在线中文字幕| 美女 人体艺术 gogo| 91九色精品人成在线观看| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 高潮久久久久久久久久久不卡| 久久久久久人人人人人| 淫秽高清视频在线观看| 欧美一级毛片孕妇| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 99在线视频只有这里精品首页| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 亚洲精品久久国产高清桃花| 男女那种视频在线观看| 久久久久久九九精品二区国产 | 国产99久久九九免费精品| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 黄色丝袜av网址大全| 我的老师免费观看完整版| 91av网站免费观看| 日韩欧美在线二视频| 妹子高潮喷水视频| 久久久久久久午夜电影| 热99re8久久精品国产| 熟妇人妻久久中文字幕3abv| 国产高清激情床上av| 这个男人来自地球电影免费观看| 国产av麻豆久久久久久久| 美女免费视频网站| 中国美女看黄片| 亚洲 欧美一区二区三区| 国产男靠女视频免费网站| 久久亚洲真实| 亚洲精品av麻豆狂野| 五月伊人婷婷丁香| 桃红色精品国产亚洲av| 看黄色毛片网站| 国产精品香港三级国产av潘金莲| 两性夫妻黄色片| 亚洲国产日韩欧美精品在线观看 | 男女那种视频在线观看| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 日本a在线网址| 国产aⅴ精品一区二区三区波| 亚洲成人久久性| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 国产三级中文精品| 一个人观看的视频www高清免费观看 | 国产私拍福利视频在线观看| 女警被强在线播放| 国产精品乱码一区二三区的特点| 一进一出好大好爽视频| 男插女下体视频免费在线播放| 日日爽夜夜爽网站| 亚洲成人中文字幕在线播放| 久久精品成人免费网站| 中文字幕av在线有码专区| 国产精品久久久人人做人人爽| 免费在线观看黄色视频的| 日韩精品中文字幕看吧| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 妹子高潮喷水视频| 少妇裸体淫交视频免费看高清 | 亚洲色图av天堂| 久久精品综合一区二区三区| 午夜福利成人在线免费观看| 午夜视频精品福利| 性色av乱码一区二区三区2| 国产在线精品亚洲第一网站| 国产精品影院久久| 这个男人来自地球电影免费观看| 国产亚洲精品综合一区在线观看 | 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看 | 精品福利观看| 国产黄a三级三级三级人| 99热这里只有精品一区 | 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 欧美日韩福利视频一区二区| 不卡av一区二区三区| 国产精品一区二区三区四区久久| 精品一区二区三区四区五区乱码| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 午夜成年电影在线免费观看| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看 | 757午夜福利合集在线观看| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 三级国产精品欧美在线观看 | 一边摸一边抽搐一进一小说| 香蕉久久夜色| 国产91精品成人一区二区三区| 国产区一区二久久| 日韩中文字幕欧美一区二区| 欧美日韩乱码在线| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 1024手机看黄色片| 免费在线观看视频国产中文字幕亚洲| 亚洲激情在线av| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 国产精品久久久久久人妻精品电影| 亚洲 欧美一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 怎么达到女性高潮| 久久精品夜夜夜夜夜久久蜜豆 | 成人永久免费在线观看视频| 久久中文看片网| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产 | 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 国产又黄又爽又无遮挡在线| 99国产极品粉嫩在线观看| 操出白浆在线播放| 正在播放国产对白刺激| 国产精品久久久久久亚洲av鲁大| 在线观看免费日韩欧美大片| 亚洲国产精品合色在线| a级毛片a级免费在线| 在线播放国产精品三级| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 午夜两性在线视频| 91av网站免费观看| 国产av麻豆久久久久久久| 久久精品国产亚洲av香蕉五月| 成年免费大片在线观看| 亚洲精品在线美女| 国产精品 国内视频| 9191精品国产免费久久| 国产黄a三级三级三级人| 黄色丝袜av网址大全| 美女午夜性视频免费| 午夜激情福利司机影院| 精品一区二区三区视频在线观看免费| 亚洲一码二码三码区别大吗| 亚洲午夜理论影院| АⅤ资源中文在线天堂| 国产av一区在线观看免费| 国产野战对白在线观看| 成人av在线播放网站| 亚洲专区国产一区二区| 两个人视频免费观看高清| 亚洲午夜理论影院| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 亚洲中文字幕日韩| 香蕉丝袜av| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 午夜成年电影在线免费观看| 少妇人妻一区二区三区视频| 久久久国产成人免费| 亚洲熟女毛片儿| 麻豆av在线久日| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 9191精品国产免费久久| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 99久久精品热视频| 校园春色视频在线观看| 亚洲欧美日韩无卡精品| 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 成人手机av| 亚洲熟女毛片儿| 午夜福利在线观看吧| 国产精品国产高清国产av| 一夜夜www| 中文资源天堂在线| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 深夜精品福利| 九色国产91popny在线| 丰满的人妻完整版| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 国产精品影院久久| 国产精品美女特级片免费视频播放器 | 熟女少妇亚洲综合色aaa.| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 免费看a级黄色片| 国产69精品久久久久777片 | 一区福利在线观看| 欧美极品一区二区三区四区| 搡老岳熟女国产| 欧美3d第一页| 亚洲乱码一区二区免费版| 国产区一区二久久| 午夜福利18| 99久久综合精品五月天人人| 天天躁狠狠躁夜夜躁狠狠躁| 欧美3d第一页| 精品久久久久久,| 欧美一级毛片孕妇| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 国产真人三级小视频在线观看| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 老司机午夜福利在线观看视频| 午夜福利欧美成人| 免费看日本二区| 99re在线观看精品视频| 校园春色视频在线观看| av欧美777| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 欧美国产日韩亚洲一区| 99久久精品热视频| 中文在线观看免费www的网站 | 日本在线视频免费播放| 91麻豆精品激情在线观看国产| 熟女少妇亚洲综合色aaa.| 日韩精品免费视频一区二区三区| 亚洲男人的天堂狠狠| av欧美777| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 久久久水蜜桃国产精品网| 麻豆一二三区av精品| or卡值多少钱| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 曰老女人黄片| 久久精品91无色码中文字幕| 女同久久另类99精品国产91| 成人手机av| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 日本五十路高清| 免费在线观看亚洲国产| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 免费高清视频大片| 波多野结衣巨乳人妻| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 亚洲精品色激情综合| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 精品高清国产在线一区| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| 欧美在线黄色| 成人18禁在线播放| 久久99热这里只有精品18| 可以免费在线观看a视频的电影网站| 午夜视频精品福利| x7x7x7水蜜桃| 日韩成人在线观看一区二区三区| 91麻豆av在线| 亚洲激情在线av| 国产精品电影一区二区三区| 久久久国产精品麻豆| 国产成+人综合+亚洲专区| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 青草久久国产| 成人国产一区最新在线观看| 欧美3d第一页| 久久亚洲精品不卡| 国内精品久久久久精免费| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 免费看十八禁软件| 日韩欧美 国产精品| 久久久久久亚洲精品国产蜜桃av| 午夜a级毛片| 观看免费一级毛片| 久久精品影院6| 久久精品国产综合久久久| 国产高清有码在线观看视频 | 国产蜜桃级精品一区二区三区|