• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature Distribution and Scuffing of Tapered Roller Bearing

    2014-02-07 12:45:08WANGAilinandWANGJiugen

    WANG Ailin and WANG Jiugen*

    Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China

    1 Introduction*

    The rapid developments of high-speed roller bearings demand higher requirements for structural design,material selection,lubrication method and theoretical analysis of rolling bearings.Especially in the field of aerospace,high speed trains and automobile,and so on,tribological design problems deserve more and more attention such as fatigue life,thermal instability and scuffing failure of bearings.Tapered roller bearings have several advantages,such as compact structure,small radial size,high load capacity,small friction torque and lower operating temperature,thus tapered roller bearings are widely used in high-speed spindle assembly.The research into temperature distribution and scuffing possibility of tapered roller bearings has great significance in engineering practice.

    Both experiments and theories pay extensive attention to heat transfer inside the bearings and scuffing failure of bearing elements.For experimental studies,ZANTOPULOS[1]made a series tests that tapered roller bearings were running under severe operating conditions,and used optical microscope,scanning electron microscope and metallographic examinations,proposed a qualitative model for the onset of scuffing.TARAWNEH,et al[2],used heaters embedded in two rollers to study the dynamics of heating in railroad tapered-rollers bearings,after the heat transfer inside the bearing,the temperature of outer raceway was measured with infrared sensing temperature method,and the experimental results were compared to zero-and first-order thermal models to estimate overall heat transfer coefficients of the bearings.In situ Raman spectroscopy was employed for real time correlation of contact surface chemistry to friction coefficient for solid lubricated contact[3],and this method was also used to acquire point spectra in a running EHL contact,and measure pressure,lubricant film thickness and temperature[4].

    Theoretical analyses can be divided into two categories,one is to consider heat transfer in the whole surface of relative moving object,another concern is the actual contact area in terms of rough spots or hot spots.LING,et al[5],proposed a solution method for normal displacement of half-space under an arbitrarily distributed fast moving heat source.FLOQUET,et al[6–7],used the Fourier transform methods developed by Ling to analyze surface temperature,and their three dimensional analysis was verified with infra-red technique.GECIM,et al[8],selected a cylinder moving heat source,and used integral transform method to solve the heat conduction equation with cylindrical coordinate system.KENNEDY[9]analyzed the hot spots on the surface of relative moving object,and pointed out that the decrease of contact temperatures can be achieved with materials with higher thermal conductivity and higher heat capacity or with mechanical properties that have small stiffness,low yield stress or small coefficient of thermal expansion,which yields larger size hot spots.GECIM,et al[10],established transient temperature model in the vicinity of an asperity contact,they argued that the asperity achieves high transient temperature rise in a very short period of time,which may become the initial point of scuffing failure.In addition,there are several articles on the interactions of multiple heat sources problem[11–12].

    Scuffing is a typical failure mode of tribological pairs in mixed lubrication under heavy load and high sliding speed.The theoretical models of scuffing for metals in contact were classified in terms of temperature,frictional power intensity,thermal instability,collapse of partial-ehl film,tribo-chemistry and plastic flow of surface layer[13].Furthermore,the factors of surface hardness,surface texture and roughness,load and sliding speed,temperature,lubricants and additives,and debris have effects on scuffing mechanisms and occurrence process of scuffing[14].WINER,et al[15],studied the thermal resistance of a tapered roller bearing,presented a thermal resistance model and verified their results with an infrared scanner and thermocouples.BRYANT[16]solved the heat conduction equation with the concept of a moving temperature wave and a novel form of an exponential Fourier transform.JANG,et al[17],developed a theoretical model to take into account of the speed variation with time,and illustrated the time-seizure characteristics.They investigated the effects of thermomechanical properties,operating speed,and convective heat transfer coefficient on seizure time of a journal bearing[18].ZHAI,et al[19],and BHUSHAN,et al[20],studied the thermal behavior and friction coefficient at surface asperity scale.ZHAI,et al[19],analyzed the viscous shearing and cooling of transportation of heat out of the thermally intensive asperity contacts,and side-flow of heat is weak in mixed lubrication.BHUSHAN,et al[20],studied the scale effects of hardness,mean contact size,asperity slope,number of contacts,summit radius of asperities on friction coefficient and temperature.In 1989,DUFRANE,et al[21],studied seizure of journal bearings with respect to thermal expansion of shaft and bearing bore.KHONSARI,et al[22],studied the transient thermoelastic behavior of shaft of journal bearing,and predicted seizure with the rule that operating clearance is removed as seizure appears.The scuffing failure of high speed rolling bearings under heavy load still is not well understood and the prediction of scuffing in those cases has practical meaning for high speed train and other rotating machines.

    The objective of this study is to analyze temperature distribution and scuffing possibility of tapered roller bearings on the basis of internal contact stress[23].Cylinder moving heat source model proposed by GECIM,et al[8],and a slice method are utilized to calculate the internal temperature distribution and maximum temperature rise of bearing elements,and predict possible positions of scuffing.With the method and results of this study,the scuffing resistant design can be achieved for tapered roller bearings.

    2 Temperature Calculation Model

    The tapered rollers roll and slide on the inner raceway and outer raceway inside the bearing.The heat source model proposed by GECIM,et al[8],is used in present numerical modeling.Furthermore,the tapered roller bearing is divided into ten sections in the generation line of the tapered roller direction.Each slice can be approximated with a cylinder.The temperature distributions of tapered roller and raceways in each section are calculated respectively.

    2.1 Heat conduction equation

    Fig.1 shows the geometry and boundary of the slice model.The heat conductions in axial and circumferential directions are neglected,and the circumferential heat convection is taken into account.The heat flux distribution is uniform over the heating zone,φ0.Because the Hertzian contact width is very small,compared with the circumferential length of the tapered rollers,this assumption is reasonable.With the above assumptions,the equation of heat conduction is

    where T is the difference between the actual temperature and the ambient(℃),r and φ are the cylindrical coordinates,ω is angular speed of tapered roller(rad/s),and α is thermal diffusivity(m2/s).

    Defining the following variables:

    where u is dimensionless temperature,h is convective heat transfer coefficient(W/(m2?K)),q is heat flux(W/m2),R is radius of the slices(m),k is thermal conductivity(W/(m?K)),and N stands for Peclet number.

    Eq.(1)becomes

    The boundary conditions at ρ=1 are

    and u(ρ=0)is a finite value.

    Using the finite Fourier transform,Bessel functions and Kelvin functions,Dimensionless temperature can be obtained:

    For the process of the solution in detail can refer to Ref.[8].The maximum surface temperature with uniform heat input is at Φ=Φ0.Hence,Eq.(5)can be written as

    where S represents the infinite summation.Defining

    where TBis the bulk temperature andat φ=φ0and ρ=1.Eq.(7)can be rewritten as

    2.2 Friction power and heat distribution in interface

    The power loss of bearing caused by friction can be calculated according to the following equation[24]:

    where H is the power loss(W),and M stands for the frictional torque(N?mm).Assuming that frictional power Higenerated between roller and inner raceway is equal to friction power Hogenerated between roller and outer raceway,then

    Heat partition at the interfaces complies with the following principles.

    (1)Roller and inner raceway

    The tapered roller contacts with the inner raceway under the normal load P,roller speed is u1,and the speed of inner raceway is u2,heat generated in the contact area is Q.Under rolling and sliding condition,the ratio of heat into the roller,Q1,and heat into the inner raceway,Q2,isas follows[25]:

    where ρ1and ρ2are densities of roller and inner raceway respectively(kg/m3),c is specific heat(J/(kg?K)),k is thermal conductivity(W/(m?K)),u is linear velocity of contact area(m/s),subscripts 1 and 2 represent roller and inner raceway respectively.

    (2)Roller and outer raceway

    The tapered roller is in contact with the outer raceway under the normal load P,and the roller speed is1u,heat generated in the contact zone is Q.Under pure sliding condition,the contact surface of outer raceway will continue to receive a portion heat λQ,and other(1-λ)Q will flow into tapered roller.The value of λ depends on the heat transfer characteristics of contact bodies.It can be assumed λ only depends on thermal diffusivities of tapered roller and outer raceway[26],written as

    where α1=k1(ρ1c1),α3=k3(ρ3c3),α1und α3are thermal diffusivities of roller and outer raceway respectively(m2/s),ρ3is the density of outer raceway(kg/m3),subscript 3 represents outer raceway.

    3 Scuffing Failure

    3.1 Scuffing assessing criterion

    WATKINS[27]proposed to evaluate seizure load with corresponding Hertzian contact dimension.If the wear scar is larger than the Hertzian contact width,mild scuffing occurs at the contact zone.The influence of original radial clearance is ignored in our calculation.Firstly,the thermal expansion of tapered rollers,inner raceways and outer raceways are calculated,and then the elastic approach of tapered roller-inner raceway contact pair and tapered roller-outer raceway contact pair are numerically analyzed.Finally,with the ratio of radial clearance to elastic approach,the scuffing possibility in the contact area is examined.

    δHstands for the elastic approach of taperedroller bearing under load,and after thermal expansion roller radial increment is u1,radial increment of raceway is u2.When

    the scuffing will occur in contact area of tapered roller and inner raceway,if Eq.(13)is satisfied.Otherwise,tapered roller and raceway contact area is safe in terms of adhesion wear.In Eq.(13),amount of thermal expansion of inner raceway is positive,and that of outer raceway is negative because it is a hole in geometry.

    3.2 Thermal expansion

    Recently,Assuming that inner raceway is free to expand,thermal deformation can be calculated by the next equation proposed by TIMOSHENKO,et al[28]:

    where αhis thermal expansivity of inner raceway,Riois outer radius of inner raceway,Riiis inner radius of inner raceway,Ts(r)is cross-sectional temperature,Trefis reference temperature.

    With the above method,thermal distortion of outer raceway can be calculated by the next Eq.(15):

    whereRoois outer radius of outer raceway,Roiis inner radius of outer raceway.

    4 Results and Discussions

    The widely used tapered roller bearing 30308 is selected as the object for numerical simulation,and its parameters are shown in Table 1 and Table 2.Many rolling bearings are manufactured with bearing steel GCr15,the rapid developments of high-temperature and high-speed bearings demand the usage of ceramic materials that have the low density,high strength,high hardness,good toughness,and the advantage of small thermal expansion coefficient,compared with rolling bearing steel.The distributions of contact stress,temperature and scuffing possibility are analyzed,when tapered rollers are produced with GCr15 or Si3N4are in contacted with inner ring and outer ring manufactured with GCr15.

    Table 1.Parameters of tapered roller bearing

    Table 2.Thermal parameters and elastic property

    The surface heat convection coefficient is closely related to factors such as bearings surface size and shape,fluid viscosity and density,thermal conductivity and speed in heat transfer process,thus it is difficult to generally describe surface heat convection coefficient.An approximation calculating equation of convection coefficient is proposed in Ref.[24].If higher precision data of surface heat convection coefficient is needed,it can only be obtained with experiments.The convection coefficient is 600 W?m–2?K–1in this analysis,it is chosen based on mixed lubrication condition and lubricated with greases.

    4.1 Contact stress distribution

    As shown in Fig.2,under normal load 300 N,contact stress between the GCr15 tapered roller at its small end,middle point,and big end with inner races of GCr15 are 515.1 MPa,402.5 MPa and 489.4 MPa,respectively.The edge stress concentration between tapered roller and inner race occurs at tapered roller ends,and stress concentration is more serious at small roller end than that at big roller end.As shown in Fig.3,under normal load 300 N,contact stress between the Si3N4tapered roller and inner raceway of GCr15 at small end,middle point,and big end of tapered roller is respectively 561.8 MPa,440.1 MPa and 533.6 MPa.Compared to contact stress of GCr15 tapered roller with inner race,contact stresses of Si3N4tapered roller with inner race are higher,because the elasticity module of material Si3N4is larger than that of material GCr15,and the Poisson ratio of Si3N4is smaller than that of GCr15 bearing steel.

    Fig.2.Contact stress between GCr15 tapered roller and GCr15 inner race under 300 N load

    Fig.3.Contact stress between Si3N4tapered roller and GCr15 inner race under 300 N load

    4.2 Temperature distribution

    The contact area between tapered roller and raceways are divided along the tapered roller axis into ten slices,the maximum contact stresses occur on both ends of the tapered roller,the smallest occurs at the central point of the contact area,thus if the temperature at the three sections,that i=1,7,10,from the small end to its big end,are calculated,the temperature range of the whole contact area can be obtained.

    Fig.4 and Fig.5 show the temperature distributions between GCr15 tapered roller and inner raceway,under the load is 300 N,the rotation speed is 5600 r/min and the convection coefficient is 600 W?m–2?K–1.In this case,the average bulk temperatures of small end,middle point and big end of tapered roller are accordingly TB1=23.8 ℃,TB2=20.9 ℃ and TB3=22.8 ℃.Eq.(6)indicates that the highest surface temperature appears at φ=φ0.

    Fig.4.Temperature rise of GCr15 roller contacted with inner race

    Fig.5.Temperature rise of GCr15 inner race contacted with GCr15 tapered roller

    When the normal load,rotating speed and heat convection coefficient are changed,the temperature distributions at small end,middle point and big end of tapered roller are shown in Fig.6,Fig.7 and Fig.8.

    Fig.6.Temperature rise of GCr15 roller contacted with inner race when load is 200 N,rotation speed is 5600 r/min,convection coefficient is 600 W?m–2?K–1

    Fig.7.Temperature rise of GCr15 roller contacted with inner race when load is 300 N,rotation speed is 2000 r/min,convection coefficient is 600 W?m–2?K–1

    Fig.8.Temperature rise of GCr15 roller contacted with inner race when load is 300 N,rotation speed is 5600 r/min,convection coefficient is 1200 W?m–2?K–1

    These figures indicate that when the heat is evenly distributed between the tapered roller and the inner raceway,small end of the tapered roller has biggest temperature rise,temperature at rollers’big end is secondly high,and the temperature rise of rollers’middle section is minimal.The normal load is associated with thermal power,when the load is low,the thermal power value is smaller,when the rotational speed reduces,thermal power value is also smaller.From the physical definition of heat convection coefficient h,it reflects the capability of heat transfer between fluid and solid surface.For higher heat convection coefficient h,more heat is taken away by lubricants,therefore the temperature rise of bearing components is much less.The above results can explain the changes of temperature rise of tapered rollers when normal load,rotational speed and convection coefficient change.

    Fig.9 and Fig.10 show respectively the temperature rise of Si3N4tapered roller and inner raceway,when the normal load is 300 N,the rotation speed is 5600 r/min and heat convection is 600 W?m–2?K–1.The figures demonstrate,compared with the case of contacted with GCr15 inner raceway under same operation conditions,temperature rise of Si3N4tapered roller is higher than that of GCr15 tapered roller,and temperature rise of the inner race in contact with Si3N4tapered roller is lower than that of the inner race in contact with GCr15 tapered roller,because GCr15 tapered roller and GCr15 inner raceway receive equal heat flux,however,Si3N4tapered roller receives more heat flux than GCr15 inner raceway,according to the principle of heat distribution.

    Fig.9.Temperature rise of Si3N4tapered roller contacted with inner race

    Fig.10.Temperature rise of inner raceway contacted with Si3N4roller

    4.3 Assessing of scuffing possibility

    The elastic approach between GCr15 tapered roller and GCr15 inner raceway can be obtained with numerical method,which was described in detail in Ref.[12].If the biggest thermal expansion of GCr15 tapered roller is noted as u1i,and u2istands for the biggest thermal expansion of GCr15 inner raceway,the calculated results are listed in Table 3.

    Table 3 demonstrates that when the normal load is 300 N,the rotation speed is 2000 r/min and the heat convection coefficient is 600 W?m–2?K–1,the big end of the tapered roller has the largest thermal expansion,and the small end of the inner ring has the highest thermal expansion.Scuffing failure appears at section 2,section 3,section 4,section 5,section 6 and section 7,however,the big end of the roller/inner raceway contact pair is safer than that of the small end of the tapered roller.

    When the normal load is 300 N,the rotation speed is 2000 r/min and the heat convection coefficient is 600 W?m–2?K–1,the elastic approach δHobetween GCr15 tapered roller and GCr15 outer raceway,the biggest thermal expansion u1oof GCr15 tapered roller and the biggest thermal expansion u2oof GCr15 outer raceway are listed in Table 4.The biggest thermal expansion of the tapered roller occurs at its big end,and the biggest thermal expansion of the outer ring occurs at its small end.Scuffing does not appear between tapered roller and outer raceway in this case.

    Table 5 shows the biggest expansions of Si3N4tapered roller and GCr15 inner raceway.Compared with the data in Table 3,the thermal expansion of Si3N4tapered roller is much smaller than that of GCr15 tapered roller,and the thermal expansion of GCr15 inner raceway contacted with Si3N4tapered roller is also smaller than that of GCr15 inner raceway in contact with GCr15 tapered roller,under same condition in terms of normal load,speed and convection coefficient,which explains the advantages of hybrid rolling bearings.The ceramic materials are used a lot in high temperature bearings.The biggest thermal expansion of the tapered roller occurs at its big end,and the biggest thermal expansion of the inner ring occurs at its small end.Scuffing failure does not appear between Si3N4tapered roller and GCr15 inner raceway.Furthermore,the big end of the tapered roller/inner raceway contact pair is safer than the contact pair of the small end of tapered roller/inner ring with respect to scuffing possibility.

    Table 3.The biggest expansion and elastic deformation of GCr15 roller and GCr15 inner raceway μm

    Table 4.The biggest expansion and elastic deformation of GCr15 roller and GCr15 outer raceway μm

    5 Conclusions

    The contact mechanics model,temperature model and scuffing failure model were synthesized to study the effects of normal load,speed,thermal conductivity and materials of tapered rollers on scuffing possibility.The scuffing possibility of tapered roller can be examined with our developed program.Based on the numerical results,several conclusions can be summarized.

    (1)The increases of bearing load or rotational speed result in the increase of temperature of tapered roller surface and raceways.However,the increase of thermal conductivity leads to the decreases of temperatures of tapered roller and raceways.

    (2)Compared with the bulk temperatures of tapered roller and raceways,their flash temperatures are smaller.

    (3)When tapered roller of GCr15 or Si3N4are in contacted with inner ring of GCr15,the temperature of Si3N4roller is higher than that of GCr15 tapered roller,but the temperature of the inner ring contacted with Si3N4tapered roller is lower than the temperature of the inner ring in contact with GCr15 tapered roller.

    (4)Under the same operation condition,the thermal expansion of Si3N4tapered roller is remarkably less than that of GCr15 rollers,this reveals the mechanism in which ceramic materials are widely used for high temperature rolling bearings.

    (5)When the tapered roller contacts with the inner ring,the big end of the tapered roller has the biggest thermal expansion,and the small end of the inner ring also has the largest thermal expansion.At the tapered roller/outer ring interface,the biggest thermal expansion of the tapered roller occurs at its big end,and the biggest expansion of outer ring occurs at its small end.

    (6)In the contact zone between tapered roller and the inner ring,complete scuffing,partial scuffing and no scuffing are all possible along the generator line,and the contact area of the big end of tapered roller is safer than that of its small end.At the tapered roller/outer ring interface,scuffing possibility is very smaller than that of the tapered roller/inner ring interface.

    [1]ZANTOPULOS H.Some observations on scuffing in tapered roller bearings[J].Journal of Tribology,1998,120(3):427–435.

    [2]TARAWNEH C M,COLE K D.Experiments and models for the thermal response of railroad tapered-roller bearings[J].International Journal of Heat and Mass Transfer,2008,51(25–26):5794–5803.

    [3]MURATORE C,BULTMAN J E,AOUADI S M,et al.In situ Raman spectroscopy for examination of high temperature tribological processes[J].Wear,2011,270(3):140–145.

    [4]HIMMEL D,MANSOT J L,BERCION Y,et al.In situ Raman microspectrometry of lubricated tribologic contacts.Part two:simultaneous measurements of pressure,lubricant film thickness and temperature distributions in a running EHD contact[J].Tribology Letters,2011,41(1):131–144.

    [5]LING F F,MOW V C.Surface displacement of a convective elastic half-space under an arbitrarily distributed fast-moving heat source[J].Journal of Basic Engineering,1965,87(3):729–734.

    [6]FLOQUET A,PLAY D,GODET M.Surface temperatures in distributed contacts-application to bearing design[J].Journal of Lubrication Technology,1977,99(2):277–283.

    [7]FLOQUET A,PLAY D.Contact temperature in dry bearings-three dimensional theory and verification[J].Journal of Lubrication Technology,1981,103(2):243–251.

    [8]GECIM B,WINER W O.Steady temperature in a rotating cylinder subject to surface heating and convective cooling[J].Journal of Tribology,1984,106(1):120–127.

    [9]KENNEDY F E.Thermomechanical phenomena in high speed rubbing[J].Wear,1980,59(1):149–163.

    [10]GECIM B,WINER W O.Tansient temperature in the vicinity of an asperity contact[J].Journal of Tribology,1985,107(3):333–342.

    [11]GECIM B,WINER W O.Steady temperature in a rotating cylinder-some variations in the geometry and the thermal boundary conditions[J].Journal of Tribology,1986,108(3):446–453.

    [12]YEVTUSHENKO A,TOLSTOJ-SIENKIEWICZ J.Temperature in a rotating ring subject to frictional heating from two stationary pins[J].Numerical Heat Transfer,Part A,2006,49(8):785–801.

    [13]WANG Jiugen,YUAN Jing,XUE Zheng.Experimental investigation of scuffing failure with four-ball machine,part 2:theoretical models[J].Scientific Research Monthly,2007,35(11):40–43.

    [14]WANG Jiugen,YUAN Jing,XUE Zheng.Experimental investigation of scuffing failure with four-ball machine,part 3:influence factors[J].Scientific Research Monthly,2007,35(11):44–47.

    [15]WINER W O,BAIR S,GECIM B.Thermal resistance of a tapered roller bearing[J].ASLE Transactions,1986,29(4):539–547.

    [16]BRYANT M D.Thermoelastic solutions for thermal distributions moving over half space surfaces and application to the moving heat source[J].Journal of Applied Mechanics,1988,55(1):87–92.

    [17]JANG J Y,KHONSARI M M,PASCOVICI M D.Thermohydrodynamic seizure:experimental and theoretical analysis[J].Journal of Tribology,1998,120(1):8–15.

    [18]JANG J Y,PASCOVICI M D.Modeling aspects of a rate-controlled seizure in an unloaded journal bearing[J].Tribology Transactions,1998,41(4):481–488.

    [19]ZHAI X,CHANG L.Some insights into asperity temperatures in mixed film lubrication[J].Tribology International,2001,34(6):381–387.

    [20]BHUSHAN B,NOSONOVSKY M.Scale effects in dry and wet friction,wear and interface temperature[J].Nanotechnology,2004,15(7):749–761.

    [21]DUFRANE K F,KANNEL J W.Thermally induced seizures of journal bearings[J].Journal of Tribology,1989,111(2):288–292.

    [22]KHONSARI M M,KIM H J.On thermally induced seizure in journal bearings[J].Journal of Tribology,1989,111(4):661–667.

    [23]WANG Ailin,WANG Qingjiu,WANG Jiugen.Contact of tapered roller with logarithmic profile[J].Mechanical Science and Technology For Aerospace Enginnering,2012,31(5):836–841.

    [24]HARRIS T A.Rolling bearing analysis[M].New York:John Wiley&Sons,Inc.,2001.

    [25]WANG Jiugen,TAN Jianrong.Numerical simulation of traction in rolling/sliding contact[J].Journal of Tribology,1997,119(4):869–874.

    [26]HALLING J.Principles of tribology[M].London:The Macmillan Press,1975.

    [27]WATKINS R C.The use of the Hertzian dimension in wear scar analyses(application to four ball results)[J].Wear,1983,91(3):349–354.

    [28]TIMOSHENKO S P,GOODIER J N.Theory of elasticity[M].Beijing:Tsinghua University Press,2004.

    a级毛片a级免费在线| 欧美精品国产亚洲| 欧美在线一区亚洲| 精品日产1卡2卡| 国产亚洲精品综合一区在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久人人爽人人爽人人片va | 国内精品久久久久精免费| 亚洲av五月六月丁香网| 日韩成人在线观看一区二区三区| 最近中文字幕高清免费大全6 | 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 日韩中字成人| 日本 欧美在线| 色av中文字幕| 亚洲专区国产一区二区| avwww免费| 色哟哟·www| 综合色av麻豆| 三级毛片av免费| 国内精品久久久久久久电影| 国产精品电影一区二区三区| 男人舔奶头视频| 精品久久久久久久久av| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 欧美潮喷喷水| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区| 少妇人妻精品综合一区二区 | 美女黄网站色视频| 99在线视频只有这里精品首页| 直男gayav资源| 亚洲av五月六月丁香网| 久久这里只有精品中国| 亚洲黑人精品在线| 国产在视频线在精品| 亚洲av二区三区四区| 中文字幕人成人乱码亚洲影| 欧美激情在线99| 欧美成人免费av一区二区三区| 久久人人精品亚洲av| 亚洲欧美日韩无卡精品| 成人国产一区最新在线观看| av欧美777| 嫩草影院精品99| 男插女下体视频免费在线播放| 国产精品伦人一区二区| 国产激情偷乱视频一区二区| 看十八女毛片水多多多| 一进一出抽搐gif免费好疼| 欧美日本亚洲视频在线播放| 久久国产乱子伦精品免费另类| 少妇丰满av| 亚洲,欧美精品.| 国产成人福利小说| 99久久无色码亚洲精品果冻| 国产精品嫩草影院av在线观看 | 亚洲狠狠婷婷综合久久图片| 国产精品久久视频播放| 日韩高清综合在线| 国模一区二区三区四区视频| 少妇人妻精品综合一区二区 | 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 日本精品一区二区三区蜜桃| 亚洲国产色片| 欧美日韩国产亚洲二区| 国产伦精品一区二区三区视频9| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 精品久久国产蜜桃| 麻豆av噜噜一区二区三区| 亚洲午夜理论影院| 亚洲精品成人久久久久久| 欧美成人性av电影在线观看| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 色综合站精品国产| 91麻豆av在线| 日韩中文字幕欧美一区二区| 成年女人永久免费观看视频| 首页视频小说图片口味搜索| 波野结衣二区三区在线| АⅤ资源中文在线天堂| 日韩有码中文字幕| 伊人久久精品亚洲午夜| www.色视频.com| 最后的刺客免费高清国语| 九色国产91popny在线| 动漫黄色视频在线观看| 久久久精品欧美日韩精品| 精品无人区乱码1区二区| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 久久性视频一级片| 在线播放无遮挡| 日韩欧美精品v在线| 嫩草影院新地址| 亚洲久久久久久中文字幕| 女同久久另类99精品国产91| 国产av不卡久久| 亚洲人与动物交配视频| 欧美日韩瑟瑟在线播放| 亚洲精品色激情综合| 简卡轻食公司| 一个人看视频在线观看www免费| 一a级毛片在线观看| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 免费在线观看影片大全网站| 乱人视频在线观看| 亚洲不卡免费看| 久久香蕉精品热| 男女床上黄色一级片免费看| 精品无人区乱码1区二区| 一个人看视频在线观看www免费| 精品国产三级普通话版| 能在线免费观看的黄片| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影| 精品午夜福利在线看| 一级作爱视频免费观看| 伦理电影大哥的女人| 国产91精品成人一区二区三区| 国产欧美日韩一区二区精品| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 性欧美人与动物交配| 国语自产精品视频在线第100页| 日韩成人在线观看一区二区三区| 国产av不卡久久| aaaaa片日本免费| 亚洲欧美日韩东京热| 男女做爰动态图高潮gif福利片| 嫁个100分男人电影在线观看| 免费人成在线观看视频色| 国产精品久久久久久亚洲av鲁大| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 亚洲专区中文字幕在线| 毛片一级片免费看久久久久 | 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 久9热在线精品视频| 亚洲午夜理论影院| 九九久久精品国产亚洲av麻豆| 亚洲最大成人手机在线| 国产精品99久久久久久久久| 久久婷婷人人爽人人干人人爱| 欧美成狂野欧美在线观看| 人人妻人人看人人澡| www日本黄色视频网| 一本久久中文字幕| 内射极品少妇av片p| 婷婷六月久久综合丁香| 午夜激情欧美在线| 在线观看免费视频日本深夜| 偷拍熟女少妇极品色| 高清在线国产一区| 人人妻人人澡欧美一区二区| 男女视频在线观看网站免费| 赤兔流量卡办理| 欧美在线黄色| 给我免费播放毛片高清在线观看| 久久精品国产亚洲av涩爱 | 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 中文字幕熟女人妻在线| 观看免费一级毛片| 丁香欧美五月| 国产成人av教育| 99久久九九国产精品国产免费| 男女床上黄色一级片免费看| 亚洲男人的天堂狠狠| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| АⅤ资源中文在线天堂| www.熟女人妻精品国产| 亚洲成人精品中文字幕电影| 久久久国产成人免费| 欧美激情国产日韩精品一区| 国产三级黄色录像| 国产精品久久电影中文字幕| 国产69精品久久久久777片| h日本视频在线播放| 亚洲内射少妇av| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 久久久久久久亚洲中文字幕 | 级片在线观看| 一级a爱片免费观看的视频| 午夜精品在线福利| 亚洲专区国产一区二区| a级毛片a级免费在线| 直男gayav资源| 此物有八面人人有两片| 国产成人a区在线观看| 深夜a级毛片| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 香蕉av资源在线| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 一区二区三区四区激情视频 | 日本免费a在线| 国产色爽女视频免费观看| 日本五十路高清| 俺也久久电影网| 日日摸夜夜添夜夜添av毛片 | 亚洲国产高清在线一区二区三| 哪里可以看免费的av片| 内地一区二区视频在线| 日本与韩国留学比较| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 亚洲av日韩精品久久久久久密| 免费黄网站久久成人精品 | 91麻豆av在线| 成人国产一区最新在线观看| 日韩亚洲欧美综合| 熟女电影av网| 亚洲黑人精品在线| 日韩国内少妇激情av| 哪里可以看免费的av片| 国产大屁股一区二区在线视频| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 国产成人av教育| 久久香蕉精品热| 国产黄色小视频在线观看| 久久久精品大字幕| 丰满的人妻完整版| 精品日产1卡2卡| 97碰自拍视频| 可以在线观看的亚洲视频| 一级黄色大片毛片| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 色综合站精品国产| 国产精品电影一区二区三区| 精品午夜福利在线看| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 嫩草影院精品99| 久久久精品大字幕| 美女黄网站色视频| 又爽又黄a免费视频| 久久国产乱子免费精品| 色视频www国产| 1000部很黄的大片| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 一级毛片久久久久久久久女| 啦啦啦韩国在线观看视频| 国产蜜桃级精品一区二区三区| 欧美中文日本在线观看视频| 91午夜精品亚洲一区二区三区 | 午夜精品一区二区三区免费看| 午夜a级毛片| 欧美色欧美亚洲另类二区| 午夜福利在线观看免费完整高清在 | 日韩高清综合在线| av福利片在线观看| 日本 欧美在线| 一本综合久久免费| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 一a级毛片在线观看| 国产日本99.免费观看| 久久国产精品影院| 九九热线精品视视频播放| 淫秽高清视频在线观看| 中文在线观看免费www的网站| www日本黄色视频网| 国产视频内射| 最好的美女福利视频网| 免费在线观看成人毛片| 91字幕亚洲| 久久性视频一级片| 成年女人看的毛片在线观看| a在线观看视频网站| 激情在线观看视频在线高清| 99国产精品一区二区蜜桃av| 成人高潮视频无遮挡免费网站| a级毛片免费高清观看在线播放| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 黄色丝袜av网址大全| 日韩中字成人| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 一级黄片播放器| 国产高潮美女av| 俺也久久电影网| 婷婷精品国产亚洲av| 51午夜福利影视在线观看| 在线观看舔阴道视频| 色哟哟·www| 人妻丰满熟妇av一区二区三区| 丰满人妻一区二区三区视频av| 精品99又大又爽又粗少妇毛片 | 日日干狠狠操夜夜爽| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 久久亚洲精品不卡| 丰满人妻熟妇乱又伦精品不卡| 日韩中字成人| 内地一区二区视频在线| 国产精品av视频在线免费观看| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 日韩欧美 国产精品| 美女cb高潮喷水在线观看| 国产老妇女一区| 久久午夜福利片| 国产毛片a区久久久久| 51午夜福利影视在线观看| 国产伦一二天堂av在线观看| 天美传媒精品一区二区| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av涩爱 | 午夜两性在线视频| 色精品久久人妻99蜜桃| h日本视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av涩爱 | 亚洲成人免费电影在线观看| 色精品久久人妻99蜜桃| 久久香蕉精品热| 亚洲精品久久国产高清桃花| 欧美三级亚洲精品| 在现免费观看毛片| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 亚洲经典国产精华液单 | 国产精品一区二区性色av| 国产精华一区二区三区| 身体一侧抽搐| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 一进一出抽搐动态| 自拍偷自拍亚洲精品老妇| 老司机午夜十八禁免费视频| 国产三级在线视频| 九色国产91popny在线| 亚洲激情在线av| 久久久久精品国产欧美久久久| 亚洲综合色惰| 又黄又爽又刺激的免费视频.| 亚洲av.av天堂| 高清在线国产一区| 亚洲av免费在线观看| 国产高清三级在线| 国产欧美日韩精品亚洲av| 国产探花在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 午夜视频国产福利| 免费大片18禁| 黄色配什么色好看| 午夜老司机福利剧场| 在线天堂最新版资源| 毛片女人毛片| 国产高潮美女av| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 首页视频小说图片口味搜索| av欧美777| 直男gayav资源| 宅男免费午夜| 国产精品电影一区二区三区| 亚洲最大成人av| 搡老熟女国产l中国老女人| 欧美性感艳星| 人妻制服诱惑在线中文字幕| 中国美女看黄片| 国产精品久久久久久久电影| 能在线免费观看的黄片| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 国内揄拍国产精品人妻在线| 真实男女啪啪啪动态图| 亚洲国产欧美人成| 国产伦一二天堂av在线观看| 日韩av在线大香蕉| 成人特级黄色片久久久久久久| 一本一本综合久久| 国产精品影院久久| 亚洲av不卡在线观看| 午夜a级毛片| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 麻豆一二三区av精品| 成人特级av手机在线观看| 在线播放无遮挡| 性色av乱码一区二区三区2| 日韩精品中文字幕看吧| a在线观看视频网站| av在线蜜桃| 国产成人aa在线观看| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 丁香六月欧美| 一级毛片久久久久久久久女| 黄色日韩在线| 久9热在线精品视频| 日韩欧美国产一区二区入口| 中出人妻视频一区二区| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频| 日韩欧美免费精品| 亚洲av二区三区四区| 禁无遮挡网站| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻| 国内毛片毛片毛片毛片毛片| 欧美最新免费一区二区三区 | 一个人看的www免费观看视频| 高清毛片免费观看视频网站| 91字幕亚洲| 国产单亲对白刺激| 久久久久久久久大av| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 国产伦在线观看视频一区| 久久久久久久精品吃奶| 免费看美女性在线毛片视频| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 国产一区二区三区视频了| 非洲黑人性xxxx精品又粗又长| 97人妻精品一区二区三区麻豆| 亚洲男人的天堂狠狠| 88av欧美| 国产亚洲精品综合一区在线观看| 久久久久久久精品吃奶| 亚洲电影在线观看av| 日韩 亚洲 欧美在线| 深夜a级毛片| 高清在线国产一区| 麻豆国产97在线/欧美| 在线播放无遮挡| 免费搜索国产男女视频| 欧美日韩黄片免| 精品无人区乱码1区二区| 中文字幕人成人乱码亚洲影| 久久久久久久亚洲中文字幕 | 黄色日韩在线| 国产真实乱freesex| 无遮挡黄片免费观看| www.熟女人妻精品国产| 国产一区二区亚洲精品在线观看| 国产精品乱码一区二三区的特点| 亚洲欧美清纯卡通| 亚洲精品在线观看二区| 免费黄网站久久成人精品 | 特级一级黄色大片| 亚洲精品影视一区二区三区av| 亚洲一区二区三区色噜噜| 99热这里只有是精品在线观看 | 国产精品野战在线观看| 观看美女的网站| 在线观看66精品国产| 精品人妻熟女av久视频| 少妇被粗大猛烈的视频| 日韩大尺度精品在线看网址| 极品教师在线免费播放| 国产老妇女一区| 三级毛片av免费| av欧美777| 国产探花在线观看一区二区| 亚洲av第一区精品v没综合| 欧美区成人在线视频| 午夜激情欧美在线| 草草在线视频免费看| 免费在线观看日本一区| 天美传媒精品一区二区| 亚洲电影在线观看av| 97超级碰碰碰精品色视频在线观看| 日本 av在线| 啦啦啦观看免费观看视频高清| 欧美日韩乱码在线| 精品一区二区三区视频在线观看免费| 日本黄色片子视频| 97超视频在线观看视频| 搡老熟女国产l中国老女人| 中国美女看黄片| 男人舔奶头视频| 久久伊人香网站| 丰满乱子伦码专区| av天堂中文字幕网| 国内精品久久久久久久电影| 免费av毛片视频| 亚洲午夜理论影院| 性色avwww在线观看| av天堂在线播放| 天堂影院成人在线观看| 亚洲av电影在线进入| 看十八女毛片水多多多| 国产麻豆成人av免费视频| avwww免费| 国产激情偷乱视频一区二区| 嫩草影院入口| 亚洲精品亚洲一区二区| 日本在线视频免费播放| 亚洲狠狠婷婷综合久久图片| 99视频精品全部免费 在线| 在线看三级毛片| 国产91精品成人一区二区三区| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 国产三级在线视频| 99热这里只有是精品50| 观看美女的网站| 日本黄大片高清| 免费看日本二区| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 99久久精品热视频| 国产精品不卡视频一区二区 | 欧美又色又爽又黄视频| 一本精品99久久精品77| 在线观看美女被高潮喷水网站 | 亚洲精华国产精华精| 日韩欧美国产一区二区入口| 乱码一卡2卡4卡精品| 日韩欧美免费精品| av在线蜜桃| 精品99又大又爽又粗少妇毛片 | 国内精品久久久久久久电影| 高清日韩中文字幕在线| 熟妇人妻久久中文字幕3abv| 男人和女人高潮做爰伦理| 美女大奶头视频| 人妻丰满熟妇av一区二区三区| 女人十人毛片免费观看3o分钟| 国产高清视频在线播放一区| 久久伊人香网站| 欧美性感艳星| 国产精品一区二区性色av| 中文字幕免费在线视频6| 有码 亚洲区| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 亚洲国产欧洲综合997久久,| 成人国产综合亚洲| 在线免费观看不下载黄p国产 | 欧美成狂野欧美在线观看| 精品久久久久久久久亚洲 | av天堂在线播放| 日本一本二区三区精品| 精品免费久久久久久久清纯| 精品人妻偷拍中文字幕| 亚洲第一电影网av| 亚洲av一区综合| 成人av一区二区三区在线看| 丰满人妻熟妇乱又伦精品不卡| 亚洲狠狠婷婷综合久久图片| 午夜福利在线观看免费完整高清在 | 亚洲一区二区三区色噜噜| 校园春色视频在线观看| 成人特级av手机在线观看| 亚洲中文字幕日韩| 老司机福利观看| 亚洲av电影在线进入| 精品国产亚洲在线| 欧美另类亚洲清纯唯美| 午夜福利免费观看在线| 精品国产亚洲在线| 免费黄网站久久成人精品 | 又黄又爽又免费观看的视频| 久久久国产成人免费| 国产高清激情床上av| 国产午夜精品论理片| 国产淫片久久久久久久久 | 精品午夜福利视频在线观看一区| 国产精品日韩av在线免费观看| 欧美日韩综合久久久久久 | 观看免费一级毛片| 欧美zozozo另类| 久久久久亚洲av毛片大全| 亚洲在线自拍视频| 最近最新免费中文字幕在线| 午夜福利18|