• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表觀遺傳對(duì)老年人群抗精神病藥療效的調(diào)節(jié):組蛋白脫乙酰基酶抑制劑的臨床前研究

    2014-01-23 10:56:52董紅心JanitzaMontalvoOrtizJohnCsernansky
    關(guān)鍵詞:精神病學(xué)乙?;?/a>西北大學(xué)

    董紅心,Janitza Montalvo-Ortiz,John Csernansky

    (西北大學(xué)芬伯格醫(yī)學(xué)院 精神病學(xué)和行為科學(xué)教研室,芝加哥 美國(guó))

    Elderly individuals (65 years and older) are accelerating with the remarkable increases in life expectancy. United nations study expects that the population aging will continue growing form 524 million in 2010 to nearly 1.5 billion in 2050 (United Nations. World Population Prospects: The 2010 Revision. http://esa.un.org/unpd/wpp). Many individuals in this rapidly increasing population suffer from neurodegenerative and psychiatric disorders and require antipsychotic treatment. However, the vast majority of drug treatments currently available for such disorders have reduced therapeutic efficacy and increased adverse effects in the elderly[1-3]. Many factors could contribute to the decreased efficacy and tolerability of treatments in the elderly, including physiological and pharmacokinetic effects as well as comorbid medical illnesses (such as liver and kidney problems) that make individuals more vulnerable to drug-drug interactions[4]. The various complications that arise with aging demand the identification of novel pharmacotherapeutic approaches that enhance the efficacy of treatment and minimize side effects[5]. In this review, we provide some updates on our knowledge regarding aging induced changes of antipsychotic efficacy; aging induced epigenetic modification and the impact of histone deacetylese inhibitors(HDAcis) on aging induced antipsychotic effects in animal models. We also discuss the clinical relevance of HDACis effect on psychosis and antipsychotic efficacy.

    1 Antipsychotic efficacy in aging

    Antipsychotic medications currently prescribed include first-generation antipsychotics (also called typical antipsychotics, such as haloperidol) and second-generation antipsychotics (also called atypical antipsychotics, such as clozapine). Typical antipsychotic drugs are dopamine receptor 2(D2) antagonists within the mesocortex and limbic system leading to extrapyramidal side effects (EPS) in ~50% of elderly patients due to its action on the nigrostriatal pathway[6]. Atypical antipsychotic drugs have greater potency for antagonizing serotonin receptors(5-HT2A)and are more active in the limbic system than in the striatal with lower risk of EPS effects but increase the possibility of the body weight gain[7]. The complex receptor profiles of D2, 5-HT2A and other monoamine receptors of antipsychotics are related to gene modulation and signaling transduction mechanisms[8]. For example, activation of the immediate-early gene family such asc-fosgene has been associated with drug properties in the central nervous system (CNS) of rodent. Both typical and atypical antipsychotics induce c-Fos expression in specific brain regions, including the striatum and prefrontal cortex and specific drugs induce differential expression patterns which may reflect the drug activity[9-11]. The difference of specific c-Fos expression pattern in the sub-regions of brain may be related to the different effects of these two types of antipsychotics on brain function, efficacy, and tolerability of treatments[9,12-14]. There is also a difference between acute and chronic antipsychotic stimuli in neuronal response and this correlates with alterations in neuronal activation reflected by c-Fos expression in particular brain regions[15-16]. Additionally, c-Fos expression patterns are also applied to evaluate new compound of antipsychotics[17-18]. Therefore, expression of c-Fos is a good indicator of antipsychotic drug effects although the exact function and consequence of c-Fos expression after antipsychotic medication is not known.

    Antipsychotic drugs are widely prescribed to elderly patients for the treatment of a variety of psychopathological conditions, including psychosis and behavioral disturbances associated with cognitive impairment. However, recent studies suggest that aging greatly reduces the efficacy of antipsychotic drugs in elderly individuals with dementia associated behavioral disturbances[19-20].Animal studies indicate that c-Fos induction by antipsychotic stimuli is reduced in both nucleus accumbens and prefrontal cortex of aged mice[21-22]. This reduction in antipsychotic efficacy is most likely not the consequence of reduced drug concentrations in the brains as recent evidence shows that aging actually results in increased antipsychotic levels in the CNS[3,23-24]. The uncertain efficacy of these treatments along with an exacerbation of their side effects in this population warrants further investigation into the mechanisms of alterations in antipsychotic effects with aging. Although some studies have indicated that age-related decreases in the density of neurotransmitter receptors (such as dopamine receptors)[25-26]and increased blood-brain barrier (BBB) permeability[3]may influence antipsychotic efficacy in aging, the epigenetic induced pharmacokinetic alterations of these drugs in the aged brain are poorly understood.

    2 Epigenetic modification in aging

    Epigenetic modification is defined as a long-lasting alterations in gene expression that do not result from changes in DNA sequence[27]. The primary representatives of epigenetic modifications include DNA methylation, histone modification and microRNA. The elementary unit of chromatin is the nucleosme-146 base pairs of DNA wrapped in 2.5 loops around an octamaer of core histones H2A, H2B, H3, H4. The chromatin fiber consists of nucleosomal arrays connected by linker DNA and link histone. DNA methylation is the one of the most common epigenetic modification during brain development and aging resulting in repression of gene transcriptional activity[28]. Another important epigenetic regulation of chromatin is histone modifications that often display a complex process[29-30]. Histone acetylation, methylation and phosphorylation illustrate most histone modifications on a large number of modified residues in histone tails at specific gene sites such as the gene promoters[31]. Histone acetylation is the most well known and is associated with a more flexible and “open” chromatin state, thereby facilitating gene expression[32]. Histone acetylation is regulated by two functional oppose enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are commonly divided into 4 classes based on their sequence homology to the yeast original enzymes and domain organization[33], including class I (HDAC 1,2,3, 8), class IIa (HDAC 4,5,7,9) and class IIb ( HDAC 6,10). class III (sirtuins 1-7) and class IV(HDAC 11). Since all these HDACs are defined by a zinc ion site in the catalytic-binding pocket, many classical HDAC inhibitors are unspecific and act on multiple HDACs[33]. Histone modifications serve the role of allotting the genome into “active” or euchromatin, in which DNA is accessible for transcription, and “inactive” or heterochromatin, in which DNA is inaccessible for transcription[31].

    Aging and age-related diseases are associated with changes in the genome that may contribute to the deterioration of appropriate gene regulation. Previous studies have found that epigenetic changes that modulate chromatin remodeling in certain genes increase with age. These changes can occur through DNA methylation processes at specific sites in the genome known as the CpG islands. Changes in methylation patterns have been found to occur during aging[34]. Histone modifications have also been found to increase with aging. Acetylation levels in specific histones in the liver were significantly lower in aged than young rats which suggests a dampened age-related gene activity modulated by histone modification mechanisms[35]. Additionally, increased levels of HDAC and decreased levels of HTA have been seen in aged cells, leading to the disruption of “chromatin homeostasis”[36]. Overall, accumulation of these epigenetic changes may contribute to the deterioration of gene regulation by triggering events such as increases in reactive oxygen species, neuroendocrine dysfunction, and neuronal degeneration.

    Epigenetic drift in the brain likely occurs during aging and results in altered gene expression patterns that compromise function and cellular adaptations to environmental stimuli[37], including stimuli that are related to learning and memory[22,38]. For instance, a recent study found that age-related decreases ofArcgene transcription in the hippocampus is mediated by DNA methylation and results in decreased gene transcription, decreased plasticity, and disruptions in memory storage and retrieval processes[39]. Histone modifications have also been found to have a role in age-related memory impairment. Recent data suggests that decreases in acetylated H4 lysine 12 (H4K12ac) of learning-induced genes in the aged hippocampus may be associated with memory consolidation deficits[40].

    3 Epigenetic modification in drug efficacy

    One of the recent efforts of epigenetic research is to target pharmacological treatments that may correct epigenetic defects related to the phenotype of diseases[41-42], optimize the effects of other current drug therapies[43-44], and predict clinical outcomes as a diagnostic tool[45-46]. So far, there are certain distinct epigenetic therapies for the treatment of diseases such as cancer, myelodysplastic syndrome, and neurological disorders[46-47]that either have been approved by the Food and Drug Administration (FDA) or are currently in clinical trials. These drugs exert their effects through two different epigenetic mechanisms-DNA methylation (such as inhibiting DNA methyltransferases, DNMTs) or histone modification (such as inhibiting HDACs)[48]. Among these epigenetic therapies, histone modulators have been used in clinic settings. For instance, HDACi valproic acid(VPA), commonly used as an anticonvulsant drug for epileptic patients, has been shown to optimize treatments for bipolar disorder[5,49], thyroid carcinoma[50]and amyotropic lateral sclerosis (ALS)[51]. Moreover, it has been proposed as a potential co-treatment for neurodegenerative diseases[52], schizophrenia and bipolar disorder[43-44]. In addition, animal studies indicate that VPA could reverse age- associated memory impairment[53-54]. MS-275, currently in a clinic trials for treatment of Leukemia[55], exhibits an anti-inflammatory reaction in the experimental autoimmune neuritis[56]and an antidepressant function[57-58]. Whether epigenetic regulation plays a role in the optimization of therapeutic drugs for the elderly population has not yet been fully explored.

    4 Effects of HDACis on antipsychotic efficacy in aging

    HDAC inhibitors have been used to increase acetylated levels of genes, thus restoring the expression of genes that are compromised during aging[40,59]. In addition, preclinical and clinical studies have found that VPA, a class I HDAC;can augment the therapeutic effects of antipsychotics[43,60]. More interestingly, inhibiting HDAC has been found to induce therapeutic effects in several neurodegenerative and psychiatry diseases[61-64]. However, it is not known whether these beneficial effects modulated by histone deacetylases inhibitors could also be extend to therapeutic treatments for elderly neuropsychiatric patients by reversing age-related epigenetic changes involved in reduced drug efficacy and augmentation of side effects.

    Since 2010, our group has started to investigate age-related epigenetic alterations impacting on the behavioral and molecular effects of antipsychotic drugs and whether HDACis could mitigate these effects[65]. We evaluated the effects of HDACis on a representative typical antipsychotic drug haloperidol (HAL) efficacy in mice using conditioned avoidance response (CAR). CAR paradigm is a well-established test for assessing antipsychotic drug efficacy in preclinical studies[66]. Both typical and atypical antipsychotics selectively suppress the avoidance response. In our study, we found that the capacity of HAL to suppress the avoidance response was diminished in aged mice. Then we investigate antipsychotic drugs induced the expression ofc-fosgene in the nucleus accumbens shell, which is one of the key neural sites of antipsychotic action[9,16,67]in both typical and atypical antipsychotic drugs and is related to the therapeutic properties of antipsychotics[9,68]. We also select the prefrontal cortex as another target as it recently has been identified as another brain sub-region area that may be involved in antipsychotic efficacy[69]. In our study, we found age-related decreases in c-Fos expression in the nucleus accumbens shell and prefrontal cortex of HAL-treated mice that were correlated with histone hypoacetylation at thec-fospromoter region. However, the histone acetylation markers H3K27 and H4K12 atc-fospromoter were differentially in the nucleus accumbens shell and prefrontal cortex. These brain-region-specific changes in the acetylation of H4K12 could reflect age-related decreases in histone acetylation. The differences observed in acetylation between the nucleus accumbens shell and prefrontal cortex may be related to the more critical involvement of the nucleus accumbens shell in the mediation of antipsychotic efficacy. This notion is supported by a study showing that local application of antipsychotics in this brain region significantly suppresses the avoidance response[16,67]. To evaluate whether HDACi VPA can restore the behavioral effects of HAL in aged mice, we used the CAR test and found that pretreatment with VPA restored the ability of HAL to suppress the avoidance response in aged mice and in a manner that was probably associated with the modulation of histone acetylation. To further confirm the restoration of the effects of HAL on c-Fos levels in the nucleus accumbens shell and prefrontal cortex is mediated by histone acetylation modulation, we examined an additional HDACi MS-275. We again found that pretreatment of MS-275 restored the ability of HAL to suppress the avoidance response and increase the c-fos expression in aged mice. Although both compounds are class I HDAC inhibitors, the structure and function of VPA and MS-275 differ. While VPA is a broad-acting class I HDAC inhibitor, MS-275 is more selective for HDAC1 (IC50=300 nM) over HDAC3 (IC50=8 μM)[70-71]Additionally, MS-275 may have more potent and long-lasting effects than VPA[72].Our study suggest that pretreatment of HDACi VPA or MS-275 increases the behavioral, cellular and molecular effects of HAL in aged mice and that these effects occur via modification of age-related histone hypoacetylation in the nucleus accumbens shell and prefrontal cortex.

    5 Implications of HDLCi for clinical application

    Preclinical findings from molecular biology to behavioral outcomes indicate that HDACi are not only effective drugs to fight cancer, but these drugs provide a potential and promising option for treatment of several psychiatric disorders[70,73]. However, apart from VPA, there is no active clinical trials for HDACi on treatment of patients suffering from any psychosis has been registered at www.clinicaltrials.gov, and no HDACi has been investigated in the experiments of patients suffering from neuropsychiatric problems of different age. It is known that VPA can influence neuronal activity through mechanisms other than epigenetic regulation. For example, VPA affects GABAergic and glutamatergic systems, kinase pathways, and gene expression and transcription factors. VPA has also emerged as an anti-neoplastic agent that can influence cell growth, differentiation, and apoptosis. In addition, VPA displays a neuroprotective function in several animal models of neurodegenerative diseases[74]. However, recent findings suggest that all of these diverse actions of VPA may be mediated through its action as a HDACi[62,75]. One of the obstacles of using HDACis in the clinic is the broad side effects due to that HDACi could affect mitotic and post-mitotic cells (e.g. neurons), although HDACi show large differences in their side effect profiles owing to different molecular structures, pharmacokinetics and pharmacodynamics[70]. Most research believes that there are a number of issues that still need to been addressed before any new HDACi would be approved for treatment of neuropsychiatric disorders[70,73]. These issues include 1) The central nervous system specificity and bioavailability of HDACi;2) identification of sensitive biomarkers to evaluation of HDACi treatment outcomes;3) use of HDACi as monotherapy or added to an ongoing antipsychotic for a combination treatment;4) reduction of HDACi side effects.

    6 Conclusion and future direction

    Growing research evidence provides new insights into the epigenetic mechanisms that may be involved in mediating the effects of aging on the brain function. These constitute a combination of factors that can decrease the quality of life of elderly individuals and may have a substantial impact on the efficacy and tolerability of medications. HDACi are very promising agents that may be a useful strategy for restoring the normative effects of antipsychotics and possibly for augmenting the clinical efficacy in aged patients.

    More selective subtypes of class I HDACi to identify specific epigenetic changes that are involved in influencing the efficacy of HAL and other antipsychotic drugs under a variety of physiological conditions will further confirm the therapy potential of HDACi in neuropsychiatric conditions. Moreover, future studies involving the study of age-related changes in the brain’s dopaminergic system may help to identify the specific molecular mechanisms that underlie how aging may be related to other effects of antipsychotic drugs, such as their acute and chronic neurological side effects.

    [References]

    [1] Hien le T T, Cumming R G, Cameron I D, et al. Atypical antipsychotic medications and risk of falls in residents of aged care facilities [J]. J Am Geriatr Soc, 2005,53(8):1290-1295.

    [2] Schneider L S, Dagerman K S, Insel P.Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials [J]. Jama, 2005,294(15):1934-1943.

    [3] Uchida H, Mamo D C, Mulsant H, et al. Increased antipsychotic sensitivity in elderly patients: evidence and mechanisms [J]. J Clin Psychiatry, 2009,70(3):397-405.

    [4] Pinner G, Bouman W P. To tell or not to tell: on disclosing the diagnosis of dementia [J]. Int Psychogeriatr, 2002,14(2):127-137.

    [5] Mitchell C, Blaho J A, Roizman B. Casein kinase II specifically nucleotidylylates in vitro the amino acid sequence of the protein encoded by the alpha 22 gene of herpes simplex virus 1 [J]. Proc Natl Acad Sci USA, 1994,91(25):11864-11868.

    [6] Avorn J, Monane M, Everitt D E, et al. Clinical assessment of extrapyramidal signs in nursing home patients given antipsychotic medication [J]. Arch Intern Med, 1994,154(10):1113-1117.

    [7] Deng C. Effects of antipsychotic medications on appetite, weight, and insulin resistance [J]. Endocrinology and metabolism clinics of North America, 2013,42(3):545-563.

    [8] Valjent E, Bertran-Gonzalez J, Bowling H, et al. Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32 [J]. Neuropsychopharmacology, 2011,36(12):2561-2570.

    [9] Robertson G S, Matsumura H, Fibiger H C. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity [J]. J Pharmacol Exp Ther, 1994,271(2):1058-1066.

    [10] Hiroi N, Graybiel A M. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum [J]. J Comp Neurol, 1996,374(1):70-83.

    [11] Atkins J B, Chlan-Fourney J, Nye H E, et al. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs [J]. Synapse, 1999,33(2):118-128.

    [12] Morgan J I, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun [J]. Annu Rev Neurosci, 1991,14:421-451.

    [13] Kiss A, Bundzikova J, Pirnik Z, et al. Different antipsychotics elicit different effects on magnocellular oxytocinergic and vasopressinergic neurons as revealed by Fos immunohistochemistry [J]. J Neurosci Res, 2010,88(3):677-685.

    [14] Zhao C, Li M. c-Fos identification of neuroanatomical sites associated with haloperidol and clozapine disruption of maternal behavior in the rat [J]. Neuroscience, 2010,166(4):1043-1055.

    [15] Sebens J B, Koch T, Ter Horst G J, et al. Differential Fos-protein induction in rat forebrain regions after acute and long-term haloperidol and clozapine treatment [J]. Eur J Pharmacol, 1995,273(1-2):175-182.

    [16] Semba J, Sakai M W, Suhara T, et al. Differential effects of acute and chronic treatment with typical and atypical neuroleptics on c-fos mRNA expression in rat forebrain regions using non-radioactive in situ hybridization [J]. Neurochem Int, 1999,34(4):269-277.

    [17] Natesan S, Reckless G E, Barlow K B, et al. The antipsychotic potential of l-stepholidine--a naturally occurring dopamine receptor D1 agonist and D2 antagonist [J]. Psychopharmacology (Berl), 2008,199(2):275-289.

    [18] Ohno Y, Okano M, Imaki J, et al. Atypical antipsychotic properties of blonanserin, a novel dopamine D2 and 5-HT2A antagonist [J]. Pharmacol Biochem Behav, 2010,96(2):175-180.

    [19] Schneider L S, Tariot P N, Dagerman K S, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer’s disease [J]. N Engl J Med, 2006,355(15):1525-1538.

    [20] Azermai M, Petrovic M, Engelborghs S, et al. The effects of abrupt antipsychotic discontinuation in cognitively impaired older persons: a pilot study [J]. Aging & mental health, 2013,17(1):125-132.

    [21] Nagahara A H, Handa R J. Age-related changes in c-fos mRNA induction after open-field exposure in the rat brain [J]. Neurobiol Aging, 1997,18(1):45-55.

    [22] Burke S N, Barnes C A. Neural plasticity in the ageing brain [J]. Nat Rev Neurosci, 2006,7(1):30-40.

    [23] Leon C, Gerretsen P, Uchida H, et al. Sensitivity to antipsychotic drugs in older adults [J]. Curr Psychiatry Rep, 2010,12(1):28-33.

    [24] Kapetanovic I M, Sweeney D J, Rapoport S I. Age effects on haloperidol pharmacokinetics in male, Fischer-344 rats [J]. J Pharmacol Exp Ther,1982,221(2):434-438.

    [25] Ishibashi K, Ishii K, Oda K, et al. Regional analysis of age-related decline in dopamine transporters and dopamine D2-like receptors in human striatum [J]. Synapse, 2009,63(4):282-290.

    [26] Trifirò G, Spina E. Age-related Changes in Pharmacodynamics: Focus on Drugs Acting on Central Nervous and Cardiovascular Systems [J]. Curr Drug Metab, 2011,12(7):611-620.

    [27] Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals [J]. Nat Rev Genet, 2012,13(3):153-162.

    [28] Moore L D, Le T, Fan G. DNA methylation and its basic function [J]. Neuropsychopharmacology, 2013,38(1):23-38.

    [29] Taverna S D, Li H, Ruthenburg A J, et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers [J]. Nat Struct Mol Biol, 2007,14(11):1025-1040.

    [30] Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification [J]. Cell, 2011,146(6):1016-1028.

    [31] Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007,128(4):693-705.

    [32] Hasan A, Mitchell A, Schneider A, et al. Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors [J]. Eur Arch Psychiatry Clin Neurosci,2013,263(4):273-284.

    [33] Dokmanovic M, Clarke C, Marks P A. Histone deacetylase inhibitors: overview and perspectives [J]. Mol Cancer Res, 2007,5(10):981-989.

    [34] Siegmund K D, Connor C M, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons [J]. PLoS One, 2007,2(9):e895.

    [35] Kawakami K, Nakamura A, Ishigami A, et al. Age-related difference of site-specific histone modifications in rat liver [J]. Biogerontology, 2009,10(4):415-421.

    [36] Willis-Martinez D, Richards H W, Timchenko N A, et al. Role of HDAC1 in senescence, aging, and cancer [J]. Exp Gerontol, 2010, 45(4):279-285.

    [37] Desjardins S, Mayo W, Vallee M, et al. Effect of aging on the basal expression of c-Fos, c-Jun, and Egr-1 proteins in the hippocampus [J]. Neurobiol Aging, 1997,18(1):37-44.

    [38] Tanic N, Perovic M, Mladenovic A, et al. Effects of aging, dietary restriction and glucocorticoid treatment on housekeeping gene expression in rat cortex and hippocampus-evaluation by real time RT-PCR [J]. J Mol Neurosci, 2007,32(1):38-46.

    [39] Penner M R, Roth T L, Chawla M K, et al. Age-related changes in Arc transcription and DNA methylation within the hippocampus [J]. Neurobiol Aging, 2011,32(12):2198-2210.

    [40] Peleg S, Sananbenesi F, Zovoilis A, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice[J].Science, 2010,328(5979):753-756.

    [41] Tremolizzo L, Doueiri M S, Dong E, et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice [J]. Biol Psychiatry, 2005,57(5):500-509.

    [42] Gavin D P, Sharma R P. Histone modifications, DNA methylation, and schizophrenia [J]. Neurosci Biobehav Rev, 2010,34(6):882-888.

    [43] Guidotti A, Dong E, Kundakovic M, et al. Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling [J]. Trends Pharmacol Sci, 2009,30(2):55-60.

    [44] Dong E, Nelson M, Grayson D R, et al. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation [J]. Proc Natl Acad Sci U S A, 2008,105(36):13614-13619.

    [45] Seligson D B, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence [J]. Nature, 435:1262-1266.

    [46] Kelly T K, De Carvalho D D, Jones P A. Epigenetic modifications as therapeutic targets [J]. Nat Biotechnol, 2010,28(10):1069-1078.

    [47] Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs [J]. Annu Rev Pharmacol Toxicol, 2009,49:243-263.

    [48] Peedicayil J. Epigenetic therapy-a new development in pharmacology [J]. Indian J Med Res, 2006,123(1):17-24.

    [49] Walden J, Hesslinger B, van Calker D, et al. Addition of lamotrigine to valproate may enhance efficacy in the treatment of bipolar affective disorder [J]. Pharmacopsychiatry,1996,29(5):193-195.

    [50] Noguchi H, Yamashita H, Murakami T, et al. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery [J]. Endocr J, 2009,56(2):245-249.

    [51] Feng H, Zhang H, Hong L, et al. The “l(fā)ateral gutter drive-through” sign: an arthroscopic indicator of acute femoral avulsion of the popliteus tendon in knee joints [J]. Arthroscopy, 2009,25(12):1496-1499.

    [52] Nalivaeva N N, Belyaev N D, Turner A J. Sodium valproate: an old drug with new roles [J]. Trends Pharmacol Sci, 2009,30(10):509-514.

    [53] Murphy K J, Fox G B, Foley A G, et al. Pentyl-4-yn-valproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe [J]. J Neurochem, 2001,78(4):704-714.

    [54] Foley A G, Gallagher H C, Murphy K J, et al. Pentyl-4-yn-valproic acid reverses age-associated memory impairment in the Wistar rat [J]. Neurobiol Aging, 2004,25(4):539-546.

    [55] Gojo I, Jiemjit A, Trepel J B, et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias [J]. Blood, 2007,109(7):2781-2790.

    [56] Zhang Z Y, Zhang Z, Schluesener H J. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis [J]. Neuroscience, 2010,169(1):370-377.

    [57] Covington H E,3rd, Maze I, LaPlant Q C, et al. Antidepressant actions of histone deacetylase inhibitors [J]. J Neurosci, 2009,29(37):11451-11460.

    [58] Lin H, Geng X, Dang W, et al. Molecular mechanisms associated with the antidepressant effects of the class I histone deacetylase inhibitor MS-275 in the rat ventrolateral orbital cortex [J]. Brain Res, 2012,1447:119-125.

    [59] Tang B, Dean B, Thomas E A. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders [J]. Transl Psychiatry, 2011,1:e64.

    [60] Suzuki T, Uchida H, Takeuchi H, et al. Augmentation of atypical antipsychotics with valproic acid. An open-label study for most difficult patients with schizophrenia [J]. Hum Psychopharmacol, 2009,24(8):628-638.

    [61] Abel T, Zukin R S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders [J]. Curr Opin Pharmacol, 2008,8(1):57-64.

    [62] Chuang D M, Leng Y, Marinova Z, et al. Multiple roles of HDAC inhibition in neurodegenerative conditions [J]. Trends Neurosci, 2009,32(11):591-601.

    [63] Dash P K, Orsi S A, Moore A N. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury [J]. Neuroscience, 2009,163(1):1-8.

    [64] Gr?ff J, Mansuy I M. Epigenetic dysregulation in cognitive disorders [J]. Eur J Neurosci, 2009,30(1):1-8.

    [65] Montalvo-Ortiz J L, Keegan J, Gallardo C, et al. HDAC Inhibitors Restore the Capacity of Aged Mice to Respond to Haloperidol through Modulation of Histone Acetylation [J]. Neuropsychopharmacology, 2013, doi: 10.1038/npp. 2013.346. [Epub ahead of print].

    [66] Wadenberg M L. Conditioned avoidance response in the development of new antipsychotics [J]. Curr Pharm Des, 2010,16(3):358-370.

    [67] Deutch A Y, Lee M C, Iadarola M J. Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action [J]. Mol Cell Neurosci, 1992,3(4):332-341.

    [68] Lieberman J A, Bymaster F P, Meltzer H Y, et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection [J]. Pharmacol Rev, 2008,60(3):358-403.

    [69] Wadenberg M L, Wiker C, Svensson T H. Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence [J]. Int J Neuropsychopharmacol, 2007,10(2):191-202.

    [70] Kazantsev A G, Thompson L M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders [J]. Nat Rev Drug Discov,2008,7(10):854-868.

    [71] Khan N, Jeffers M, Kumar S, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors [J]. Biochem J, 2008,409(2):581-589.

    [72] Simonini M V, Camargo L M, Dong E, et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases [J]. Proc Natl Acad Sci USA, 2006,103(5):1587-1592.

    [73] Grayson D R, Kundakovic M, Sharma R P. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders [J]? Molecular pharmacology, 2010,77(2):126-135.

    [74] Nuutinen T, Suuronen T, Kauppinen A, et al. Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer’s disease [J]. Neurosci Lett, 2010,475(2):64-68.

    [75] Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection [J]. Curr Mol Pharmacol, 2009,2(1):95-109.

    猜你喜歡
    精神病學(xué)乙酰基西北大學(xué)
    魔芋葡甘露聚糖脫乙?;z化研究及應(yīng)用
    西北大學(xué)木香文學(xué)社
    基因決定了 你們會(huì)是好朋友
    制絲關(guān)鍵工藝參數(shù)對(duì)雜環(huán)化合物的影響
    云南化工(2020年4期)2020-05-19 09:15:24
    淺析丙硫菌唑合成新工藝
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    氣相法檢測(cè)α-乙?;?α-氯-γ-丁內(nèi)酯的含量
    安徽化工(2018年5期)2018-10-23 03:22:34
    《我們》、《疑惑》
    西北大學(xué)博物館
    四個(gè)字
    最近最新免费中文字幕在线| 久久精品91蜜桃| 久久婷婷成人综合色麻豆| 国产真人三级小视频在线观看| 亚洲人成77777在线视频| 黄片大片在线免费观看| 最新美女视频免费是黄的| 99国产精品一区二区三区| 亚洲 国产 在线| 亚洲国产欧洲综合997久久,| 午夜精品久久久久久毛片777| 精品久久久久久成人av| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 久久久久久大精品| 亚洲人成电影免费在线| 色综合婷婷激情| 一进一出抽搐gif免费好疼| 精品乱码久久久久久99久播| 这个男人来自地球电影免费观看| 日韩欧美在线二视频| www日本在线高清视频| 日韩欧美国产一区二区入口| 九九热线精品视视频播放| 别揉我奶头~嗯~啊~动态视频| 精品第一国产精品| 我的老师免费观看完整版| 99热只有精品国产| 久久久国产成人免费| 久久人妻av系列| 女同久久另类99精品国产91| 88av欧美| 亚洲成人久久爱视频| 成人欧美大片| av天堂在线播放| 精品久久久久久久毛片微露脸| 可以在线观看的亚洲视频| 免费观看精品视频网站| 97碰自拍视频| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 国产野战对白在线观看| 欧美zozozo另类| 91麻豆av在线| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 黄片大片在线免费观看| 国产激情偷乱视频一区二区| 亚洲精品一区av在线观看| 欧美性猛交╳xxx乱大交人| 老司机午夜十八禁免费视频| 超碰成人久久| 草草在线视频免费看| 国产精品久久久久久人妻精品电影| 久久久国产成人精品二区| 成人永久免费在线观看视频| 午夜a级毛片| 免费搜索国产男女视频| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 久久 成人 亚洲| 日本免费一区二区三区高清不卡| av有码第一页| 久久久久性生活片| 岛国在线观看网站| 国产私拍福利视频在线观看| www.www免费av| 久久午夜综合久久蜜桃| 两个人的视频大全免费| 我要搜黄色片| √禁漫天堂资源中文www| 国内精品一区二区在线观看| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 蜜桃久久精品国产亚洲av| 精品福利观看| 国产精品久久久久久精品电影| 18美女黄网站色大片免费观看| 精品久久久久久久久久久久久| av福利片在线观看| 天堂√8在线中文| 在线观看日韩欧美| 亚洲午夜理论影院| 午夜a级毛片| 精品久久久久久久末码| 人妻丰满熟妇av一区二区三区| 国产99白浆流出| 一二三四社区在线视频社区8| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 亚洲国产精品999在线| 亚洲av熟女| 国产成人啪精品午夜网站| 在线a可以看的网站| 久久天堂一区二区三区四区| 免费在线观看黄色视频的| 久久久久久久久中文| 最好的美女福利视频网| 日韩av在线大香蕉| 欧美一级a爱片免费观看看 | 高清毛片免费观看视频网站| 麻豆一二三区av精品| av天堂在线播放| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 久久草成人影院| 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 国产视频内射| 免费无遮挡裸体视频| 精品国产美女av久久久久小说| a级毛片a级免费在线| 后天国语完整版免费观看| 精品第一国产精品| 超碰成人久久| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 国产午夜精品论理片| 亚洲国产看品久久| 国产av又大| 日韩欧美在线乱码| 国产免费av片在线观看野外av| 成人手机av| 日日爽夜夜爽网站| 搡老岳熟女国产| 一个人观看的视频www高清免费观看 | 亚洲欧美激情综合另类| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美在线一区二区| 熟女少妇亚洲综合色aaa.| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 亚洲av电影不卡..在线观看| 国产精品综合久久久久久久免费| 久久中文字幕一级| 男女那种视频在线观看| 成人三级黄色视频| 99riav亚洲国产免费| 午夜精品一区二区三区免费看| 97碰自拍视频| 日韩大码丰满熟妇| 搡老熟女国产l中国老女人| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 婷婷亚洲欧美| 色综合站精品国产| 精品久久蜜臀av无| 12—13女人毛片做爰片一| 免费看美女性在线毛片视频| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线| 岛国在线免费视频观看| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 久久香蕉激情| av免费在线观看网站| 国产av不卡久久| 欧美黄色淫秽网站| 久久香蕉精品热| 九九热线精品视视频播放| 欧美极品一区二区三区四区| 精品国产亚洲在线| 国产成人精品久久二区二区91| 九色国产91popny在线| 午夜福利在线在线| 91国产中文字幕| 91九色精品人成在线观看| 国产精品香港三级国产av潘金莲| 99在线视频只有这里精品首页| 久久久久免费精品人妻一区二区| 国产精品,欧美在线| 日本一区二区免费在线视频| 小说图片视频综合网站| 免费看美女性在线毛片视频| 国产99久久九九免费精品| 国产在线观看jvid| 欧美人与性动交α欧美精品济南到| 好看av亚洲va欧美ⅴa在| 色综合亚洲欧美另类图片| 一级作爱视频免费观看| 99国产精品一区二区三区| 88av欧美| 色综合欧美亚洲国产小说| 全区人妻精品视频| 国产伦人伦偷精品视频| xxx96com| 欧美黑人精品巨大| 国内精品久久久久久久电影| 欧美日韩黄片免| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 99国产极品粉嫩在线观看| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 男女下面进入的视频免费午夜| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美三级三区| www.精华液| 日本免费一区二区三区高清不卡| 久久精品91无色码中文字幕| 亚洲专区字幕在线| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 人人妻人人看人人澡| 一区福利在线观看| 久久精品国产99精品国产亚洲性色| 欧美三级亚洲精品| 亚洲国产欧美一区二区综合| 国产伦在线观看视频一区| 免费在线观看完整版高清| 夜夜夜夜夜久久久久| 午夜两性在线视频| 亚洲国产精品成人综合色| 看免费av毛片| 国内揄拍国产精品人妻在线| 国产成人欧美在线观看| 男人舔奶头视频| 中国美女看黄片| 中文资源天堂在线| 变态另类丝袜制服| 91大片在线观看| 久久人人精品亚洲av| 青草久久国产| 老司机在亚洲福利影院| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 两性午夜刺激爽爽歪歪视频在线观看 | 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 国产成人aa在线观看| av福利片在线观看| 人成视频在线观看免费观看| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 夜夜躁狠狠躁天天躁| av在线播放免费不卡| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 可以在线观看毛片的网站| 日韩欧美一区二区三区在线观看| 夜夜夜夜夜久久久久| 两个人的视频大全免费| 成人手机av| 亚洲色图av天堂| 天天添夜夜摸| 两个人看的免费小视频| 香蕉av资源在线| 97超级碰碰碰精品色视频在线观看| 欧美三级亚洲精品| 久久久久九九精品影院| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 国产精品一及| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 久久久国产成人免费| 又紧又爽又黄一区二区| 国产高清有码在线观看视频 | 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 久久亚洲精品不卡| 国产成人欧美在线观看| 色在线成人网| bbb黄色大片| 国产精品久久久久久久电影 | 叶爱在线成人免费视频播放| 一级毛片高清免费大全| 久久香蕉国产精品| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 日本在线视频免费播放| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品sss在线观看| 午夜精品久久久久久毛片777| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 搞女人的毛片| 免费观看人在逋| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 99热这里只有是精品50| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 亚洲中文字幕一区二区三区有码在线看 | 男人的好看免费观看在线视频 | 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三| 母亲3免费完整高清在线观看| 国产精品亚洲美女久久久| 欧美一区二区国产精品久久精品 | 国产精品久久久av美女十八| 亚洲免费av在线视频| 久久精品人妻少妇| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 999久久久国产精品视频| 真人一进一出gif抽搐免费| 亚洲熟女毛片儿| 色播亚洲综合网| 一本大道久久a久久精品| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 久久香蕉国产精品| 精品高清国产在线一区| 天堂动漫精品| 中文字幕久久专区| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 国产av不卡久久| 91老司机精品| 天堂动漫精品| 日日夜夜操网爽| 长腿黑丝高跟| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 成人国产一区最新在线观看| 国产成人影院久久av| www.www免费av| 日日干狠狠操夜夜爽| 国产成人精品久久二区二区免费| 亚洲av美国av| 久久久久性生活片| 国产精品国产高清国产av| 黄色视频不卡| 欧美成人免费av一区二区三区| 一边摸一边做爽爽视频免费| av有码第一页| 黄频高清免费视频| 久久伊人香网站| 99re在线观看精品视频| 99热6这里只有精品| 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 91在线观看av| av有码第一页| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 国产一级毛片七仙女欲春2| 国产精品九九99| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| 亚洲国产日韩欧美精品在线观看 | 日日摸夜夜添夜夜添小说| 亚洲美女视频黄频| 国产视频内射| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 亚洲av成人一区二区三| 国产av一区二区精品久久| 国产日本99.免费观看| 国产99白浆流出| 色播亚洲综合网| 91在线观看av| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 亚洲精品一区av在线观看| 后天国语完整版免费观看| 老熟妇乱子伦视频在线观看| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 国产亚洲精品av在线| 88av欧美| 国产精品 欧美亚洲| 精品久久久久久,| 国产成人aa在线观看| 亚洲中文字幕日韩| 大型av网站在线播放| netflix在线观看网站| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| av中文乱码字幕在线| 1024手机看黄色片| 在线a可以看的网站| а√天堂www在线а√下载| 麻豆一二三区av精品| 亚洲精品色激情综合| 国产精品久久电影中文字幕| 午夜影院日韩av| 日本一区二区免费在线视频| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| 欧美在线黄色| 亚洲免费av在线视频| 亚洲 国产 在线| 真人一进一出gif抽搐免费| 在线a可以看的网站| 国产成人精品无人区| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 高清在线国产一区| 男人舔女人下体高潮全视频| 成人国语在线视频| 18禁观看日本| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 最近最新中文字幕大全免费视频| netflix在线观看网站| 麻豆国产97在线/欧美 | 亚洲 国产 在线| 国产欧美日韩一区二区精品| 小说图片视频综合网站| 69av精品久久久久久| 久久精品亚洲精品国产色婷小说| 色综合站精品国产| 成人一区二区视频在线观看| 老汉色av国产亚洲站长工具| 亚洲av成人精品一区久久| 一级毛片高清免费大全| 国产91精品成人一区二区三区| 精品久久久久久成人av| 美女大奶头视频| 国产区一区二久久| 亚洲精品在线观看二区| 亚洲人与动物交配视频| 12—13女人毛片做爰片一| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 国产成人精品久久二区二区91| 一进一出好大好爽视频| 亚洲精品国产一区二区精华液| 久久久久亚洲av毛片大全| av福利片在线| 久久久久久免费高清国产稀缺| www.www免费av| av福利片在线观看| 色播亚洲综合网| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 一本综合久久免费| 久久中文字幕一级| 国产探花在线观看一区二区| 亚洲国产欧洲综合997久久,| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 香蕉av资源在线| svipshipincom国产片| 五月伊人婷婷丁香| 国产亚洲欧美98| 国产精品久久久久久亚洲av鲁大| 欧美乱妇无乱码| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| АⅤ资源中文在线天堂| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 国产精品永久免费网站| av在线播放免费不卡| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 成年女人毛片免费观看观看9| 免费看a级黄色片| 很黄的视频免费| 国产精品久久久久久亚洲av鲁大| 国产精品美女特级片免费视频播放器 | 成人欧美大片| 九色成人免费人妻av| 搞女人的毛片| 亚洲成av人片免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美大码av| 亚洲人成77777在线视频| 国产精品一区二区精品视频观看| 一本一本综合久久| 国产成人系列免费观看| 夜夜躁狠狠躁天天躁| 在线观看美女被高潮喷水网站 | 亚洲国产精品成人综合色| 999精品在线视频| 女人被狂操c到高潮| 99热只有精品国产| 无限看片的www在线观看| 黄片大片在线免费观看| 久久久国产欧美日韩av| 国产aⅴ精品一区二区三区波| 精品久久久久久久毛片微露脸| av免费在线观看网站| 国产麻豆成人av免费视频| 国产精品香港三级国产av潘金莲| 亚洲精品av麻豆狂野| 亚洲av熟女| 成人av一区二区三区在线看| 精品日产1卡2卡| 天堂动漫精品| 757午夜福利合集在线观看| 麻豆国产av国片精品| 欧美在线黄色| 国产av麻豆久久久久久久| 欧美在线一区亚洲| 国产高清视频在线播放一区| 国产激情久久老熟女| 亚洲国产欧美人成| 亚洲精品一卡2卡三卡4卡5卡| 99久久国产精品久久久| 国产精品久久久人人做人人爽| 看黄色毛片网站| 亚洲国产欧美一区二区综合| 国产三级中文精品| 国产人伦9x9x在线观看| 极品教师在线免费播放| 亚洲精品在线美女| 三级毛片av免费| 精品久久久久久,| 亚洲男人的天堂狠狠| 一区二区三区国产精品乱码| 中文字幕人成人乱码亚洲影| 国产日本99.免费观看| 亚洲专区中文字幕在线| 制服诱惑二区| 在线观看www视频免费| 成年人黄色毛片网站| 亚洲一区二区三区色噜噜| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆| 成人亚洲精品av一区二区| 两个人免费观看高清视频| 精品久久久久久久久久久久久| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 亚洲一码二码三码区别大吗| av福利片在线观看| 欧美乱妇无乱码| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 99久久精品热视频| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 母亲3免费完整高清在线观看| 亚洲成人免费电影在线观看| 免费在线观看黄色视频的| 久久久国产欧美日韩av| 日本三级黄在线观看| 国产成年人精品一区二区| 日韩欧美在线乱码| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 久久久久国产一级毛片高清牌| 国产三级黄色录像| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色| 九色成人免费人妻av| 在线a可以看的网站| www国产在线视频色| 国产黄a三级三级三级人| 国产黄片美女视频| e午夜精品久久久久久久| 99精品欧美一区二区三区四区| 曰老女人黄片| 亚洲成a人片在线一区二区| 免费高清视频大片| 天天一区二区日本电影三级| 无人区码免费观看不卡| 久久中文看片网| 激情在线观看视频在线高清| 亚洲欧美激情综合另类| 十八禁网站免费在线| 欧美日韩精品网址| 国产69精品久久久久777片 | 一个人观看的视频www高清免费观看 | 国产亚洲精品久久久久久毛片| 亚洲第一欧美日韩一区二区三区| 久久久久久久午夜电影| 亚洲人成网站在线播放欧美日韩| 特大巨黑吊av在线直播|