• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微生物群與腸道炎癥

    2014-01-23 06:17:57金大鵬
    關(guān)鍵詞:拉什醫(yī)學(xué)中心芝加哥

    孫 俊,金大鵬

    (拉什大學(xué) 醫(yī)學(xué)中心生物化學(xué)系,伊利諾伊斯 芝加哥 60612,美國(guó))

    Inflammatory bowel diseases (IBD) include Crohn’s disease (CD) and ulcerative colitis (UC). It is a well-accepted theory that the interactions of various factors contribute to chronic intestinal inflammation in a genetically susceptible host. These factors include genetic risks, environmental triggers, immune responses, and gut bacteria[1]. Many recent reports have strongly indicated that gut microbiome is an essential factor driving the inflammatory process in human IBD[1-2]. In this review, we introduced the general functions of gut bacteria, the association of microbiome and IBD, the experimental models to study microbiome, and the clinical applications of microbiota in IBD. We also discussed the potential therapeutic strategies that can be used to manipulate the gut microbiota, recognizing the limits and challenges in the field.

    1 The gut flora is an organ in human body

    In traditional medical textbooks, the concept of gut flora or microbiome is hardly discussed. The gut flora is a forgotten organ[3]. The contribution of gut microbiome to pathogenesis is largely unknown until recent years due to the significant progress in the microbiome field. The 2005 Nobel prize in Physiology and Medicine awarded to Robin Warren and Barry Marshall is a reminder that the solution to some human diseases does not reside solely within the host but rather might be found at the interface with the microbial environment. As reviewed by O’Hara AMetal, “the intestine is adapted to bi-directional host-flora exchange and harbors a diverse bacterial community that is separated from the internal milieu by only a single layer of epithelial cells”[3]. The gut flora is of functional importance like “an organ within an organ”[3].

    Bacterial cells within the intestine (commensal microflora) outnumber the eukaryotic cells of the body by about 10 times[4]. Based on cell number, each of us is 90 percent microbial and 10 percent human. Human gut harbors 1 000 to 1 150 microbial species, with the number being at least 160 in each individual[5]. The genomes of our gut flora probably contain 100 times more genes than our own genome. Interestingly, the total weight of gut bacteria is about three pounds (1.36 kg).

    The densities of living bacteria can be as high as 1011or 1012cells/g of luminal contents[6]. These concentrations are similar to those found in colonies growing under optimum conditions over the surface of a laboratory plate[6]. In the stomach and duodenum, the bacteria are 101to 103CFU/mL. In the jejunum, they are 104to 107cfu/ml. The colon has the highest bacterial numbers,i.e., 1012to 1013CFU/mL. It was long believed that the esophagus is sterile. However, recent studies showed that microbiome are associated with the esophagus too. In the human distal esophagus, inflammation and intestinal metaplasia are associated with global alteration of the microbiome. These findings raise the issue of a possible role of dysbiosis in the pathogenesis of reflux-related disorders[7]. It is believed that the majority of gut bacteria are in lumen. A recent study showed that there are crypt-associated bacteria as well[8].

    The proximal colon differs from the distal in that it has higher pH value and active bacterial fermentation[6]. Another key factor influencing the microbial activity and competition is the relative availability of carbohydrate energy sources and nitrogen sources. Less fermentable carbohydrate reaches the distal compared to the proximal colon, leading to differences in the amount of digestible carbohydrate relative to endogenous protein along the colon. Protein-rich diets may increase the amount of dietary protein reaching the large intestine. Peptide supply and pH value can also dramatically alter bacterial populations and short-chain fatty acid composition within microbial communities residing in the human colon[9]. Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This suggests that differences in regional microbiota may exist.

    Routes for initial colonization of intestinal microbiota include birth canal, breast feeding and womb[10]. The bacterial profile differs vastly in vaginally delivered babies from in those delivered by caesarian sections[11]. The gut flora is then shaped by sporadic environmental events, and gradually become globally homeostatic thereafter, if there is no therapeutic or pathogenic intervention[12].

    The structure and composition of the gut flora reflect natural selection at both the microbial and host levels, which promote mutual cooperation within and functional stability of this complex ecosystem[3]. Gut flora participates in a wide variety of physiological functions including fermentation, detoxification, immunomodulation, and exclusion of pathogens[13], which are vital, because in the absence of gut microbiota or with its ablation with broad spectrum antibiotics, and significant consequences can be manifested, e.g. improper development of the gut immune system, development ofC.difficileinfection (CDI) and antibiotic-associated colitis.

    Taken together, it is reasonable to view microbiome as an organized system of cells dominated by 4 bacterial phyla (Actinobacteria,Bacteroidetes,Firmicutes,Proteobacteria), and an organ with weight >1 kg and functions closely related to both local and systemic health.

    2 IBD and gut flora

    The imbalance and instability of the gut bacterial community is called “dysbiosis”. IBD onset is a combinatory result of intestinal microbiome and genetic susceptibility, which are not mutually exclusive and arise from both host and environmental factors that can trigger or contribute to the chronicity of disease. The gut microbial community of IBD patients is different from that of the healthy individuals. Although many recent reports have strongly indicated that gut flora are an essential factor that drives the inflammatory process in IBD, but no single organism has been proven a cause of the pathogenesis in IBD. The contribution of commensal bacteria, the candidate pathogenic bacteria, and the effectiveness of anti-infection treatment were extensively discussed in our previous review[14].

    3 Experimental models for IBD and microbiome

    The traditional methods to study the gut flora include direct microscopic examination and culture in media. Most bacterial species cannot be cultured, but modern molecular methods, such as broad-range sequencing of conservative 16S ribosomal RNA from amplified bacterial nucleic acid extracted from feces or biopsies. The 16S method used to investigate the diversity of human microbial flora was firstly reported in 2005[15], which indicating evolutionary divergence can be used to identify and classify bacteria. The availability of bacterial sequence data has facilitated the development of molecular probes for fluorescenceinsituhybridization (FISH), and DNA microarrays and gene chips make it possible to specifically identify certain species[3]. These molecular approaches have been used to examine the individuality and stability of the flora overtime and to detect shifts in its composition after weaning, or exposure to antibiotics or dietary changes.

    Colonizing previous germ-free animals (such as zebrafish, mouse, rat, or pig) with interested bacterial strains (mono-association) is a state-of-the-art method to understand the function of certain bacterial species in host physiology and pathophysiology. The resulting data can provide a plausible mechanistic basis to explain prevalence of IBD in genetically susceptible hosts. In the gnotobiotic facility, food, air, and water are sterile and animals are kept in an isolator. To ensure sterility, these animals must be screened frequently for contamination. The traditional screening approaches are culturing and Gram staining of feces. Using Germ-free animals, we learned the lessons of life without bacteria. Germ-free animals are more susceptible to infection and have reduced vascularity, digestive enzyme activity, muscle wall thickness, cytokine production and serum immunoglobulin levels, smaller Peyer’s patches and fewer intraepithelial lymphocytes, but increased enterochromaffin cells[16]. However, reconstitution of germ-free mice with an intestinal microflora is sufficient to restore the mucosal immune system[17]. In some instances, it has been possible to induce colitis in a susceptible murine strain with a single species of normal bacteria, for example,Bacteroidesvulgatusin the IL10-deficient mouse[18]. For example, it is believed that the composite human microbiome of Western populations has probably changed over the past century, and brought on by new environmental triggers that often have a negative impact on human health. Using the gnotobiotic models, a recent study[19]showed that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance and sulphite-reducing pathobiont,Bilophilawadsworthia. This was associated with a pro-inflammatory T helper type 1 (Th1) immune response and increased incidence of colitis in genetically susceptible IL10-/-mice,but not in wild-type mice. This report also showed that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis (imbalanced bacterial profile) that can perturb immune homeostasis[19]. These studies provide compelling evidence that the nature of the host defenses, rather than the biological properties of a luminal bacterial species per se, may determine the functional outcome of that interaction.

    4 Signaling pathways that connect host and bacteria in intestine homeostasis

    4.1 TLRs and NOD The family of Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domain/caspase recruitment domain isoforms (NOD/CARD) are two major host pattern recognition receptor (PRR) systems that regulate the innate immune system. In the intestine, PRRs seem to be crucial for bacterial-host communication. TLRs and NOD proteins are expressed by surface enterocytes and dendritic cells[20]. These PRRs have a fundamental role in response to specific microbial-associated molecular patterns. For example, TLR2 is activated by peptidoglycan and lipotechoic acids; TLR4 is by lipopolysaccharide; and TLR5 is by flagellin; and NOD1/CARD4 and NOD2/CARD15 function as intracellular receptors of peptidoglycan subunits.

    Signals from microbes that reside the intestine can be recognized by epithelial TLRs. If the immune activation and tolerance are well balanced, the threat of gut flora is virtually defused[21-22]. A study by Rakoff-Nahoum and colleagues (2004) revealed that commensal bacteria play a protective role against intestinal injury by activating TLRs[23]. Surprisingly, this interaction is required to maintain the architectural integrity of the intestinal surface. Thus, it seems that the epithelium and resident immune cells do not simply tolerate commensal bacteria, but are dependent on them. Recent studies showed that Nod2, an IBD risk gene, is associated with the occurrence of dysbiosis[24-25]. These data further demonstrate the critical role of host-bacterial interactions in intestinal robustness.

    4.2 NF-κB Nuclear factor-κB (NF-κB) is a family of transcription factors that plays an essential role in innate and adaptive immune responses. NF-κB is active in the nucleus, and its activity is inhibited by the inhibitor of κBα (IκB). NF-κB is one of the most important regulators of pro-inflammatory gene expression, which regulates the synthesis of quite a few cytokines, including TNF-α, IL-1β, IL-6, IL-8,etc. It is known that NF-κB is highly activated in IBD patients. The signaling of TLR and NOD also regulate the NF-kB activity. Therefore, NF-κB-targeted therapeutics might be effective in IBD. For example, some of the effects of corticosteroids, used in the treatment of IBD are probably mediated through the inhibition of NF-κB activation. Sulfasalazine and leflunomide block nuclear translocation of NF-κB through inhibition of IκBα degradation. This might be caused by a direct effect on IκB kinase (IKB kinase) or upstream signals. Aspirin appears to function as a competitive inhibitor of IKK-β. Agents that block proximal cytokines, such as IL-1 and TNF-α, also limit NF-κB activation and inhibit the inflammatory cascade. Probiotics may provide clinical benefits by ameliorating colitis through inhibiting the NF-kB activity[26].

    4.3 Vitamin D/vitamin D receptor Vitamin D levels and vitamin D receptor (VDR) expression are inversely related to human IBD and experimental colitis. Vitamin D deficiency may contribute to IBD as an environment factor. At higher latitudes, cutaneous vitamin D3synthesis is insufficient with lower solar ultraviolet B in winter, which, without vitamin D rich diets, leads to seasonal variations in circulating vitamin D3levels and widespread vitamin D deficiency[27-28]. Prevalence of IBD is higher in the northernmost parts of Europe and America[29]. Patients with IBD have lower serum vitamin D3levels than healthy controls[30]. The proportion of vitamin D deficiency in Australian children with IBD was higher than that in healthy controls[31]. VDR expression at mRNA and protein levels is significantly decreased in IBD patients[32-33]. In mouse models, VDR expression is required to control inflammation. VDR-/-mice were more susceptible in DSS-induced colitis[34-35]. A downregulation of VDR promotes the severity, extent, and duration of mucosal inflammation.

    The target genes of VDR signal include the enzyme Cyp24 and antimicrobial peptides (AMPs)[36]. Vitamin D/VDR is responsible for intestinal homeostasis and host protection from bacterial invasion and infection. When the immune system is challenged by pathogens, TGF-β and IFN-γ are released. Subsequently, VDR is activated to express more cathelicidin and defensin, which are known to regulate the composition of bacterial flora. Additionally, VDR is associated with TLRs, which functions to invoke the immune system to recognize and, further, to respond to bacteria[37].

    Studies from our laboratory demonstrate a link between intestinal epithelial VDR and bacteria in IBD in experimental colitis models. In our work, we found profound alterations in microbiome profile not only in taxonomic classification but also in KEGG modules related to detoxification, cancer, diabetes mellitus, infections, signaling pathways,etc. (unpublished data). We have begun to understand the nature of microbiome affected by VDR expression in the intestine. On one hand, using cultured intestinal cells,Salmonellacolitis, and mono-associated commensalE.coliF18 in originally germ-free mice, we have reported that enteric bacteria activate VDR signaling[38]. On the other hand, VDR expression protects host from invasive pathogens and maintain homeostasis[38-39]. VDR-/-mice have increased bacterial loads in the intestine[35]. Deficiency in vitamin D/VDR signaling may results in defects in autophagy, compromise the integrity of mucosal barrier, and increase the vulnerability to and risks of IBD[34-40].

    Interestingly, VDR, NF-κB, and TLR/NOD2 are closely associated and are all implicated in the pathogenesis of IBD[41-42]. Loss of VDR negatively regulates NF-κB activity. Vitamin D3induces NOD2/CARD15-defensin pathway[43]. Abnormalities of these key signaling pathways can perturb intestinal homeostasis and promote IBD in genetically susceptible individuals.

    5 Applications that manipulate intestinal microbiome in clinical trials

    Traditional therapeutics against of IBD aims to suppress the intestinal inflammation, and sometimes surgery is required, leaving the life quality of the patients considerably compromised[44]. Strategies along this line were developed to some extent during the past decade. However, they still cannot meet the urgent need for more effective therapeutic methods. On the other hand, manipulation of microbiota, due to its high efficacy under a lot of clinical scenarios, has become more and more popular for the treatment of IBD. The available approaches include fecal microbiota transplantation (FMT), pre-, pro-, syn- and post-biotics, helminthic therapy,etc., which were discussed in details in our previous review[14].

    6 Current challenge and future direction

    The microbial flora modulates numerous aspects of human physiology and is a critical factor in the development of IBD. Unfortunately, the research on microbiome in human diseases remains descriptive and some of the basic questions about the role of the microbiota in IBD remain unanswered: 1) Is dysbiosis a cause or consequence of diseases? 2) Are the host-microbe disturbances constant or dynamic throughout the natural history of these diseases and what role do environmental and dietary factors play in determining the risk and course of IBD? 3) Are these diseases caused by the emergence of pathobionts and/or disappearance of symbionts, or merely due to an aberrant host immune response to commensal microbiota? Insights into the microbial-host interrelationships are hampered by the limited knowledge of the diversity and complexity of microbiota. Therefore, studies on the distribution, dynamics, and functions of microbial flora in IBD will provide insights into the pathogenesis of IBD and potential therapeutic strategies.

    The intestinal microbes affect barrier functions and immune system, supply key nutrients, modulate energy metabolism, stimulate cell growth, repress the growth of harmful microorganisms, and defend against diseases. The etiology of IBD has been described as interactions among environmental, genetic, microbiome, and immune factors. In the jejunum/ileum from the stomach and duodenum, and in the large intestine, colon-residing bacteria achieve the highest cell densities recorded for any ecosystem. The distribution, dynamics, and functions of intestinal microbes are closely associated with the intestinal homeostasis and contribute to the pathogenesis of IBD. The host-bacterial interactions are regulated by the signaling pathways, including TLR/NOD, NF-kB, and VDR. The flora might be a rich repository of metabolites that can be used in therapeutics against IBD.

    The essence of manipulating intestinal microbiome is to reestablish the delicate balance of different bacterial populations. Therefore, it is urgent to accurately define the functional roles of specific bacterial species using mono-association models. Bacterial gene profile at functional level is similar among different individual, and hence is more meaningful than taxonomic categorization of the microbiome. Totally, more than 163 loci have been associated with IBD, including the most prominent NOD2, ATG16L1, and IL23R, and 110 of them are shared in CD and UC patients[45-46]. The interactions and co-adaption of the host and microbiome together arbitrate the fate of gut. Worth mentioning, intestinal microbiome also includes fungi, viruses and phages, which are not as frequently studied, but hold potential scientific and clinical values, and therefore would further advance therapeutic efficacy upon further exploration. Manipulation of intestinal microbiome is characterized by high cure rates and low remission, but still high quality studies with follow-up long enough are desperately needed to qualify the clinical usage.

    [References]

    [1] Sartor R B. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis [J]. Nat Clin Pract Gastroenterol Hepatol,2006,3(7):390-407.

    [2] Shanahan F. Crohn's disease [J]. Lancet, 2002, 359(9300): 62-69.

    [3] O'Hara A M, Shanahan F. The gut flora as a forgotten organ [J]. EMBO Rep, 2006, 7(7):688-693.

    [4] Sha S, Liang J, Chen M, et al. Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children [J]. Aliment Pharmacol Ther, 2014, 39(10): 61003-61032.

    [5] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464(7285): 59-65.

    [6] Guarner F, Malagelada J R. Gut flora in health and disease [J]. Lancet, 2003, 361(9356): 512-519.

    [7] Yang L, Lu X, Nossa C W, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome [J]. Gastroenterology, 2009, 137(2): 588-597.

    [8] Pedron T, Mulet C, Dauga C, et al. A crypt-specific core microbiota resides in the mouse colon [J]. Mbio,2012,3(3):e00116-12.

    [9] Walker A W, Duncan S H, McWilliam Leitch E C, et al. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon [J]. Appl Environ Microbiol, 2005, 71(7): 3692-3700.

    [10] Funkhouser L J, Bordenstein S R. Mom knows best: the universality of maternal microbial transmission [J]. PLoS Biol, 2013,11(8):e1001631.

    [11] Dominguez-Bello M G, Costello E K, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns [J]. Proc Natl Acad Sci USA, 2010, 107(26): 11971-11975.

    [12] Lepage P, Leclerc M C, Joossens M, et al. A metagenomic insight into our gut's microbiome [J]. Gut, 2013, 62(1): 146-158.

    [13] Turnbaugh P J, Ley R E, Hamady M, et al. The human microbiome project [J]. Nature, 2007,449(7164): 804-810.

    [14] Jin D, Zhang H, Sun J. Manipulation of microbiome, a promising therapy for inflammatory bowel diseases [J]. J Clin Cell Immunol, 2014, 5:234. doi: 10.4172/2155-9899.1000234.

    [15] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728): 1635-1638.

    [16] Sartor R B. Microbial-host interactions in inflammatory bowel diseases and experimental colitis [J]. Nestle Nutr Workshop Ser Pediatr Program, 2009, 64: 121-132.

    [17] Umesaki Y, Okada Y, Matsumoto S, et al. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse [J]. Microbiol Immunol, 1995, 39(8): 555-562.

    [18] Sellon R K, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice [J]. Infect Immun, 1998, 66(11): 5224-5231.

    [19] Devkota S, Wang Y, Musch M W, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice [J]. Nature, 2012, 487(7405):104-108.

    [20] Abreu M T. Nod2 in normal and abnormal intestinal immune function [J]. Gastroenterology, 2005, 129(4): 1302-1304.

    [21] Hooper L V. Laser microdissection: exploring host-bacterial encounters at the front lines [J]. Curr Opin Microbiol, 2004, 7(3): 290-295.

    [22] Madara J. Building an intestine--architectural contributions of commensal bacteria [J]. N Engl J Med, 2004, 351(16): 1685-1686.

    [23] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis [J]. Cell, 2004, 118(2): 229-241.

    [24] Biswas A, Petnicki-Ocwieja T, Kobayashi K S. Nod2: a key regulator linking microbiota to intestinal mucosal immunity [J]. J Mol Med (Berl), 2011, 90(1): 15-24.

    [25] Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer [J]. J Clin Invest. 2013, 123(2): 700-711.

    [26] Petrof E O, Kojima K, Ropeleski M J, et al. Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition [J]. Gastroenterology, 2004, 127(5): 1474-1487.

    [27] White J H. Vitamin D signaling, infectious diseases, and regulation of innate immunity [J]. Infect Immun, 2008, 76(9): 3837-3843.

    [28] Holick M F, Chen T C, Lu Z, et al. Vitamin D and skin physiology: a D-lightful story [J]. J Bone Miner Res, 2007, 22 Suppl 2: V28-33.

    [29] Lim W C, Hanauer S B, Li Y C. Mechanisms of disease: vitamin D and inflammatory bowel disease [J]. Nat Clin Pract Gastroenterol Hepatol, 2005, 2(7): 308-315.

    [30] Bours P H, Wielders J P, Vermeijden J R, et al. Seasonal variation of serum 25-hydroxyvitamin D levels in adult patients with inflammatory bowel disease [J]. Osteoporos Int, 2011, 22(11): 2857-2867.

    [31] Levin A D, Wadhera V, Leach S T, et al. Vitamin D deficiency in children with inflammatory bowel disease [J]. Dig Dis Sci, 2011, 56(3): 830-836.

    [32] Abreu M T, Kantorovich V, Vasiliauskas E A, et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density [J]. Gut, 2004, 53(8): 1129-1136.

    [33] Wada K, Tanaka H, Maeda K, et al. Vitamin D receptor expression is associated with colon cancer in ulcerative colitis [J]. Oncol Rep, 2009, 22(5): 1021-1025.

    [34] Kong J, Zhang Z, Musch M W, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): G208-216.

    [35] Lagishetty V, Misharin A V, Liu N Q, et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis [J]. Endocrinology,2010,151(6):2423-2432.

    [36] Carlberg C, Seuter S. A genomic perspective on vitamin D signaling [J]. Anticancer Res, 2009, 29(9): 3485-3493.

    [37] Schauber J, Gallo R L. The vitamin D pathway: a new target for control of the skin's immune response [J]? Exp Dermatol, 2008, 17(8): 633-639.

    [38] Wu S, Liao A P, Xia Y, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine [J]. Am J Pathol, 2010, 177(2): 686-697.

    [39] Sun J, Kong J, Duan Y, et al. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor [J]. Am J Physiol Endocrinol Metab, 2006, 291(2):e315-322.

    [40] Wu S, Zhang Y-g, Lu R, et al. Intestinal epithelial vitamin D receptor deletion Q1 leads to defective autophagy in colitis [J]. Gut, 2014. doi: 10.1136/gutjnl-2014-307436.

    [41] Sentongo T A, Semaeo E J, Stettler N, et al. Vitamin D status in children, adolescents, and young adults with Crohn disease [J]. Am J Clin Nutr, 2002, 76(5): 1077-1081.

    [42] Verway M, Behr M A, White J H. Vitamin D, NOD2, autophagy and Crohn's disease [J]. Expert Rev Clin Immunol, 2010, 6(4): 505-508.

    [43] Wang Y, Antonopoulos D A, Zhu X, et al. Laser capture microdissection and metagenomic analysis of intact mucosa-associated microbial communities of human colon [J]. Appl Microbiol Biotechnol, 2010, 88(6): 1333-1342.

    [44] Lin J, Hackam D J. Worms, flies and four-legged friends: The applicability of biological models to the understanding of intestinal inflammatory diseases [J]. Dis Model Mech, 2011, 4(4):447-456.

    [45] Jostins L, Ripke S, Weersma R K, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease [J]. Nature, 2012, 491(7422): 119-124.

    [46] Uhlig H H. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease [J]. Gut, 2013, 62(12): 1795-1805.

    猜你喜歡
    拉什醫(yī)學(xué)中心芝加哥
    國(guó)家兒童醫(yī)學(xué)中心主任聯(lián)席會(huì)議工作機(jī)制的創(chuàng)新與實(shí)踐
    芝加哥建筑雙年展
    抬起芝加哥
    青海大學(xué)高原醫(yī)學(xué)中心介紹
    籠中虎
    “創(chuàng)造歷史”——2017芝加哥建筑雙年展
    籠 中 虎
    解放軍總醫(yī)院睡眠醫(yī)學(xué)中心
    上海國(guó)際醫(yī)學(xué)中心遭遇人才荒
    Value of diffusion-weighted MR imaging and dynamic-contrast enhanced MRI in the diagnosis of breast cancer
    欧美日韩瑟瑟在线播放| 亚洲中文字幕一区二区三区有码在线看| 亚洲自拍偷在线| 亚洲国产欧洲综合997久久,| 午夜老司机福利剧场| 少妇人妻精品综合一区二区 | 精品无人区乱码1区二区| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| 美女大奶头视频| 亚洲av日韩精品久久久久久密| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 日本熟妇午夜| 丁香欧美五月| 欧美在线一区亚洲| 国产精品永久免费网站| 在线天堂最新版资源| 久久亚洲精品不卡| 色精品久久人妻99蜜桃| 国产日本99.免费观看| 亚洲人成网站高清观看| 12—13女人毛片做爰片一| 日韩欧美三级三区| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 欧美最新免费一区二区三区 | 国产精品一及| 美女cb高潮喷水在线观看| 国产精品永久免费网站| 国产99白浆流出| 高清日韩中文字幕在线| 亚洲成av人片免费观看| av专区在线播放| 免费在线观看影片大全网站| 琪琪午夜伦伦电影理论片6080| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 久久香蕉国产精品| 午夜激情欧美在线| 日韩欧美在线乱码| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| av女优亚洲男人天堂| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 日本免费一区二区三区高清不卡| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| 日本熟妇午夜| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 99精品在免费线老司机午夜| 日本五十路高清| 欧美性猛交╳xxx乱大交人| 国产视频内射| 岛国在线观看网站| 亚洲激情在线av| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 1000部很黄的大片| АⅤ资源中文在线天堂| 国产成人aa在线观看| 真人做人爱边吃奶动态| 日韩欧美精品v在线| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 少妇的丰满在线观看| 九九久久精品国产亚洲av麻豆| 色综合欧美亚洲国产小说| 亚洲五月婷婷丁香| 日本免费a在线| 国产精品三级大全| netflix在线观看网站| 国内久久婷婷六月综合欲色啪| 熟女人妻精品中文字幕| 最近最新中文字幕大全免费视频| 日韩欧美三级三区| 哪里可以看免费的av片| 亚洲,欧美精品.| 床上黄色一级片| 长腿黑丝高跟| 欧美zozozo另类| 国产麻豆成人av免费视频| 久久久久精品国产欧美久久久| 日韩欧美在线二视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩高清在线视频| 成人永久免费在线观看视频| 久久久久久久亚洲中文字幕 | 久久性视频一级片| 亚洲欧美一区二区三区黑人| 亚洲最大成人手机在线| 91久久精品国产一区二区成人 | 宅男免费午夜| 婷婷六月久久综合丁香| 国产一区在线观看成人免费| 在线观看一区二区三区| 波多野结衣高清作品| 午夜亚洲福利在线播放| 一级作爱视频免费观看| 99久久成人亚洲精品观看| 成人欧美大片| 中文字幕高清在线视频| 中文资源天堂在线| 一区二区三区激情视频| 99久久精品热视频| 男女床上黄色一级片免费看| 欧美性感艳星| 超碰av人人做人人爽久久 | 在线观看一区二区三区| 免费看a级黄色片| 久久久久久久久久黄片| 精品免费久久久久久久清纯| 久9热在线精品视频| 国产成人欧美在线观看| 日日夜夜操网爽| 色老头精品视频在线观看| 在线观看av片永久免费下载| 村上凉子中文字幕在线| 国产精品,欧美在线| 俄罗斯特黄特色一大片| 免费人成视频x8x8入口观看| bbb黄色大片| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| 一个人看的www免费观看视频| 免费在线观看影片大全网站| 搡老岳熟女国产| 国产91精品成人一区二区三区| 国产成人福利小说| 69人妻影院| 欧美成人a在线观看| 日韩欧美在线二视频| 国产在视频线在精品| 免费一级毛片在线播放高清视频| 亚洲专区国产一区二区| 久久久久久人人人人人| 精品久久久久久,| 欧美bdsm另类| 五月玫瑰六月丁香| 叶爱在线成人免费视频播放| 成人无遮挡网站| 夜夜夜夜夜久久久久| 欧美国产日韩亚洲一区| 日本一本二区三区精品| 亚洲午夜理论影院| 亚洲va日本ⅴa欧美va伊人久久| 国产精品1区2区在线观看.| 一区二区三区高清视频在线| 男女午夜视频在线观看| 岛国视频午夜一区免费看| 我要搜黄色片| 久99久视频精品免费| 日本三级黄在线观看| 一本精品99久久精品77| 黄色视频,在线免费观看| 嫩草影院入口| 国产成人av教育| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看 | 亚洲国产精品久久男人天堂| 男女那种视频在线观看| 黄色日韩在线| 日本五十路高清| 高清日韩中文字幕在线| 国产91精品成人一区二区三区| 国产精品免费一区二区三区在线| 亚洲av一区综合| 午夜老司机福利剧场| 成人鲁丝片一二三区免费| 精品99又大又爽又粗少妇毛片 | 热99在线观看视频| 日本精品一区二区三区蜜桃| 国产精品精品国产色婷婷| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 国产精品99久久99久久久不卡| 国产高清激情床上av| 午夜福利在线观看吧| 亚洲人成网站高清观看| 老熟妇仑乱视频hdxx| 丰满乱子伦码专区| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| av天堂中文字幕网| 久久精品影院6| aaaaa片日本免费| 国产精品亚洲美女久久久| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放| 人妻夜夜爽99麻豆av| 国产亚洲欧美在线一区二区| 蜜桃久久精品国产亚洲av| av在线蜜桃| 久久香蕉国产精品| 亚洲黑人精品在线| 免费观看的影片在线观看| 哪里可以看免费的av片| 丝袜美腿在线中文| 免费看日本二区| 久久精品国产99精品国产亚洲性色| 国产探花在线观看一区二区| 久久久久国产精品人妻aⅴ院| 亚洲 国产 在线| 男人舔奶头视频| 亚洲18禁久久av| 色播亚洲综合网| 久9热在线精品视频| 婷婷丁香在线五月| 国产亚洲精品综合一区在线观看| 午夜两性在线视频| 在线观看一区二区三区| 免费观看人在逋| 国产高潮美女av| 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密| 青草久久国产| 亚洲不卡免费看| 一个人看视频在线观看www免费 | 亚洲性夜色夜夜综合| 久久久久国内视频| 国产单亲对白刺激| 午夜视频国产福利| 亚洲电影在线观看av| 草草在线视频免费看| 免费观看人在逋| 少妇人妻精品综合一区二区 | 日本与韩国留学比较| 久久中文看片网| 91在线精品国自产拍蜜月 | 亚洲专区国产一区二区| 悠悠久久av| 男女做爰动态图高潮gif福利片| 亚洲欧美一区二区三区黑人| 在线免费观看不下载黄p国产 | 床上黄色一级片| 十八禁人妻一区二区| 日本三级黄在线观看| 可以在线观看毛片的网站| 日本成人三级电影网站| 欧美一区二区精品小视频在线| 97人妻精品一区二区三区麻豆| 亚洲精品在线美女| 男女做爰动态图高潮gif福利片| 欧美一区二区亚洲| 精品无人区乱码1区二区| 精品一区二区三区av网在线观看| 脱女人内裤的视频| x7x7x7水蜜桃| 尤物成人国产欧美一区二区三区| 激情在线观看视频在线高清| 无遮挡黄片免费观看| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 国内久久婷婷六月综合欲色啪| 国产熟女xx| 国产午夜精品久久久久久一区二区三区 | 天堂√8在线中文| 亚洲av第一区精品v没综合| 日本黄色片子视频| 国产色婷婷99| 手机成人av网站| 亚洲自拍偷在线| 亚洲国产欧美人成| a在线观看视频网站| 99久久综合精品五月天人人| 午夜日韩欧美国产| 精品人妻偷拍中文字幕| 国产成年人精品一区二区| 欧美乱妇无乱码| 日韩欧美国产在线观看| 熟妇人妻久久中文字幕3abv| 亚洲中文字幕日韩| 真人做人爱边吃奶动态| 最新在线观看一区二区三区| av专区在线播放| eeuss影院久久| av视频在线观看入口| 精品久久久久久久久久免费视频| 色老头精品视频在线观看| 国产91精品成人一区二区三区| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩无卡精品| 免费av毛片视频| 色精品久久人妻99蜜桃| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久亚洲精品不卡| 成人特级av手机在线观看| 成人av在线播放网站| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 亚洲国产精品999在线| 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 国产淫片久久久久久久久 | 欧美区成人在线视频| 午夜免费成人在线视频| 免费大片18禁| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲国产精品999在线| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 免费无遮挡裸体视频| 欧美bdsm另类| 日韩av在线大香蕉| 蜜桃亚洲精品一区二区三区| 男女那种视频在线观看| 热99re8久久精品国产| 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看| 成人av一区二区三区在线看| 亚洲内射少妇av| 亚洲欧美日韩高清专用| 国产高清videossex| 一级黄色大片毛片| 国产精品av视频在线免费观看| 欧美黑人巨大hd| bbb黄色大片| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 最近最新免费中文字幕在线| 99热这里只有精品一区| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 欧美日韩国产亚洲二区| 亚洲内射少妇av| 亚洲不卡免费看| 国产三级中文精品| 欧美乱妇无乱码| 伊人久久精品亚洲午夜| 欧美成人性av电影在线观看| 小蜜桃在线观看免费完整版高清| 久久精品影院6| 亚洲精品乱码久久久v下载方式 | 精品乱码久久久久久99久播| 一本一本综合久久| 国产单亲对白刺激| 久久九九热精品免费| 真实男女啪啪啪动态图| 又黄又粗又硬又大视频| 久久国产乱子伦精品免费另类| 久久久久久久精品吃奶| 美女高潮的动态| 全区人妻精品视频| 少妇的逼好多水| 91麻豆av在线| 日本成人三级电影网站| www.999成人在线观看| 三级毛片av免费| 757午夜福利合集在线观看| 亚洲av成人av| 国产亚洲欧美98| 老司机在亚洲福利影院| 久久久久久久久久黄片| 麻豆成人午夜福利视频| 9191精品国产免费久久| 亚洲美女视频黄频| 欧美3d第一页| 又粗又爽又猛毛片免费看| 欧美乱妇无乱码| 日韩精品中文字幕看吧| 18禁美女被吸乳视频| 色综合婷婷激情| 99热只有精品国产| 国产高清videossex| 精品久久久久久,| 少妇的丰满在线观看| 午夜免费成人在线视频| 可以在线观看的亚洲视频| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 黄色日韩在线| 国模一区二区三区四区视频| 手机成人av网站| 亚洲av一区综合| 日本熟妇午夜| 国产精品女同一区二区软件 | 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 国产高清三级在线| 18禁国产床啪视频网站| 亚洲国产精品久久男人天堂| 国产老妇女一区| 俺也久久电影网| 在线十欧美十亚洲十日本专区| 观看美女的网站| 一区二区三区国产精品乱码| 九九热线精品视视频播放| 国产av麻豆久久久久久久| 亚洲,欧美精品.| 熟女少妇亚洲综合色aaa.| 久久99热这里只有精品18| 欧美另类亚洲清纯唯美| 少妇丰满av| 黄色丝袜av网址大全| 一区福利在线观看| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| www国产在线视频色| 午夜福利18| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 成人av在线播放网站| 白带黄色成豆腐渣| 桃红色精品国产亚洲av| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 欧美日本视频| 色综合站精品国产| 99精品在免费线老司机午夜| 少妇的逼好多水| 欧美高清成人免费视频www| 有码 亚洲区| 午夜视频国产福利| 国产精品三级大全| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 欧美日韩国产亚洲二区| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 日本 欧美在线| 国语自产精品视频在线第100页| 啪啪无遮挡十八禁网站| 波野结衣二区三区在线 | 久久久久久久亚洲中文字幕 | 国产视频内射| www国产在线视频色| 国产精品一区二区三区四区免费观看 | 国产精品一区二区免费欧美| 午夜免费成人在线视频| 嫩草影院入口| 小蜜桃在线观看免费完整版高清| 久久这里只有精品中国| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 床上黄色一级片| 99热这里只有精品一区| 精品电影一区二区在线| 国产精品 国内视频| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩无卡精品| 国产成人影院久久av| 亚洲中文日韩欧美视频| 亚洲无线在线观看| 久久久久久久久中文| 舔av片在线| 人人妻人人看人人澡| 欧美性感艳星| 特级一级黄色大片| 俄罗斯特黄特色一大片| 日韩国内少妇激情av| 内射极品少妇av片p| 99久久久亚洲精品蜜臀av| 午夜免费激情av| 中文亚洲av片在线观看爽| 99riav亚洲国产免费| 国产精品国产高清国产av| 日本免费a在线| 日本成人三级电影网站| 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| 在线观看午夜福利视频| 女同久久另类99精品国产91| 麻豆成人午夜福利视频| 久久精品人妻少妇| 国产日本99.免费观看| 亚洲美女黄片视频| 国产精品亚洲av一区麻豆| 五月伊人婷婷丁香| 99热这里只有精品一区| 国产精品av视频在线免费观看| 99久久成人亚洲精品观看| 亚洲,欧美精品.| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 成人18禁在线播放| 每晚都被弄得嗷嗷叫到高潮| 一夜夜www| 怎么达到女性高潮| 色综合亚洲欧美另类图片| 欧美3d第一页| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 老司机在亚洲福利影院| 国产精品精品国产色婷婷| 99精品在免费线老司机午夜| 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 身体一侧抽搐| 亚洲五月天丁香| 久久精品亚洲精品国产色婷小说| 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片 | 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 国产精品久久久人人做人人爽| 人妻久久中文字幕网| 午夜福利18| 欧美色欧美亚洲另类二区| 日韩欧美 国产精品| 十八禁人妻一区二区| 亚洲av五月六月丁香网| 我要搜黄色片| 欧美大码av| 欧美在线黄色| 欧美日韩一级在线毛片| 日本成人三级电影网站| 天天添夜夜摸| 免费人成在线观看视频色| 亚洲18禁久久av| 日日夜夜操网爽| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 国产亚洲精品综合一区在线观看| 亚洲狠狠婷婷综合久久图片| 欧美乱色亚洲激情| 51午夜福利影视在线观看| 99久久九九国产精品国产免费| 久久精品91无色码中文字幕| 小说图片视频综合网站| 亚洲最大成人手机在线| 成人av一区二区三区在线看| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区 | 高清日韩中文字幕在线| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 丁香六月欧美| 国产私拍福利视频在线观看| 色综合欧美亚洲国产小说| 亚洲乱码一区二区免费版| 亚洲人成电影免费在线| 在线天堂最新版资源| 免费大片18禁| 天堂影院成人在线观看| 91av网一区二区| 美女 人体艺术 gogo| 久久香蕉精品热| 久久久久久久午夜电影| 观看免费一级毛片| 国产高清激情床上av| 精品久久久久久成人av| 在线视频色国产色| 国内精品久久久久久久电影| 亚洲精品在线美女| 黄片大片在线免费观看| 岛国在线观看网站| 免费看美女性在线毛片视频| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 国产亚洲精品av在线| 亚洲无线在线观看| 在线国产一区二区在线| 丰满乱子伦码专区| 中文字幕av在线有码专区| 乱人视频在线观看| 757午夜福利合集在线观看| 亚洲av熟女| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 一个人看的www免费观看视频| 51午夜福利影视在线观看| 国产免费男女视频| 69人妻影院| 亚洲国产高清在线一区二区三| x7x7x7水蜜桃| 国产精品久久久久久精品电影| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 午夜视频国产福利| 久久精品人妻少妇| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 中文字幕人成人乱码亚洲影| 高潮久久久久久久久久久不卡| 少妇的逼好多水| 一个人看的www免费观看视频| 欧美日韩一级在线毛片| 午夜免费观看网址| 天堂av国产一区二区熟女人妻| 久久精品91无色码中文字幕| 成人特级黄色片久久久久久久| 两人在一起打扑克的视频| 欧美日本亚洲视频在线播放| 日日夜夜操网爽| 久久久久久久精品吃奶| 男女午夜视频在线观看| 国产 一区 欧美 日韩|