• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice

    2020-06-22 05:45:58RuiyingQinShengxiangLiaoJuanLiHaoLiXiaoshuangLiuJianboYangPengchengWei
    The Crop Journal 2020年3期

    Ruiying Qin, Shengxiang Liao, Juan Li, Hao Li, Xiaoshuang Liu, Jianbo Yang *, Pengcheng Wei *

    Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei 230031, Anhui, China

    Keywords:CRISPR-Cas9 Base editing BE3 CDA Oryza sativa

    ABSTRACT The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3)and targeted activation-induced cytidine deaminase(CDA) (target-AID) systems by coexpressing three copies of free uracil-DNA glycosylase(UDG)inhibitor(UGI).The editing efficiency of the improved BE3 and CDA systems reached as high as 88.9% and 85.7%, respectively, in regenerated rice plants, with a very low frequency of unwanted mutations. The low editing frequency of the BE3 system in the GC context could be overcome by the modified CDA system. These results provide a highfidelity and high-efficiency solution for rice genomic base editing.

    1. Introduction

    Precise genome modification is highly desired in crop breeding and in plant genomic research. Considerable efforts have been made to establish gene targeting systems in plants; however, the efficiency of these systems is limited in higher plants, especially crops, mainly because of the very low frequency of homologous recombination(HR). Recently developed base-editing systems permit direct nucleotide substitution at target genomic loci without requiring DNA double-strand breaks and homologydirected repair (HDR). C?G to T?A base editors such as BE3,are normally composed of an APOBEC1/AID member of the cytosine deaminase family,a catalytically defective Cas9 or Cpf1, and a uracil-DNA glycosylase (UDG) inhibitor (UGI)[1,2], while A?T to G?C editors (adenine base editors, ABEs)employ a fusion protein composed of a laboratory-evolved tRNA adenine deaminase (TadA) and a SpCas9 or SaCas9 nickase variant [3,4]. In mammals, the efficiency and precision of base editors could be enhanced by optimizing nuclear localization signals (NLSs) and codon usage, engineering nCas9 fusion proteins, and coexpressing Mu Gam protein or free UGI [5-7].In plants,three types of C?G to T?A base editors are most commonly used: BE3, which uses rat APOBEC1 for C-to-T conversion [8-12]; a target-AID system using Petromyzon marinus CDA1 (PmCDA) [13]; and rBE5,which uses a mutated variant of human AID [14]. These systems have successfully induced targeted base conversion in different plant species,including rice,wheat,maize,Arabidopsis, tomato, and watermelon [8,12,15]. However,the base-editing frequency induced by these systems is lower than the mutagenesis efficiency of the CRISPR/SpCas9 system in plants. Furthermore, in addition to targeted base conversion, these systems often generate indels and unwanted nucleotide substitutions. These infidelity mutations lead to great inconvenience during the genotyping and phenotyping of transgenic plants,compromising the application of these systems in plants.We set out to optimize the plant BE3 and target-AID systems to achieve cleaner and more efficient base editing of multiple sites in rice.

    2. Materials and methods

    2.1. Vector construction

    Fig.1-Base editing in transgenic rice plants using BE3 variants.A.Expression cassette of BE3 and eBE3 in binary vectors.PUBI,promoter of maize ubiquitin 1;35S-ter,terminator of the CaMV 35S promoter.B.Base-editing efficiencies of different BE3 and eBE3 vectors in regenerated populations.The number of lines carrying targeted base substitutions(which may also carry alleles with unwanted mutations)was used to calculate the substitution efficiency(left),while the number of regenerated plants with an exclusive mutation type of targeted C-to-T conversions(and no unwanted mutations)was used to calculate the clean editing yield efficiency; C.Frequencies of unwanted mutations in BE3/eBE3 plants.The regenerated lines carrying unwanted mutations,including InDels,a base conversion of C-to-A or C-to-G(Non-T),or both in a single line(Non-T + InDels)are indicated separately. D.Frequencies of targeted C-to-T conversions in regenerated populations treated with BE3/eBE3 vectors at the indicated position of the sgRNA target region.

    Fig.2- Base editing in BE3 lines using native sgRNA and esgRNA.A.Base-editing efficiencies of the BE3-sgRNA and BE3-esgRNA vectors in the regenerated population.B. Frequencies of unwanted mutations in BE3-sgRNA and BE3-esgRNA plants.C.Frequencies of targeted C-to-T conversions in the BE3-sgRNA and BE3-esgRNA regenerated populations at the indicated position of the sgRNA target region.

    The previously described sequences of rice codon-optimized SpCas9, APO-XTEN, and UGI-NLS were synthesized separately [11,16] (GENEWIZ, Suzhou, China). The D10A mutation was induced in SpCas9 by PCR. The fragments were seamlessly assembled using a HiFi DNA Assembly Cloning Kit (NEB, Beverly, MA, USA) to produce BE3. To construct eBE3, the sequence of UGI-3X2A-UGI (eGUI) was codon-optimized for rice and synthesized [6]. Te eGUI was then attached to the 3′ terminus of the APO-XTEN-nSpCas9 fragment by seamless cloning. To construct CDA, the Arabidopsis codon-optimized sequence of SH3-FLAGPmCDA [13] was reoptimized for rice expression, and the synthesized fragment was linked to nSpCas9 to generate CDA.The 3X2A-UGI sequence was then amplified from eGUI and directly added to the 3′end of CDA to construct eCDA.The native sgRNA and esgRNA were synthesized and placed into an OsU3-derived expression cassette with a spectinomycin selection marker [17]. The base editors and OsU3-SpR-sgRNA or OsU3-SpR-esgRNA cassette were cloned into the pHUN411 backbone to generate binary vectors. To construct the genomic editing constructs, protospacers were annealed and inserted to replace SpR in the vector. Following the protocol of the pHUN system,the clones were positively selected with kanamycin and negatively selected with spectinomycin. All primers used in this study are listed in Table S1.

    2.2. Rice transformation

    The vector was individually introduced into the Agrobacterium strain EHA105-pSoup. Mature seeds of the japonica rice cultivar Nipponbare were used for callus induction for three weeks.The embryonic calli were then transfected by Agrobacterium following a previously described procedure [18]. Resistant calli were selected with 50 μg mL?1hygromycin for four weeks.Transgenic plants were then regenerated under selection with 25 μg mL?1hygromycin. Only one plant from each transfected callus (a single event)was selected for rooting and further examination.

    2.3. DNA extraction and genotyping

    In each transgenic plant, one leaf from each tiller was collected. Genomic DNA samples were prepared by the CTAB method and diluted to the same concentration with a NanoDrop spectrophotometer (Thermo Fisher, Waltham,MA, USA). For Hi-TOM detection, specific primers containing barcodes were used to amplify the target region.Following the manufacturer's instructions, the products of two rounds of PCR were pooled and sequenced with the Illumina HiSeq platform (Novogene, Tianjin, China). Approximately 1 Gb of raw data was generated for each of 96 samples. Mutations were identified with Hi-TOM(http://www.hi-tom.net/hi-tom).To confirm the next-generation sequencing(NGS)genotyping,at least 16 samples for each target were randomly selected,amplified and Sanger sequenced. All results from the firstgeneration sequencing perfectly matched the genotypes identified by the Hi-TOM method. The efficiencies of vectors were compared with Fisher's exact test.The NGS data used for the Hi-TOM analysis can be accessed under NCBI BioProject number PRJNA481881.

    3.Results

    Recombinant BE3 was first generated by fusion of plant codon-optimized rat APOBEC and UGI to the N-and C-termini of the SpCas9 nickase (D10A). Then, enhanced BE3 (eBE3) was developed by addition of triplet copies of 2A-UGI to the 3′ end of the BE3 sequence (Fig. S1) to coexpress an additional three free copies of UGI (Fig. 1-A).The BE3 and eBE3 genes separately replaced SpCas9 in a previously modified pHUN411 binary vector[19,20], resulting in pHUN411-BE3 and pHUN411-eBE3, respectively. The base editing of the two vectors was tested at five different genomic sites (ALS-T1, CHL9, IPA, NRT1.1, and SLR1) in transgenic rice plants using Agrobacterium-mediated stable transformation (Fig. S2). All independent regenerated lines (24 to 48 lines for each vector) were genotyped by Hi-TOM [21], a NGS method.In agreement with findings of previous reports in plants, the efficiencies of BE3-mediated targeted base conversions varied from 25.0% to 58.8% (Fig. 1-B). Base targeting was not statistically increased by eBE3 at most of the tested genomic sites (Fisher's exact test, P <0.05), except in the SLR1 target region (achieving 70.8% efficiency compared to 25.0% by BE3).However, the editing fidelity was different in the BE3 or eBE3 regenerated populations with the same target sgRNA. As indicated in Fig. 1-C, the indel frequency in BE3 plants was 12.5%-25.0%, possibly as a consequence of the base excision repair of apurinic/apyrimidinic (AP) sites transformed from APOBEC1-converted U by UDG. In contrast, no indels were detected in plants carrying the eBE3 construct(Fig.1-C).AP sites could also lead to undesired C-to-A or C-to-G conversion instead of C-to-T substitution. The eBE3 with increased UGI expression showed a substantially lower unwanted base conversion frequency (0-3.5%) than the BE3 vectors (2.5%-14.7%) (Fig. 1-C).At all five sites, the percentage of clean editing yield (ratio of lines carrying only the C-to-T substitution to total lines) in the regenerated population was 1.14- to 3.81-fold higher for eBE3 than for BE3(Fig.1-B).

    Fig.3-Base editing in transgenic rice plants using CDA variants.A.Expression cassette of CDA and eCDA in binary vectors.B.Base-editing efficiencies of different CDA and eCDA vectors in regenerated populations.C.Frequencies of unwanted mutations in CDA/eCDA plants.D.Frequencies of C?G to T?A conversions in CDA/eCDA regenerated populations at the indicated position of the sgRNA target region.

    Previous reports [17,22,23] indicated that optimization of the sgRNA sequence (esgRNA) with a mutated potential terminator sequence and extended duplex length can improve the efficiency of SpCas9 and its variants(Fig.S3).To test whether optimized sgRNA could increase the frequency of the plant base editors, the esgRNA scaffold sequences were synthesized and individually fused with each of the five above-described protospacers in the eBE3 vector. The BE3-esgRNA combination was also tested with the CHL9,IPA1,and SLR1 targets as controls (Fig. 2). In plants treated with the eBE3-esgRNA vectors, base editing was highly effective(varying from 53.5%to 88.9%)(Fig.1-B).The editing frequency of esgRNA was 1.9- and 2.1-fold higher than that of native sgRNA at the ALS-T1 and IPA1 targets,respectively.Moreover,eBE3-esgRNA still produced a much lower frequency of unwanted mutations (0-7.0%) than BE3-esgRNA (25.0%-50.0%). Producing a perfectly matched 20 bp guide sequence using the tRNA-sgRNA expression system is another strategy to enhance CRISPR editing efficiency [24,25]. Because the rice U3 promoter in the vectors attaches an additional adenine to the 5′end of the mature sgRNA,the 20-bp spacers of the ALST1, IPA1, and NRT1.1 targets, which did not start with “A”,were individually cloned downstream of the tRNA to generate a precisely matched guide sequence.The clean editing yield in the regenerated populations varied from 48.4% to 63.2% (Fig.1-B), and the unwanted mutation rate varied from 0 to 3.1%(Fig. 1-C). These results suggested that eBE3 in combination with esgRNA or tRNA-sgRNA can efficiently generate baseedited plants without unwanted mutations. Consistent with the BE3 system, the most effective editing window of eBE3 tools is still positions 4 to 8(Fig.1-D).

    Fig.4- Base editing in CDA lines using native sgRNA and esgRNA.A.Base-editing efficiencies of the CDA-sgRNA and CDAesgRNA vectors in the regenerated populations.B.Frequencies of unwanted mutations in CDA-sgRNA and CDA-esgRNA plants.C.Frequencies of targeted C-to-T conversions in CDA-sgRNA and CDA-esgRNA regenerated populations at the indicated position of the sgRNA target region.

    Target-AID showed limited editing efficiency and frequently showed undesired mutations, restricting its use for generating precise gain-of-mutations [14]. To improve the efficiency of this system in crops, the coding sequence of PmCDA1 (Os-PmCDA) was specifically codon-optimized for rice expression. Os-PmCDA was linked to the 3′ terminus of nSpCas9 (D10A) with or without the addition of the 3X2A-UGI fraction to form the CDA or eCDA gene. Similarly to the method described above for BE3, SpCas9 in the binary vector pHUN411 was replaced by CDA or eCDA, leading to pHUN411-CDA or pHUN411-eCDA, respectively (Fig. 3-A). The editing effect of CDA was first tested at the ALS-T2 target (Fig. S4).Targeted mutations occurred in 19.4% and 25.0% of regenerated CDA plants with native sgRNA and esgRNA(Figs.3-B, 4),respectively.However,many mutated lines carried InDels and unwanted base conversions (19.4%-30.0% of total lines), and the clean editing yield was lower than 5.6% (Fig. 3-B). As expected, eCDA provided a much higher clean editing yield(18.6% and 18.8% using native sgRNA and esgRNA,respectively) and a much lower unwanted mutation rate(3.1% and 9.3%) than CDA (Fig. 3-B). The combination of tRNA-sgRNA and eCDA showed much higher editing efficiency. Of the 40 regenerated lines, 30 lines were mutants that carried only a targeted C-to-T substitution(s)(representing 75.0% efficiency), including seven biallelic mutants. Moreover, no undesired mutations occurred (Fig.3-C).Interestingly,efficient editing occurred even at position 7, suggesting that eCDA might have a wider editing window than the previously reported 3-bp highly-mutated region(positions 2 to 4) of CDA (Fig. 3-D) [13]. The members of the APOBEC/AID family have different sensitivities to the 5′adjacent nucleotide of target C. The BE3 system has limited GC editing efficiency. We confirmed that the editing frequency of the position 4 C in the GC context of the NRT1.1 target was substantially lower than that of the C at the same position in the CC context of the CHL9 and SLR1 targets (Fig.1-D). We accordingly tested the GC preferences of the CDAs.A 20-bp Pi-d2 region with a G located at position 4 in the GC context (reverse complement strand) was selected for CDA/eCDA-mediated base editing. The clean position 4 G-to-A conversion occurred in 24 lines of 28 tRNA-eCDA plants(85.7% efficiency) (Fig. 3-B) and 17 of these lines were identified as having biallelic or homozygous mutations.These findings implied that, similar to the rBE5 system [14],the CDA/eCDA tool would be more useful in targeted editing of plant genomes with a high GC context.

    4. Discussion

    Limited editing fidelity and efficiency have greatly compromised the application of base editing in the plant genome. The absent or insufficient UGI activity of the target-AID or BE3 system normally leads to a high frequency of undesired mutations in addition to the targeted C-to-T conversions. The unwanted mutations,especially InDels, interfere with the sequence determination of base conversions in plants. Although some unwanted mutations can segregate in the progeny, robust production of clean base conversion in the T0generation will greatly reduce time and economic costs. Although increasing the fidelity of base editing by adding UGI has been reported in mammalian cells [5,6,26], it had not been tested in the plant genome. In this study, we developed plant base-editing systems with additional UGI activity.Combined with the optimized sgRNA expression cassette,our modified eBE3 and eCDA tools showed as high as 86.1%and 85.7% clean editing efficiency (Fig. 1-B), respectively,4.9- and 6.9-fold of the corresponding BE3 and CDA vectors with the conventional structure. In addition, the eBE3 and eCDA tools have different editing scope and target preferences. The improved base-editing toolkits demonstrated in this study will expand the scope of targeted single-base substitutions in the rice genome. We propose that these high-fidelity and high-efficiency base-editing tools, together with the previous reported base substitution systems in plants, can accelerate the application of precise mutagenesis to plant fundamental research and trait improvement.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2019.04.007.

    Declaration of Competing Interest

    Authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was funded by the Genetically Modified Breeding Major Project (2016ZX08010-002-008), the National Natural Science Foundation of China (31701405), and the Natural Science Foundation of Anhui Province,China(1708085QC60).

    女人久久www免费人成看片| 极品教师在线免费播放| 亚洲专区国产一区二区| 在线观看免费视频日本深夜| 女人被躁到高潮嗷嗷叫费观| a级毛片黄视频| 王馨瑶露胸无遮挡在线观看| 国产99久久九九免费精品| 黄色怎么调成土黄色| 真人做人爱边吃奶动态| 脱女人内裤的视频| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 亚洲精品国产一区二区精华液| 亚洲人成伊人成综合网2020| 汤姆久久久久久久影院中文字幕| 亚洲男人天堂网一区| 国产亚洲一区二区精品| 成人影院久久| 国产精品免费大片| 婷婷丁香在线五月| 日韩中文字幕视频在线看片| 女警被强在线播放| 亚洲av欧美aⅴ国产| 肉色欧美久久久久久久蜜桃| 一个人免费在线观看的高清视频| 国产精品一区二区在线观看99| 制服人妻中文乱码| 99热国产这里只有精品6| 免费人妻精品一区二区三区视频| 高清毛片免费观看视频网站 | 久久精品aⅴ一区二区三区四区| 日韩免费av在线播放| 免费在线观看视频国产中文字幕亚洲| 国产精品欧美亚洲77777| 免费观看a级毛片全部| 最近最新免费中文字幕在线| 露出奶头的视频| 久久亚洲精品不卡| 久久久久久人人人人人| 丰满少妇做爰视频| 久久影院123| aaaaa片日本免费| 久9热在线精品视频| 久久性视频一级片| 欧美日韩成人在线一区二区| 国产熟女午夜一区二区三区| 国产av又大| 免费在线观看黄色视频的| 欧美日韩视频精品一区| 久9热在线精品视频| 国产国语露脸激情在线看| 国产精品秋霞免费鲁丝片| 国产成人av教育| 性少妇av在线| 色婷婷av一区二区三区视频| 法律面前人人平等表现在哪些方面| 国产精品一区二区免费欧美| 色视频在线一区二区三区| 亚洲 欧美一区二区三区| 亚洲成人手机| 99国产精品一区二区三区| 午夜日韩欧美国产| www.熟女人妻精品国产| 狂野欧美激情性xxxx| 国产精品美女特级片免费视频播放器 | 亚洲精品美女久久久久99蜜臀| 成年人免费黄色播放视频| 满18在线观看网站| 中文欧美无线码| 视频在线观看一区二区三区| 国产成人av教育| 欧美成人免费av一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久| 我要看黄色一级片免费的| 亚洲色图av天堂| 国产高清视频在线播放一区| 亚洲美女黄片视频| 另类亚洲欧美激情| 国产精品二区激情视频| 国产免费福利视频在线观看| 精品福利永久在线观看| 日韩大码丰满熟妇| 两性夫妻黄色片| 国产一区二区在线观看av| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 99re6热这里在线精品视频| 51午夜福利影视在线观看| 人成视频在线观看免费观看| 亚洲熟女精品中文字幕| 国产亚洲欧美精品永久| 国产成人av激情在线播放| 日本av手机在线免费观看| 精品久久久久久电影网| 久久免费观看电影| 亚洲视频免费观看视频| 三上悠亚av全集在线观看| 国产一区二区三区视频了| 十八禁高潮呻吟视频| 黄色丝袜av网址大全| tocl精华| 久久国产精品大桥未久av| www.999成人在线观看| 免费少妇av软件| 午夜福利乱码中文字幕| 飞空精品影院首页| 9热在线视频观看99| 亚洲午夜理论影院| 国产av国产精品国产| 色视频在线一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情高清一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 大片电影免费在线观看免费| 亚洲精品一二三| 亚洲精品在线观看二区| 超碰97精品在线观看| 水蜜桃什么品种好| 亚洲色图av天堂| 男男h啪啪无遮挡| 成人影院久久| 一级片'在线观看视频| 日本wwww免费看| 免费观看a级毛片全部| 精品福利永久在线观看| 99精国产麻豆久久婷婷| 亚洲久久久国产精品| www.999成人在线观看| 一区二区日韩欧美中文字幕| 老熟妇仑乱视频hdxx| 又黄又粗又硬又大视频| 啦啦啦中文免费视频观看日本| 久久国产亚洲av麻豆专区| 久久久久久久久免费视频了| 一级片'在线观看视频| 国产成人免费观看mmmm| 欧美日韩福利视频一区二区| 极品教师在线免费播放| 女人久久www免费人成看片| 亚洲久久久国产精品| 国产91精品成人一区二区三区 | 成人国产av品久久久| 中文字幕精品免费在线观看视频| 不卡一级毛片| 久久亚洲精品不卡| 深夜精品福利| 人人妻,人人澡人人爽秒播| 久久婷婷成人综合色麻豆| 丰满饥渴人妻一区二区三| 麻豆乱淫一区二区| 一边摸一边做爽爽视频免费| 在线十欧美十亚洲十日本专区| 国产成人精品久久二区二区免费| 一级毛片女人18水好多| 亚洲情色 制服丝袜| 国产av国产精品国产| 人人妻人人添人人爽欧美一区卜| 9色porny在线观看| 日本av手机在线免费观看| 久久人人爽av亚洲精品天堂| 黄片播放在线免费| 9色porny在线观看| 久久久久久久久免费视频了| 两个人看的免费小视频| 久久久久精品国产欧美久久久| 午夜激情久久久久久久| 久久久久视频综合| 亚洲国产av影院在线观看| 久久免费观看电影| 啪啪无遮挡十八禁网站| 黄色视频,在线免费观看| 久久久国产精品麻豆| 一本一本久久a久久精品综合妖精| 国产av一区二区精品久久| 精品一区二区三卡| 波多野结衣av一区二区av| 精品一区二区三卡| 精品亚洲成a人片在线观看| 无遮挡黄片免费观看| 午夜福利视频在线观看免费| 国产欧美日韩一区二区三区在线| 婷婷成人精品国产| kizo精华| 久久精品亚洲av国产电影网| av一本久久久久| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 欧美老熟妇乱子伦牲交| 麻豆av在线久日| 国产精品一区二区在线不卡| 国产精品国产高清国产av | 三级毛片av免费| 欧美日韩视频精品一区| 中文欧美无线码| 欧美日韩视频精品一区| 精品欧美一区二区三区在线| 夜夜夜夜夜久久久久| 久久九九热精品免费| 国产亚洲精品久久久久5区| 亚洲国产精品一区二区三区在线| 亚洲黑人精品在线| 久久精品亚洲av国产电影网| 国产精品偷伦视频观看了| 免费观看a级毛片全部| 亚洲色图 男人天堂 中文字幕| 欧美日韩成人在线一区二区| 又大又爽又粗| 黄片大片在线免费观看| 亚洲熟女精品中文字幕| 男女边摸边吃奶| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区精品| 欧美人与性动交α欧美精品济南到| 久久九九热精品免费| 欧美成狂野欧美在线观看| 搡老熟女国产l中国老女人| 亚洲成a人片在线一区二区| 亚洲伊人久久精品综合| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 午夜福利视频精品| 精品国产国语对白av| 超碰成人久久| 欧美 亚洲 国产 日韩一| 久久久久网色| 国产精品99久久99久久久不卡| 女人被躁到高潮嗷嗷叫费观| 国产精品免费一区二区三区在线 | 久久国产精品影院| 在线观看人妻少妇| 久久久欧美国产精品| 国产欧美日韩一区二区三| 日本精品一区二区三区蜜桃| 一二三四社区在线视频社区8| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 91av网站免费观看| 人成视频在线观看免费观看| 欧美日韩视频精品一区| 欧美乱妇无乱码| 国产成人av教育| 少妇的丰满在线观看| 久久久国产一区二区| 大片免费播放器 马上看| 99国产精品一区二区三区| 国产视频一区二区在线看| 亚洲 国产 在线| 精品亚洲成国产av| 亚洲国产看品久久| 欧美老熟妇乱子伦牲交| 国产一区二区激情短视频| 久久国产精品大桥未久av| 欧美在线一区亚洲| 日本av免费视频播放| 777米奇影视久久| 人人澡人人妻人| 怎么达到女性高潮| 岛国在线观看网站| 国产精品免费视频内射| 又紧又爽又黄一区二区| 久久久久久久大尺度免费视频| 久久国产精品男人的天堂亚洲| 午夜福利乱码中文字幕| 成年人免费黄色播放视频| 亚洲av第一区精品v没综合| 中文欧美无线码| 十分钟在线观看高清视频www| 伦理电影免费视频| 99久久99久久久精品蜜桃| 亚洲专区国产一区二区| 纯流量卡能插随身wifi吗| 丁香六月天网| 一区福利在线观看| 久久av网站| 亚洲中文av在线| 叶爱在线成人免费视频播放| 久久亚洲真实| 国产精品偷伦视频观看了| 欧美黄色淫秽网站| av又黄又爽大尺度在线免费看| 高潮久久久久久久久久久不卡| 中文字幕高清在线视频| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 国产深夜福利视频在线观看| 黄片小视频在线播放| 99国产综合亚洲精品| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月欧美| 9热在线视频观看99| 国产无遮挡羞羞视频在线观看| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 极品教师在线免费播放| 欧美乱妇无乱码| 久久午夜综合久久蜜桃| 无限看片的www在线观看| 少妇 在线观看| 免费少妇av软件| av有码第一页| 高清毛片免费观看视频网站 | 国产人伦9x9x在线观看| 亚洲情色 制服丝袜| 一区二区三区乱码不卡18| 亚洲国产欧美日韩在线播放| 免费看a级黄色片| 久久av网站| 日本a在线网址| 一区二区av电影网| av一本久久久久| 午夜福利视频精品| 日韩一区二区三区影片| 老熟女久久久| 一二三四社区在线视频社区8| 男女免费视频国产| 国产精品美女特级片免费视频播放器 | 一级毛片精品| av免费在线观看网站| 国产男靠女视频免费网站| 十八禁网站免费在线| 亚洲国产欧美一区二区综合| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| 中文字幕精品免费在线观看视频| 在线亚洲精品国产二区图片欧美| 考比视频在线观看| 又大又爽又粗| 亚洲精品国产一区二区精华液| 午夜91福利影院| 12—13女人毛片做爰片一| 成人免费观看视频高清| 超色免费av| 欧美精品av麻豆av| 咕卡用的链子| 国产视频一区二区在线看| 精品人妻在线不人妻| 国产精品自产拍在线观看55亚洲 | 美女高潮到喷水免费观看| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁裸乳无遮挡动漫免费视频| 中文字幕高清在线视频| 老汉色∧v一级毛片| 国产高清激情床上av| 久久人妻熟女aⅴ| 在线观看免费午夜福利视频| 久久人妻av系列| 成年版毛片免费区| 欧美+亚洲+日韩+国产| 国产一卡二卡三卡精品| 亚洲av日韩在线播放| 日韩有码中文字幕| 亚洲欧美日韩高清在线视频 | 亚洲av第一区精品v没综合| 国产麻豆69| 日日夜夜操网爽| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品| 精品人妻熟女毛片av久久网站| 亚洲av欧美aⅴ国产| 欧美精品av麻豆av| a级毛片黄视频| 国产淫语在线视频| 亚洲欧美一区二区三区黑人| 亚洲国产av新网站| 男女高潮啪啪啪动态图| 岛国在线观看网站| 日韩精品免费视频一区二区三区| 国产精品自产拍在线观看55亚洲 | 又大又爽又粗| 法律面前人人平等表现在哪些方面| √禁漫天堂资源中文www| 午夜两性在线视频| 一区二区三区激情视频| 男女无遮挡免费网站观看| 男女下面插进去视频免费观看| av网站在线播放免费| 变态另类成人亚洲欧美熟女 | 精品人妻在线不人妻| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| 色播在线永久视频| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女 | 国产精品影院久久| 露出奶头的视频| 国产精品秋霞免费鲁丝片| 精品第一国产精品| 精品国产亚洲在线| 一本一本久久a久久精品综合妖精| 在线观看免费日韩欧美大片| 国产人伦9x9x在线观看| 日本黄色视频三级网站网址 | 久久久精品免费免费高清| 久久婷婷成人综合色麻豆| 另类亚洲欧美激情| 最新的欧美精品一区二区| 一级毛片女人18水好多| 亚洲精品国产区一区二| 亚洲精品美女久久久久99蜜臀| 成人黄色视频免费在线看| 国产在线精品亚洲第一网站| 757午夜福利合集在线观看| 精品视频人人做人人爽| 最近最新免费中文字幕在线| 怎么达到女性高潮| 精品国产亚洲在线| 国产在线免费精品| 国产欧美日韩综合在线一区二区| 久久精品国产综合久久久| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 桃花免费在线播放| 午夜激情av网站| 亚洲熟妇熟女久久| 欧美精品一区二区免费开放| 亚洲 欧美一区二区三区| 国产在线一区二区三区精| 成人亚洲精品一区在线观看| 性少妇av在线| 9191精品国产免费久久| 黑人巨大精品欧美一区二区蜜桃| 少妇裸体淫交视频免费看高清 | 午夜福利一区二区在线看| 精品国产一区二区久久| av不卡在线播放| 日韩视频在线欧美| 日韩人妻精品一区2区三区| 正在播放国产对白刺激| 少妇粗大呻吟视频| 99精国产麻豆久久婷婷| 精品第一国产精品| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| av天堂久久9| 超碰97精品在线观看| 亚洲人成77777在线视频| 18禁裸乳无遮挡动漫免费视频| 亚洲一区中文字幕在线| 岛国毛片在线播放| 亚洲人成伊人成综合网2020| 亚洲一区中文字幕在线| 欧美老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区 | tube8黄色片| 久久免费观看电影| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 久9热在线精品视频| 国产精品偷伦视频观看了| 视频区图区小说| 久久久久久久精品吃奶| 国产人伦9x9x在线观看| 超碰成人久久| 19禁男女啪啪无遮挡网站| 最新的欧美精品一区二区| 又大又爽又粗| 老司机午夜福利在线观看视频 | 成年女人毛片免费观看观看9 | 亚洲一区二区三区欧美精品| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| 最近最新免费中文字幕在线| 久久人人爽av亚洲精品天堂| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 在线天堂中文资源库| 国产成人精品无人区| 老司机午夜福利在线观看视频 | 国产aⅴ精品一区二区三区波| 五月天丁香电影| 丁香欧美五月| 天天添夜夜摸| 老汉色∧v一级毛片| 亚洲,欧美精品.| 免费看十八禁软件| 王馨瑶露胸无遮挡在线观看| 999久久久精品免费观看国产| 亚洲av美国av| 国产成人欧美在线观看 | 啦啦啦 在线观看视频| 制服诱惑二区| 一级片'在线观看视频| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 热re99久久精品国产66热6| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 午夜免费鲁丝| 国产在线一区二区三区精| 中文欧美无线码| 人人澡人人妻人| 亚洲欧美精品综合一区二区三区| 岛国毛片在线播放| 在线观看免费午夜福利视频| 美国免费a级毛片| 一进一出好大好爽视频| 男女下面插进去视频免费观看| 日韩大片免费观看网站| 亚洲欧美日韩另类电影网站| 亚洲精品久久成人aⅴ小说| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| 日韩免费av在线播放| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| 热re99久久国产66热| 757午夜福利合集在线观看| avwww免费| 国产男女超爽视频在线观看| 免费av中文字幕在线| 韩国精品一区二区三区| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 热99国产精品久久久久久7| 日韩 欧美 亚洲 中文字幕| 老司机午夜福利在线观看视频 | 国产精品九九99| 国产精品免费大片| 一个人免费看片子| 嫁个100分男人电影在线观看| 亚洲中文字幕日韩| 久久毛片免费看一区二区三区| 日本a在线网址| 色综合婷婷激情| 亚洲第一av免费看| 热99re8久久精品国产| www日本在线高清视频| 欧美日韩亚洲高清精品| 亚洲黑人精品在线| 99精品在免费线老司机午夜| 99国产精品免费福利视频| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 国产91精品成人一区二区三区 | 午夜精品久久久久久毛片777| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人| 无人区码免费观看不卡 | 国产一区二区三区视频了| 搡老岳熟女国产| 久久午夜亚洲精品久久| 国产精品久久久久成人av| cao死你这个sao货| 欧美精品啪啪一区二区三区| 男女边摸边吃奶| 少妇粗大呻吟视频| 一区在线观看完整版| 丁香六月天网| 日本撒尿小便嘘嘘汇集6| 免费少妇av软件| 成年女人毛片免费观看观看9 | 大型黄色视频在线免费观看| 国产成人欧美在线观看 | 欧美成人午夜精品| 国产国语露脸激情在线看| av在线播放免费不卡| 日本av免费视频播放| 亚洲国产毛片av蜜桃av| 黄色a级毛片大全视频| 亚洲精品中文字幕一二三四区 | 天天添夜夜摸| 九色亚洲精品在线播放| 国产精品偷伦视频观看了| 国产无遮挡羞羞视频在线观看| 狂野欧美激情性xxxx| 丁香六月天网| 日本av手机在线免费观看| 久久国产精品大桥未久av| 亚洲国产欧美网| 欧美亚洲 丝袜 人妻 在线| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 999久久久精品免费观看国产| av网站免费在线观看视频| 男人舔女人的私密视频| 99精品久久久久人妻精品| 18禁观看日本| 一级毛片电影观看| 国产日韩欧美在线精品| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 黄片大片在线免费观看| 午夜两性在线视频| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 成年女人毛片免费观看观看9 | 日韩制服丝袜自拍偷拍| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频日本深夜| videosex国产| av一本久久久久| 丝袜在线中文字幕| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 国产精品九九99| 久久久精品94久久精品| 久久久欧美国产精品| 两人在一起打扑克的视频|