• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    2013-12-23 06:15:02JmshedHneefMohmmdShhryrAsifHusinMohdRshidRvineshMishrShmPrveenNiyzAhmedMnojPlDeepkKumr
    Journal of Pharmaceutical Analysis 2013年5期

    Jmshed Hneef, Mohmmd Shhryr, Asif Husin, Mohd Rshid,*,Rvinesh Mishr, Shm Prveen, Niyz Ahmed, Mnoj Pl, Deepk Kumr

    aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar,New Delhi 110062, India

    bDepartment of Chemistry, Indian Institute of Technology (IIT), Haridwar, Roorkee 247667, Uttarakhand, India

    cResearch Institute of Natural Sciences,Department of Chemistry,Changwon National University,Changwon 641773,Republic of Korea

    1. Introduction

    Corticosteroids and stimulants are the class of compounds that are illicitly used by professionals owing to their anti-inflammatory and mood elevating as well as euphoric properties respectively.They are widespread abused among sports persons [1], stimulant addiction among teenagers and deliberate counterfeiting in herbal products to enhance their effects [2,3]. Hence there is a need for more sensitive analytical tools to detect and confirm these classes of drugs in biological fluids [3,4]. These analytical tools would serve to fulfill demands in forensic, toxicological and food safety departments.Glucocorticoid belongs to steroid family,particularly of pregnane class containing C-21 derivatives. Glucocorticoids have important functions upon carbohydrate, protein and calcium metabolism, potent anti-inflammatory and immunosuppressive activities [5—8]. The activity of glucocorticoids largely depends upon the substituent attached to the nucleus. Substituent has been found to significantly increase both glucocorticoids and mineralocorticoids activities. It has been found that Δ1,2corticosteroids enhance anti-inflammatory activity and decrease salt retaining activity [9]. Some selected glucocorticoids and their structures are shown in Table 1.Stimulants are the class of drugs that have a marked effect on mental function and behavior, producing euphoria and reduced fatigue. They are diverse class of compounds that exhibit their action through different mechanism.This class of drugs is often abused by teenagers leading to addiction and risk of health hazards. Some of selected stimulants are modafinil, famprofazone, tuaminoheptane, amiphenazole,amphetamine, methamphetamine, dimethylamphetamine, methylphenidate, 3,4-methylene-dioxy-N-amphetamine, 3,4-methylenedioxy-N-ethylamphetamine, strychnine and 3,4-methylene-dioxy-N-methamphetamine etc.

    Thus there is need for sophisticated and robust analytical strategy to confirm their presence in biological fluids. A number of different analytical approaches are available for this purpose.Analytical techniques such as high performance liquid chromatography (HPLC), ultra high performance liquid chromatography(UHPLC), mass spectrometry, gas chromatography, electrochemical detection and enhanced confirmatory procedures are used in detection of these classes of drugs. Recent development and advancement in analytical technologies has emerged with more sophisticated hyphenated techniques,to detect nanograms of drugs or their metabolites in biological fluids. Among hyphenated techniques, LC—MS/MS is the choice of interest because it is highly sophisticated and considerably powerful tool for detection of low and high molecular weight analytes. New methods have enabled the determination of drugs that were formerly difficult to detect by conventional methods of analysis as well as time consuming procedures have been replaced by faster, more comprehensive and robust assays. Good sensitivity and high throughput are key factors for the LC—MS/MS approaches used in drug analysis.

    In this review, we present an overview of the methodologies that are reported in literature for detection,confirmation of corticosteroids and stimulants in biological fluids.Reported screening methods using LC—MS/MS approach highlight chromatographic separation and different modes of instrumental acquisition (selective ion monitoring(SIM), multiple reaction monitoring (MRM), precursor ion scan) forMS detection. Proposed mass fragmentation pathways of selected drugs are incorporated in this review.

    Table 1 General nucleus of corticoids and different substitutions of different glucocorticoids drugs.

    Table 2 Selected confirmatory methods for detecting glucocorticoids in biological fluids.

    Table 3 Selected confirmatory methods for detecting stimulants in biological fluids.

    Table 4 Empirical formula, exact masses, MS fragmentation data, Log P and λmax of selected glucocorticoids and stimulants.

    Table 5 Characteristics fragment ions of glucocorticoids obtained in ESI negative mode LC—MS/MS.

    2. Screening methods for detection of glucocorticoids and stimulants in biological fluids using liquid chromatography mass spectrometry

    LC—MS/MS techniques provide specific, selective and sensitive quantitative results with reduced sample preparation. Other techniques such as electrochemical detection were also explored for the analysis of drugs. Goyal et al. [10,11] investigated electrochemical behavior of dexamethasone and triamcinolone at the fullerene-C60-modified pyrolytic graphite electrode (PGE) using Osteryoung square wave voltammetry (SWV) and they illustrated quantitative determination of dexamethasone and triamcinolone in several commercially available pharmaceutical formulations and human blood plasma of patients being treated with dexamethasone. LC—MS/MS is currently most ideal tools for screening and quantifying corticosteroids in biological fluids as compared to other conventional techniques. This technique is widely used for pharmacokinetic (PK) studies, metabolites identification in plasma and urine, doping analysis and forensic studies. The introduction of commercial hyphenated instruments in which liquid chromatography is coupled with different mass analyzers such as time of flight mass spectrometry (LC—TOFMS), triple quadrupole mass spectrometer and soft ionization techniques [electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI),atmospheric pressure photo ionization (APPI), and matrix assisted laser desorption ionization (MALDI) etc.] has simplified the laboratory analysis and also decreased the cost of analysis to some extent.The polarity and functionalities of corticosteroids and stimulants allow the use of ionization techniques in positive ion or negative ion modes and different modes of instrumental acquisition for mass detection.Tables 2 and 3 summarize the information on methods used for identification and confirmation of corticosteroids [12—25] and selected stimulants [26—30].

    Fluri et al. [12] reported confirmatory method for 11 corticosteroids in urine samples based on LC—ESI—MS. The selective and sensitive method for confirmation and identification of nine synthetic corticosteroids assured the exclusion of false positive results obtained by corticosteroid group ELISA screening tests.Emmie et al. [13] developed two high throughput LC—MS methods for the screening of anabolic steroids, corticosteroids,and acidic drugs using a high efficiency LC column coupled with a fast scanning triple quadrupole mass spectrometer. The detection of 40 anabolic steroids, corticosteroids, and 52 acidic drugs were achieved within a 6.5 min and a 4.5 min LC—MRM run, respectively and all the targets were detected at low amount. Validation data showed that both methods have acceptable precision to be used on a routine basis and no interference from sample matrix was observed.

    A rapid, sensitive and specific method for the simultaneous detection and quantization of methylprednisolone acetate (MPA)and methylprednisolone (MP) in rat plasma, using a triple stage quadrupole was developed and validated by Panusa et al. [14]using LC—ESI—MS/MS. Its excellent applicability in PK studies was demonstrated. It was proved to be highly sensitive, allowing detection and quantization of the analytes at lower concentrations.

    Method was developed by Touber et al. [15] using the latest high-resolution LC column technology, UPLC?, and ESI interface in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes including 17 glucocorticosteroids. The UPLC—TOF—MS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. The authors recommended that dedicated UPLC—TOF—MS criteria regarding the number of identification points (IPs),mass accuracy of parent,fragment ions,ion ratio, and relative retention time have not been assessed, in order to allow application of this new technology for confirmation of identity as well, that should be considered and thus needs improvement.

    Mazzarino et al. [23] performed screening of several classes of substances in a single chromatographic method with a run-time of 11 min, inclusive of post-run and reconditioning times. The effectiveness of this approach was evaluated by LC—ESI—MS/MS in the positive mode, using 20 blank urine samples spiked with 45 compounds prohibited in sport including 16 glucocorticoids and 9 stimulants. All of the analytes were clearly distinguishable in urine, with limits of detection ranging from 5 ng/mL to 350 ng/mL. All the compounds of interest were separated,including synthetic and endogenous glucocorticoids with similar retention times and fragmentation patterns.

    Kolmonen et al. [26] developed a general screening method based on solid phase extraction(SPE),LC—TOF/MS and validated 124 different doping agents including stimulants in urine. The result indicated that compared with conventional doping control methods, this method was more flexibility in identification,database management and reduced the time required for analysis.

    A selective and sensitive method for the qualitative screening of urine samples for 27 amphetamine and amphetamine-type drugs was described by Deventer et al. [27] using mass spectrometer equipped with APCI interface, operated in positive ionization mode. They reported that the amount of urine routinely used in their laboratory for the extraction of these stimulants (5 mL) was reduced to 2 mL and thus reduced sample volume. The detection limits for all the compounds were lower than 25 ng/mL except for chlorphentermine, thus it was good alternative to gas chromatography with nitrogen phosphorus detector (GC-NPD).

    Kim et al. [28] developed and validated LC—ESI—MS/MS method for the simultaneous detection and quantification of seven amphetamine derivatives amphetamine (AP), methamphetamine(MA), 3,4-methylenedioxy-N-amphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA), 3,4-methylenedioxy-Nethylamphetamine (MDEA), N,N-dimethylamphetamine (DMA)and N,N-dimethylamphetamine-N-oxide (DMANO) in human urine. The paper reported that the SPE step was assayed to detect and quantify seven target analytes in urine samples without any significant interference from the matrix components.

    Fig.1 Proposed mass fragmentation pathway of dexamethasone drug. 1—Molecular ion peak at M+=393. 2—Base ion peak at m/z=373. 3—Daughter ion peak at m/z=355.

    Fig.2 Proposed mass fragmentation pathway of prednisolone drug.1—Molecular ion peak at M+=361. 2—Base ion peak at m/z=343.3—Daughter ion peak at m/z=307.

    Counterfeiting of herbal drugs with synthetic agents can also be detected by LC—MS/MS [31,32]. Different mass analyzers (TOF,IT(ion trap))have been coupled with LC and extensively used for screening and characterization of different analytes in plasma and herbal extracts [33,34].

    3. Focusing on different strategies for detection of glucocorticoids and stimulants in biological fluids

    Fig.3 Proposed mass fragmentation pathway of prednisone drug. 1—Molecular ion peak at M+=359. 2—Base ion peak at m/z=341.3—Daughter ion peak at m/z=171.

    Fig.4 Proposed mass fragmentation pathway of strychnine drug.1—Molecular ion peak at M+=335. 2—Base ion peak at m/z=264.3—Daughter ion peak at m/z=156.

    Based on the reported MS-fragmentation data, a common fragmentation could be developed in screening of corticosteroids and stimulants. The basic information regarding empirical formula,exact masses, Log P and absorption maxima (λmax) is also summarized in Table 4. P and Log P are partition coefficient or logarithm of the partition coefficient of a drug. These parameters express the relative distribution of drug between oil and water under specified conditions for example,octanol/water at 37°C and pH 7.4. Drugs with higher P or Log P are more lipophilic,generally distribute more rapidly and to a greater degree into bodily tissues and fluids.These physicochemical properties help in prediction of drug transport. These data render to presume interaction of analyte with stationary phase, thereby allowing a good evaluation of its chromatographic performance. UV spectra can help as a preliminary screening to distinguish different analytes on the basis of their absorption maxima (λmax).The super-imposable nature of UV spectra of an analyte with a certified reference material (CRM) can give fair idea about their structural similarity to much extent.This approach has been employed for detection of adulteration using HPLC with UV detector.

    The precursor and products ions summarized in Table 4, are based on positive ionization. Depending upon the nature of target analytes, ionization mode is optimized. Fluri et al. [12] studied both negative and positive ionization modes for examined glucocorticoids. Due to less fragmentation and a better signal-tonoise ratio (4:1), sensitivity increased for measurements in the negative ionization mode. They assessed that fragmentation of corticosteroids in the ESI negative mode is simple as few ions were produced. The products ions of ten selected corticosteroids by their study are presented in Table 5.

    4. Proposed mass fragmentation pattern

    The hypothetical mass fragmentation pattern of some selected drugs like dexamethasone, prednisolone, prednisone and strychnine on the basis of MRM transitions has been incorporated and that helps in confirmation of analytes on the basis of diagnostic ions (Figs. 1—4). The daughter ions generated from the parent ions help to predict the fragmentation pattern of the molecule and are useful in confirmation of the target analytes.

    5. Conclusion

    With the advancement of hyphenated techniques, high resolution mass analyzers as well as high throughput separation approaches,quantitative analysis of glucocorticoids and stimulants can be achieved with good sensitivity. Newer methods can be developed for routine analysis of target analytes in biological fluids with shorter run time and good detectability. Application of new fused core columns for their effectiveness and use of both positive and negative polarities in a single run need to explore.

    [1] L.Perrenoud,M.Saugy,C.Saudan,Detection in urine of 4-methyl-2-hexaneamine a doping agent, J. Chromatogr. B 877 (29) (2009)3767—3770.

    [2] C. Judkins, D. Hall, K. Hoffman, Investigation into Supplement Contamination Levels in the US Market,HFL.2007.Available from:〈http://www.supplementsafetynow.com/HFL-supplement-research-re port.pdf〉.

    [3] A.A. Savaliya, B. Prasad, D.K. Raijada, et al., Detection and characterization of synthetic steroidal and non-steroidal anti-inflammatory drugs in Indian ayurvedic/herbal products using LC—MS/TOF,Drug Test Anal. 1 (8) (2009) 372—381.

    [4] S. Ahmed, M. Riaz, Quantitation of corticosteroids as common adulterants in local drugs by HPLC, Chromatographia 31 (1—2)(1991) 67—70.

    [5] H.M. Ramsay, W. Goddard, S. Gill, et al., Herbal creams used for atopic eczema in Birminghan, U.K. illegally contains potent corticosteroids, Arch. Dis. Child 88 (12) (2003) 1056—1057.

    [6] A.Beotra,Y.K.Gupta,S.Ahi,et al.,Preliminary studies on detection of corticosteroids in adulterated herbal drugs, Recent Adv. Doping Anal. 18 (2009) 208—211.

    [7] N. Uchiyama, R.K. Hanajiri, N. Kawahara, et al., Identification of a cannabimimetic indole as a designer drug in a herbal product,Forensic Toxicol. 27 (2009) 61—66.

    [8] K. Deventer, W.V. Thuyne, P. Mikulcikova, et al., Detection of selected stimulants as contaminants in solid nutritional supplements by liquid chromatography—mass spectrometry, Food Chem. 103(2007) 1508—1513.

    [9] J.N. Delgado, W.A. Remers, Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 10th ed., Lippincott Raven, Philadelphia, New York, 1998, pp. 772—774.

    [10] R.N. Goyal, V.K. Gupta, S. Chatterjee, Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids, Biosens. Bioelectron. 24 (2009) 1649—1654.

    [11] R.N. Goyal, V.K. Gupta, S. Chatterjee, A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone,abused for doping, Biosens. Bioelectron. 24 (2009) 356—3562.

    [12] K. Fluri, L. Rivier, A.D. Nagy, et al., Method for confirmation of synthetic corticosteroids in doping urine samples by liquid chromatography-electrospray ionisation mass spectrometry, J. Chromatogr. A 926 (2001) 87—95.

    [13] N.M.H. Emmie, D.K.K. Leung, S.M.W. Terence, et al., Comprehensive screening of anabolic steroids, corticosteroids, and acidic drugs in horse urine by solid phase extraction and liquid chromatography—mass spectrometry, J. Chromatogr. A 1120 (2006) 38—53.

    [14] A. Panusa, M. Orioli, G. Aldinia, et al., A rapid and sensitive LC—ESI—MS/MS method for detection and quantitation of methylprednisolone and methylprednisolone acetate in rat plasma after intraarticular administration,J,Pharm.Biomed.Anal.51(2010)691—697.

    [15] M.E. Touber, M.C.V. Engelen, C. Georgakopoulus, et al., Multidetection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry, Anal. Chim. Acta 586 (2007) 137—146.

    [16] S.Q. Zhang, H.R. Thorsheim, S. Penugonda, et al., Liquid chromatography—tandem mass spectrometry for the determination of methylprednisolone in rat plasma and liver after intravenous administration of its liver-targeted dextran prodrug, J. Chromatogr. B 877 (2009)927—932.

    [17] M.J.O. Keeffe, S. Martin, L. Regan, Validation of a multiresidue liquid chromatography—tandem mass spectrometric method for the quantitation and confirmation of corticosteroid residues in urine,according to the proposed SANCO 1085 criteria for banned substances, Anal. Chim. Acta 483 (2003) 341—350.

    [18] I.A. Ionita, D.M. Fast, F. Akhlaghi, Development of a sensitive and selective method for the quantitative analysis of cortisol, cortisone,prednisolone and prednisone in human plasma,J.Chromatogr.B 877(2009) 765—772.

    [19] V.A. Frerichs, K.M. Tornatore, Determination of the glucocorticoids prednisone, prednisolone, dexamethasone, and cortisol in human serum using liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. B 802 (2004) 329—338.

    [20] R.D. Francesco, V. Frerichs, J. Donnelly, et al., Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography—tandem mass spectrometry, J. Chromatogr. B 859 (2007) 42—51.

    [21] P.W. Tang, W.C. Law, T.S.M. Wan, Analysis of corticosteroids in equine urine by liquid chromatography—mass spectrometry, J. Chromatogr. B 754 (2001) 229—244.

    [22] B.C. Mc-Whinney, S.E. Briscoe, J.P.J. Ungerer, et al., Measurement of cortisol,cortisone,prednisolone,dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography—tandem mass spectrometry: application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory, J. Chromatogr. B 878 (2010)2863—2869.

    [23] M. Mazzarino, X. Torre, F. Botre, et al., A rapid screening LC—MS/MS method based on conventional HPLC pumps for the analysis of low molecular weight xenobiotics: application to doping control analysis, Drug Test Anal. 2 (2010) 311—322.

    [24] M. Mazzarino, F. Botre, A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-oestrogen drugs and synthetic anabolic steroids, Rapid Commun. Mass Spectrom. 20 (2006)3465—3476.

    [25] I.M. Reddy, A. Beotra, S. Jain, et al., A simple and rapid ESI—LC—MS/MS method for simultaneous screening of doping agents in urine samples, Ind. J. Pharm. 41 (2) (2009) 80—86.

    [26] M. Kolmonen, A. Leinonen, A. Pelander, et al., A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry, Anal.Chim. Acta 585 (2007) 94—102.

    [27] K. Deventer, P.V. Eenoo, F.T. Delbeke, Screening for amphetamine and amphetamine-type drugs in doping analysis by liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 20(2006) 877—882.

    [28] J.Y. Kim, J.C. Cheong, B.J. Ko, et al., Simultaneous determination of methamphetamine, 3,4-methylenedioxy- N-methylamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, N,N-dimethylamphetamine and their metabolites in urine by liquid chromatography-electrospray ionization-tandem mass spectrometry, Arch. Pharm. Res. 31 (12) (2008)1644—1651.

    [29] M.J.Kang,Y.H.Hwang,W.Lee,et al.,Validation and application of a screening method for b2-agonists, anti-estrogenic substances and mesocarb in human urine using liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 252—264.

    [30] M.M.R. Fernandez, S.M.R. Wille, V.D. Fazio, et al., Analysis of amphetamines and metabolites in urine with ultra performance liquid chromatography tandem mass spectrometry, J. Chromatogr. B 878(2010) 1616—1622.

    [31] S.R. Gratz, C.L. Flurer, K.A. Wolnik, Analysis of undeclared synthetic phosphodiesterase-5 inhibitors in dietary supplements and herbal matrices by LC—ESI—MS and LC-UV, J. Pharm. Biomed.Anal. 36 (3) (2004) 525—533.

    [32] M. Wiergowski, K.G. Tatarowicz, L.N. Banasik, et al., Hazard for human health and life by unintentional use of synthetic sibutramine,which was sold as Chinese herbal product meizitanc, Przegl. Lek. 64(4—5) (2007) 268—272.

    [33] S.R. Polagania, N.R. Pillib, V. Gandu, High performance liquid chromatography mass spectrometric method for the simultaneous quantification of pravastatin and aspirin in human plasma: pharmacokinetic application, J. Pharm. Anal. 2 (3) (2012) 206—213.

    [34] X.F. Chen, H.T. Wu, G.G. Tan, et al., Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines, J. Pharm. Anal. 1 (4)(2011) 235—245.

    [35] M.J. Bogusz, H. Hassan, E.A. Enazi, et al., Application of LC—ESI—MS—MS for detection of synthetic adulterants in herbal remedies,J. Pharm. Biomed. Anal. 41 (2006) 554—564.

    [36] M.C.Tseng,M.J.Tsai,J.H.Lin,et al.,GC/MS analysis on anorectics adulterated in traditional Chinese medicines,J.Food Drug Anal.8(4)(2000) 315—330.

    [37] R.L. Taylor, S.K. Grebe, R.J. Singh, Quantitative highly sensitive liquid chromatography-tandem mass spectrometry method for detection of synthetic corticosteroids, Clin. Chem. 50 (12) (2004)2345—2352.

    黄色毛片三级朝国网站| 无人区码免费观看不卡| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费 | 99riav亚洲国产免费| 国产成人欧美在线观看 | 黄频高清免费视频| 麻豆国产av国片精品| 久久草成人影院| www.熟女人妻精品国产| 国产单亲对白刺激| 国产精品av久久久久免费| 亚洲熟妇熟女久久| 香蕉国产在线看| 亚洲一区高清亚洲精品| 91老司机精品| 午夜激情av网站| 欧美av亚洲av综合av国产av| 国产精品九九99| 大陆偷拍与自拍| 国产欧美日韩一区二区三区在线| 国产亚洲精品一区二区www | 亚洲av熟女| 国产欧美日韩综合在线一区二区| 人妻丰满熟妇av一区二区三区 | 欧美黑人欧美精品刺激| 高清黄色对白视频在线免费看| 三级毛片av免费| 人人澡人人妻人| 午夜激情av网站| 久久久国产欧美日韩av| 国产免费现黄频在线看| 午夜老司机福利片| 好看av亚洲va欧美ⅴa在| 自线自在国产av| 精品人妻熟女毛片av久久网站| 日韩大码丰满熟妇| av天堂久久9| 又黄又爽又免费观看的视频| 亚洲片人在线观看| 亚洲国产欧美一区二区综合| av一本久久久久| 曰老女人黄片| 国产免费av片在线观看野外av| 亚洲av日韩在线播放| 女人精品久久久久毛片| 国产在视频线精品| 久久狼人影院| 高清毛片免费观看视频网站 | 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女 | 日韩欧美国产一区二区入口| 国产成人精品在线电影| 国产成人欧美在线观看 | 十八禁人妻一区二区| 成人三级做爰电影| 免费高清在线观看日韩| 大码成人一级视频| 国产成人av教育| 精品久久久久久电影网| 欧美成狂野欧美在线观看| 久久九九热精品免费| 中文字幕人妻熟女乱码| 亚洲成a人片在线一区二区| 中文字幕色久视频| 欧美日韩国产mv在线观看视频| www.自偷自拍.com| 免费观看人在逋| e午夜精品久久久久久久| 精品卡一卡二卡四卡免费| 好男人电影高清在线观看| av有码第一页| 国产97色在线日韩免费| 欧美日韩精品网址| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 中文亚洲av片在线观看爽 | 精品午夜福利视频在线观看一区| 在线观看66精品国产| 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 动漫黄色视频在线观看| 国产精品.久久久| 精品国产一区二区久久| 国产视频一区二区在线看| 在线永久观看黄色视频| 亚洲av第一区精品v没综合| 中文字幕色久视频| 亚洲熟女毛片儿| 在线免费观看的www视频| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 亚洲精品中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 热99re8久久精品国产| 韩国av一区二区三区四区| 嫩草影视91久久| 色94色欧美一区二区| 操出白浆在线播放| 少妇猛男粗大的猛烈进出视频| 久久精品亚洲精品国产色婷小说| 免费少妇av软件| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 免费在线观看日本一区| 久久精品国产a三级三级三级| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 中文字幕精品免费在线观看视频| 国产精品久久久人人做人人爽| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 久久亚洲精品不卡| 免费观看a级毛片全部| 99精品在免费线老司机午夜| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片 | 欧美精品高潮呻吟av久久| 满18在线观看网站| 黄色a级毛片大全视频| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区 | 一本大道久久a久久精品| 午夜福利欧美成人| 成人黄色视频免费在线看| 免费一级毛片在线播放高清视频 | 国产无遮挡羞羞视频在线观看| 亚洲熟妇熟女久久| 国产亚洲欧美精品永久| 久久久久久人人人人人| 天堂中文最新版在线下载| 日韩欧美在线二视频 | 午夜老司机福利片| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 久久午夜亚洲精品久久| 欧美性长视频在线观看| 另类亚洲欧美激情| 国产成人av教育| 99国产精品一区二区三区| 两个人免费观看高清视频| tocl精华| 国产免费男女视频| 免费在线观看完整版高清| 国产欧美日韩综合在线一区二区| 下体分泌物呈黄色| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 下体分泌物呈黄色| 国产免费现黄频在线看| 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 午夜福利在线免费观看网站| 久久久久视频综合| 国产一区二区三区视频了| 国产成人精品在线电影| 成人影院久久| 新久久久久国产一级毛片| 亚洲av熟女| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 久久99一区二区三区| 国产精品永久免费网站| 大型黄色视频在线免费观看| 电影成人av| 免费在线观看日本一区| 一区福利在线观看| 女警被强在线播放| 欧美日韩精品网址| 老司机影院毛片| 黑人猛操日本美女一级片| 超碰97精品在线观看| 国产av精品麻豆| 夫妻午夜视频| 中文字幕制服av| 丝袜美腿诱惑在线| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 久久天堂一区二区三区四区| 老司机午夜十八禁免费视频| 精品国产亚洲在线| 18禁美女被吸乳视频| 国产高清国产精品国产三级| 大型黄色视频在线免费观看| 又大又爽又粗| 成人永久免费在线观看视频| 91精品三级在线观看| 两人在一起打扑克的视频| 成年版毛片免费区| 人人妻人人澡人人爽人人夜夜| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼 | 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 国产成人啪精品午夜网站| 婷婷成人精品国产| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 国产xxxxx性猛交| 青草久久国产| 欧美日韩瑟瑟在线播放| 五月开心婷婷网| 99久久综合精品五月天人人| 亚洲专区中文字幕在线| 黄片大片在线免费观看| 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 国产成人欧美| 在线观看午夜福利视频| 老司机深夜福利视频在线观看| 人妻一区二区av| 国产区一区二久久| 国产视频一区二区在线看| 视频区欧美日本亚洲| 高清av免费在线| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 啦啦啦在线免费观看视频4| 欧美性长视频在线观看| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 999精品在线视频| 一夜夜www| 黄色a级毛片大全视频| www.自偷自拍.com| 在线观看午夜福利视频| 国产在视频线精品| 国产精品.久久久| 成人18禁在线播放| 欧美在线黄色| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 叶爱在线成人免费视频播放| 免费在线观看日本一区| 午夜福利一区二区在线看| 黄色片一级片一级黄色片| 午夜激情av网站| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 1024香蕉在线观看| 成人三级做爰电影| 大型黄色视频在线免费观看| 男人的好看免费观看在线视频 | 男人舔女人的私密视频| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品欧美一区二区三区四区| 久久草成人影院| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 午夜激情av网站| 90打野战视频偷拍视频| 国精品久久久久久国模美| 午夜福利一区二区在线看| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 高清黄色对白视频在线免费看| 美女福利国产在线| 日本黄色日本黄色录像| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 美女 人体艺术 gogo| 精品少妇一区二区三区视频日本电影| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 成年版毛片免费区| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 人妻一区二区av| 国产精品久久电影中文字幕 | 香蕉国产在线看| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 丰满迷人的少妇在线观看| 国产真人三级小视频在线观看| 日本wwww免费看| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 丝袜美足系列| 啦啦啦 在线观看视频| 久久ye,这里只有精品| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站| 老司机靠b影院| 天天操日日干夜夜撸| 91九色精品人成在线观看| 国产精品二区激情视频| 久久ye,这里只有精品| 欧美在线黄色| 婷婷丁香在线五月| 日本欧美视频一区| 99香蕉大伊视频| 精品国产亚洲在线| 欧美亚洲 丝袜 人妻 在线| 欧美乱色亚洲激情| 久久中文字幕一级| 一区二区三区国产精品乱码| 女性生殖器流出的白浆| 精品国内亚洲2022精品成人 | 老司机福利观看| 精品人妻1区二区| 一级作爱视频免费观看| 悠悠久久av| 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片 | 不卡一级毛片| 成年人黄色毛片网站| 亚洲欧美日韩另类电影网站| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 日本精品一区二区三区蜜桃| 少妇的丰满在线观看| 大型黄色视频在线免费观看| 免费观看a级毛片全部| 亚洲三区欧美一区| 久久精品成人免费网站| 一级黄色大片毛片| 99riav亚洲国产免费| 欧美日韩精品网址| 电影成人av| 757午夜福利合集在线观看| 久久中文字幕人妻熟女| av电影中文网址| 国产成人精品在线电影| 9191精品国产免费久久| 国产男女超爽视频在线观看| 看片在线看免费视频| 一二三四社区在线视频社区8| 制服人妻中文乱码| 久久久国产欧美日韩av| 在线av久久热| 飞空精品影院首页| 免费观看a级毛片全部| 久久久精品区二区三区| 丝袜人妻中文字幕| 国产亚洲av高清不卡| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡| 性色av乱码一区二区三区2| 欧美日韩国产mv在线观看视频| videosex国产| 亚洲成人手机| 90打野战视频偷拍视频| 在线观看舔阴道视频| 亚洲av电影在线进入| 一区二区三区国产精品乱码| 天天添夜夜摸| 欧美乱色亚洲激情| 在线看a的网站| 老司机亚洲免费影院| 一夜夜www| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 在线观看舔阴道视频| 欧美午夜高清在线| 国产精品成人在线| 欧美乱色亚洲激情| 亚洲久久久国产精品| 夫妻午夜视频| 精品久久久久久,| 首页视频小说图片口味搜索| 亚洲国产精品sss在线观看 | 欧美成人免费av一区二区三区 | 香蕉国产在线看| 精品一区二区三区视频在线观看免费 | 午夜福利在线免费观看网站| 精品国产国语对白av| 免费高清在线观看日韩| 国产免费男女视频| cao死你这个sao货| 国产精品一区二区精品视频观看| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 青草久久国产| 80岁老熟妇乱子伦牲交| e午夜精品久久久久久久| 黄色成人免费大全| 欧美亚洲 丝袜 人妻 在线| 中文亚洲av片在线观看爽 | 乱人伦中国视频| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 亚洲第一欧美日韩一区二区三区| 国产真人三级小视频在线观看| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 伦理电影免费视频| 91精品三级在线观看| 久久青草综合色| 欧美日本中文国产一区发布| 午夜日韩欧美国产| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美软件| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说 | 久久午夜亚洲精品久久| 亚洲全国av大片| 国产国语露脸激情在线看| 人人妻,人人澡人人爽秒播| 99久久精品国产亚洲精品| 新久久久久国产一级毛片| 成人国语在线视频| 成年动漫av网址| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲| www.精华液| 久久精品国产亚洲av香蕉五月 | 大香蕉久久网| netflix在线观看网站| 少妇裸体淫交视频免费看高清 | 欧美日韩精品网址| 成人手机av| 黄色 视频免费看| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 婷婷丁香在线五月| 久久精品国产清高在天天线| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 亚洲一区二区三区不卡视频| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久久毛片 | 国产日韩欧美亚洲二区| 国产精品免费大片| 99精品欧美一区二区三区四区| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 国产一区二区三区视频了| 国产国语露脸激情在线看| 村上凉子中文字幕在线| av网站在线播放免费| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 精品国产亚洲在线| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 色精品久久人妻99蜜桃| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 搡老岳熟女国产| 午夜精品在线福利| 午夜激情av网站| 欧美日韩乱码在线| 美女福利国产在线| 十八禁网站免费在线| 国产精品欧美亚洲77777| 免费看a级黄色片| 在线观看日韩欧美| 激情视频va一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 乱人伦中国视频| 51午夜福利影视在线观看| 高清在线国产一区| 亚洲 国产 在线| 午夜精品在线福利| 久久香蕉精品热| 久久精品91无色码中文字幕| 岛国在线观看网站| a在线观看视频网站| 老汉色∧v一级毛片| 99热网站在线观看| 午夜福利乱码中文字幕| 成人18禁高潮啪啪吃奶动态图| 天堂√8在线中文| 国产亚洲精品一区二区www | 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 精品视频人人做人人爽| 两性夫妻黄色片| 欧美日韩av久久| 亚洲熟妇熟女久久| av一本久久久久| 99re在线观看精品视频| 天堂俺去俺来也www色官网| 亚洲五月天丁香| 亚洲自偷自拍图片 自拍| 女性生殖器流出的白浆| 午夜免费鲁丝| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 精品国产一区二区三区四区第35| 午夜老司机福利片| 悠悠久久av| 久久午夜亚洲精品久久| 麻豆乱淫一区二区| 国产成人精品久久二区二区91| 高清欧美精品videossex| 国产成人精品在线电影| 美女福利国产在线| 国产一区二区激情短视频| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 人妻久久中文字幕网| 亚洲欧美色中文字幕在线| aaaaa片日本免费| 悠悠久久av| 男人的好看免费观看在线视频 | 成人国语在线视频| 好男人电影高清在线观看| 波多野结衣一区麻豆| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 色婷婷久久久亚洲欧美| 国产精品自产拍在线观看55亚洲 | 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 精品国产美女av久久久久小说| www.精华液| av欧美777| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 久久久久久亚洲精品国产蜜桃av| videos熟女内射| 亚洲精品乱久久久久久| 91成人精品电影| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 日本a在线网址| 韩国av一区二区三区四区| 国产一区二区激情短视频| 免费观看精品视频网站| 国产不卡av网站在线观看| 在线播放国产精品三级| 久久久精品免费免费高清| 国内久久婷婷六月综合欲色啪| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 国产淫语在线视频| 校园春色视频在线观看| 午夜福利欧美成人| 国产成人啪精品午夜网站| 午夜福利乱码中文字幕| svipshipincom国产片| 亚洲视频免费观看视频| 久久人妻av系列| 深夜精品福利| 黄色a级毛片大全视频| 捣出白浆h1v1| 成人精品一区二区免费| 90打野战视频偷拍视频| 亚洲成人手机| 99国产综合亚洲精品| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 久久久久国产精品人妻aⅴ院 | 欧美不卡视频在线免费观看 | 老熟女久久久| 精品熟女少妇八av免费久了| 身体一侧抽搐| 欧美色视频一区免费| 国产99白浆流出| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区三区在线| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| 国产又爽黄色视频| 国产精品久久电影中文字幕 | 青草久久国产| 国产高清视频在线播放一区| 色精品久久人妻99蜜桃| 亚洲精品国产区一区二| 99精品久久久久人妻精品| av线在线观看网站| 久久久国产成人精品二区 | 宅男免费午夜| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 国产精品久久久久成人av| 亚洲一区二区三区欧美精品| 亚洲精品国产区一区二| 亚洲成a人片在线一区二区| 成年动漫av网址| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 女人被狂操c到高潮| 搡老岳熟女国产| 欧美国产精品一级二级三级| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 免费少妇av软件| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人 | 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 中文字幕色久视频| 91麻豆精品激情在线观看国产 | 香蕉久久夜色| 国产精品久久视频播放| 欧美日韩亚洲高清精品| e午夜精品久久久久久久| 两个人免费观看高清视频| 99精品在免费线老司机午夜|