• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of sodium hyaluronate in pharmaceutical formulations by HPLC-UV

    2013-12-23 06:15:26RuckmniSleemShikhPvneKhlilMuneerThusleem
    Journal of Pharmaceutical Analysis 2013年5期

    K. Ruckmni, Sleem Z. Shikh,*, Pvne Khlil,M.S. Muneer, O.A. Thusleem

    aDepartment of Pharmaceutical Technology, Anna University of Technology, Thiruchirapalli, Trichy 620024, Tamilnadu, India

    bDepartment of Analytical Research & Development, Jamjoom Pharmaceuticals, P.O. Box-6 267, Jeddah 21442, Saudi Arabia

    1. Introduction

    Sodium hyaluronate is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues [1]. It is unique among glycosaminoglycans in that it is nonsulfated, forms in the plasma membrane instead of the golgi,and can be very large,with its molecular weight often reaching the millions [2]. As one of the chief components of the extracellular matrix, hyaluronan contributes significantly to cell proliferation and migration, and may also be involved in the progression of some malignant tumors.

    The average 70 kg(154 lbs)person has roughly 15 g of sodium hyaluronate in the body, one-third of which is turned over(degraded and synthesized) every day [3]. Sodium hyaluronate is also a component of the group A streptococcal extracellular capsule [4—6].

    Sodium hyaluronate is a polymer of disaccharides, themselves composed of D-glucuronic acid and D-N-acetylglucosamine,linked via alternating β-1,4 and β-1,3 glycosidic bonds. Hyaluronate can be 25,000 disaccharide repeats in length. Polymers of sodium hyaluronate can range in size from 5000 to 20,000,000 Da in vivo.The average molecular weight in human synovial fluid is 3—4 million Da, and hyaluronan purified from human umbilical cord is 3,140,000 Da [7].

    Sodium hyaluronate is used in eye surgery i.e., corneal transplantation, cataract surgery, glaucoma surgery, surgery to repair retinal detachment and eye lubricant as an ophthalmic solution [8].

    Sodium hyaluronate is used as a viscosupplement,administered through a series of injections into the knee,increasing the viscosity of the synovial fluid, which helps lubricate, cushion and reduce pain in the joint.It is generally used as a last resort before surgery and provides symptomatic relief, by recovering the viscoelasticity of the articular fluid, and by stimulating new production from synovial fluid.Use of sodium hyaluronate may reduce the need for joint replacement.

    In comparison with derivatization, size exclusion chromatographic methods have the advantages of reducing analysis time,enhancing sensitivity and flexibility and lowering the cost of the instruments and maintenance[9].One of the biggest disadvantages of derivatization has been lack of stability. The reaction products are not stable and have short half life possibly because of a spontaneous intermolecular rearrangement [10]. Another disadvantage of derivatization is that it reacts with only few functional groups.

    The literature survey shows that several methods [11—28] like enzymatic, Carbopac PA1 chromatography, chemiluminescence,digestion, gas—liquid chromatographic, on-line HPLC/ESI—MS;HPLC UV—vis methods have been reported for the determination of sodium hyaluronate with derivatization. Most of the reported methods are by derivatization, gel permeation chromatography or digestion. These methods and the official methods may not be suitable for assay of sodium hyaluronate in ophthalmic solutions due to complexity, sensitivity, risk and flexibility issues involved into it. However, as per bibliographical revisions performed,no HPLC analytical method has been reported for direct (without derivatization) determination of sodium hyaluronate.

    The present study was aimed at developing simple, specific,accurate and precise HPLC method for the determination of sodium hyaluronate in commercially available and in-house prepared pharmaceutical formulations, based on direct UV-detection, in which a size exclusion stationary phase was selected for use in routine quality control applications. The proposed method for the determination of sodium hyaluronate in pharmaceutical formulations by HPLC UV detectors is first of its kind without involving derivatization and GPC software.

    The issues with the GPC software are that it gives analysis data output as:

    Relative molecular weight values (Mn, Mw, Mz and Mp),molecular weight distribution: MWD and polydispersity: Mw/Mn.Procedure involves lengthy and tedious column calibration. In regards to polymers, the molecular masses of most of the chains will be too close resulting in eluting broad peaks in the GPC separations.

    The proposed method could be of use to industries that deal with sodium hyaluronate and need to determine its content without having to invest into GPC software.

    2. Experimental

    2.1. Instrumentation

    Integrated high performance liquid chromatographic systems LC-2010AHT from Shimadzu Corporation (Chromatographic and Spectrophotometric Division, Kyoto, Japan) consisted of a binary gradient system, a high speed auto-sampler, a column oven and a UV—vis detector. BioSep SEC S2000, 300 mm×7.8 mm analytical column from USA, was used as stationary phase. Chromatograms were recorded and integrated on PC installed with LC solution chromatographic software, version 1.22 SP1 (Shimadzu,Kyoto, Japan).

    2.2. Reference substances, reagents and chemicals

    Sodium hyaluronate was obtained from Yantai Dongcheng Biochemicals, China. Sodium phosphate, sodium azide, phosphoric acid, potassium hydroxide, and potassium dihydrogen phosphate were purchased from Panreac Quimica (Barcelona) Espana.Distilled water was obtained from a Milli-Q system Millipore,Milford, MA, USA. All the chemicals and reagents were of analytical or reagent grade. Reference standards of sodium hyaluronate were obtained from British Pharmacopoeia Commission Laboratory, London. The excipients sodium dihydrogen phosphate, di-sodium hydrogen phosphate and sodium chloride were obtained from Merck, Germany. Ophthalmic formulations containing sodium hyaluronate were developed and manufactured in our research and development laboratory.

    2.3. Chromatographic conditions

    Isocratic mobile phase consisted of a 0.05 M potassium dihydrogen phosphate, pH adjusted to 7.0 using potassium hydroxide(10% solution). The mobile phase was filtered and degassed through membrane filter of 0.45 μm porosity under vacuum.A constant flow rate of l.0 mL/min was employed throughout the analysis. Variable UV—vis detector wavelength was set at 205 nm.All pertinent analyses were made at 25°C and volume of solution injected on to the column was 10 μL.

    2.4. Samples

    Test samples were ophthalmic solution prepared in-house and purchased from the local market with composition of 2.0 mg/mL of sodium hyaluronate. Other test samples used were accelerated stability samples with similar composition.

    2.5. Solution preparation

    2.5.1. Sodium hyaluronate standard solution

    Standard solutions were prepared by transferring accurately about 80.0 mg of sodium hyaluronate reference standard to a 200 mL volumetric flask. A 150 mL portion of mobile phase was added initially and stirred on a magnetic stirrer until it dissolved. The solution was diluted to volume with the mobile phase and mixed.The solution was filtered through 0.45 μm membrane filter and 10 μL was injected.

    2.5.2. Estimation from formulations

    Contents of five containers of ophthalmic solutions, containing sodium hyaluronate 2.0 mg/mL, were transferred to a 100 mL beaker. From this, a 5 mL portion of analyte was transferred to a 25 mL volumetric flask. Initially 10 mL of mobile phase was added and shaken by hand for few minutes to extract and solubilize sodium hyaluronate and made to the volume with mobile phase. The solution was filtered through 0.45 μm membrane filter and 10 μL was injected directly on to the column.

    2.6. Quantitation

    Fig.1 (A)Mobile phase:0.01 M phosphoric acid,pH adjusted to 3.0 using 10% potassium hydroxide, flow rate 0.50 mL/min, column,ultrahydrogel,300 mm×7.8 mm,1000 ? and detector wavelength set at 205 nm.(B)Mobile phase:0.1 M ammonium dihyrogen phosphate,flow rate 0.50 mL/min, column, ultrahydrogel, 300 mm×7.8 mm,1000 ? and detector wavelength set at 205 nm.

    Fig.2 Effect of pH on retention time,detection response(peak area)and efficiency (as shown as plate number N/column) of sodium hyaluronate. Column, BioSep SEC S2000, 300 mm×7.8 mm, mobile phase: 0.05 M potassium hydrogen phosphate, pH adjusted to shown below using potassium hydroxide(10%solution),flow rate of l.0 mL/min,wavelength set at 205 nm and injection volume 10 μL.

    Fig.3 Effect of buffer on detection response(peak area)and capacity factor of sodium hyaluronate. Column, BioSep SEC S2000,300 mm×7.8 mm, mobile phase: buffer (potassium hydrogen phosphate) at varied concentration as shown in below, pH adjusted to 7.0 using potassium hydroxide (10% solution), flow rate of l.0 mL/min,wavelength set at 205 nm and injection volume 10 μL.

    Peak areas were recorded for sodium hyaluronate peak. The peak areas were taken into account to quantitate the label amount, in percentage, of the ophthalmic solution by using the following formula:where Ru is peak area obtained from sodium hyaluronate in the test solution;Rs is the peak area obtained from sodium hyaluronate in the standard solution; C is the weight, in mg, of sodium hyaluronate reference standard taken to prepare standard solution;LC is the label claim, in mg, of the test sample; P is purity of sodium hyaluronate reference standard.

    3. Results and discussion

    3.1. Chromatography

    Fig.4 A typical HPLC chromatogram of sodium hyaluronate.Mobile phase: 0.05 M potassium dihydrogen phosphate, pH adjusted to 7.0 using potassium hydroxide (10% solution). Column, BioSep SEC S2000, 300 mm×7.8 mm, flow rate of l.0 mL/min, wavelength was set at 205 nm and injection volume 10 μL.

    Chromatographic system comprising mixture of 0.01 M dibasic sodium phosphate, monobasic sodium phosphate and 0.02%sodium azide, as mobile phase at a constant flow rate of 0.5 mL/min, ultrahydrogel, 300 mm×7.8 mm, 1000 ? and ultrahydrogel 300 mm×7.8 mm, waters column as stationary phase in parallel and use of PDA detector resulted in no peak elution even after 60 min run time. Same chromatographic conditions were used as above with RI detector which resulted in peak elution with low response. 0.1 M aqueous potassium dihydrogen phosphate buffer,pH adjusted to 7.0 with 10% potassium hydroxide was tried and in isocratic conditions on the polysep-GFC-plinear 250 mm×4.6 mm column, to obtain symmetrical peak shapes and clear separation of the signal peaks from the solvent front peaks but it resulted in no peak elution.

    Upon investigation of following chromatographic system containing 0.01 M phosphoric acid, pH adjusted to 3.0 using potassium hydroxide and 0.1 M ammonium dihydrogen phosphate solution as mobile phase at a constant flow rate of 0.50 mL/min,ultrahydrogel, 300 mm×7.8 mm, 1000 ? analytical column as stationary phase and detector wavelength at 205 nm resulted in peak elution at 3.2 min and 4.3 min respectively.

    These investigations have resulted in very close elution of sodium hyaluronate to dead volume peak arising from diluents,shown in Fig.1A and B.

    Further,in order to develop a suitable and robust LC method for the determination of sodium hyaluronate by UV detection different mobile phases and columns were employed to achieve the best signal response and retention time. Finally, the mobile phase consisting of 0.05 M potassium dihydrogen phosphate, pH adjusted to 7.0 using potassium hydroxide (10%) at a constant flow rate of 1.0 mL/min and detector wavelength set at 205 nm,using a BioSep SEC S2000 300 mm×7.8 mm,column was found to be appropriate, allowing good signal response of sodium hyaluronate.

    3.2. Optimization of HPLC

    The pH of the mobile phase can affect the analyte's retention time as well as the detection sensitivity. Fig.2 shows the results of retention, detection response (peak area) and efficiency (shown as plate number N/column) of sodium hyaluronate at different pH.The optimal pH 7.0 was chosen for the determination of sodium hyaluronate.Concentration of buffer is another factor that can alter the ion-pair formation. Fig.3 shows the retention and response as the concentration of buffer is varied. Low signal response was observed when a concentration less than 0.05 M potassium dihydrogen phosphate was used. This may be due to highlyaqueous environment which is unfavorable for ion-pairing. Therefore, potassium dihydrogen phosphate at pH 7.0 was chosen for estimation of sodium hyaluronate. Typical chromatogram of test solution is shown in Fig.4.

    Table 1 Accuracy data: analyte recovery (sodium hyaluronate).

    3.3. Method validation

    Test method for the determination of sodium hyaluronate was validated to include the essential demands of International Conference on Harmonization (ICH) guidelines [29]. Parameters like specificity, linearity, accuracy, precision, range, robustness and system suitability were examined.

    3.3.1. Specificity

    No interferences were observed due to obvious presence of excipients like sodium dihydrogen phosphate, disodium hydrogen phosphate and sodium chloride.

    3.3.2. Linearity

    Peak areas versus concentration in milligram per milliliter were plotted for sodium hyaluronate at the concentration range between 80.0 and 120.0% of target level. Sodium hyaluronate showed linearity in the range of 0.32—0.48 mg/mL, respectively. Linear regression equations and correlation coefficient (r2) are provided below: Ysodiumhyaluronate=124908.2x-101,658 (r2=0.999910).

    3.3.3. Accuracy

    Accuracy of the proposed HPLC determination was evaluated from the assay results of the components. Accuracy was done by performing the assay of samples and calculated the peak area responses of different samples by recovery method.

    Appropriate portions of stock solution were spiked into blank placebo matrix to produce concentration of 80.0 to 120.0% of target level. Mean recovery of spiked samples was 99.30% for sodium hyaluronate shown in Table 1.

    3.3.4. Precision

    Instrumental precision was determined by six replicate determinations of standard solution, relative standard deviation was calculated and found to be 0.49% for sodium hyaluronate.

    Table 2 System suitability parameters of the proposed method.

    Method precision or intra-assay precision was performed by preparing six different samples from the same sample pool. Each solution was injected in triplicate under the same conditions and mean value of peak area response for each solution was taken.The relative standard deviation of sodium hyaluronate in six sample solutions was calculated.Relative standard deviations obtained for sodium hyaluronate was 0.51%.

    Intermediate precision was performed by analyzing the samples by two different analysts employing different instruments. Standard solution and six different samples at 100%target level were prepared by each analyst. Relative standard deviation obtained from 12 assay results by two analysts was 0.61% for sodium hyaluronate.

    3.3.5. Range

    Range of a method is defined as the lower and higher concentrations for which the method has adequate accuracy, precision and linearity.To demonstrate the range, six samples each of lower concentration(80%of target level)and higher concentration(120%of target level)were prepared similar to accuracy samples by spiking the drug substance into blank matrix (placebo). Each sample was analyzed in duplicate. At lower concentration, mean recovery of sodium hyaluronate was found to be 99.42%. Relative standard deviation obtained from these determinations was found to be 0.68% for sodium hyaluronate. At higher concentration, mean recovery of sodium hyaluronate was found to be 100.08%. Relative standard deviation obtained at the higher concentration level was found to be 0.49%

    3.3.6. Robustness

    Robustness of the proposed method was performed by keeping chromatographic conditions constant with following deliberate variations.

    i. Change in column temperature.

    ii. Changing flow rate from 1.0 to 1.2 mL/min.Standard solution was injected six times in replicate for each minor change. System suitability parameters like peak asymmetry, theoretical plates, capacity factor and relative standard deviation were recorded for sodium hyaluronate peak and found to be within acceptable limits.

    Six test samples at the target concentration level were prepared and analyzed for each change. Recoveries and relative standard deviations were calculated for sodium hyaluronate during each change and found to be 98.90—100.52% and less than 1.0 respectively. It was noted during the experiments that slight change in column temperature or flow rate does not affect the method and produces results with of similar system suitability.

    3.3.7. System suitability

    System suitability tests were performed to chromatograms obtained from standard and test solutions to check parameters such as peak retention, column efficiency, peak asymmetry andcapacity factor of sodium hyaluronate peak.Results obtained from six replicate injections of standard solution as per the proposed method are summarized in Table 2.

    Table 3 Application of the developed HPLC method for the determination of sodium hyaluronate.

    3.4. Application of the proposed method

    In-house prepared samples, marketed samples and samples stored at accelerated stability conditions (40°C/25%RH) were evaluated for assay of sodium hyaluronate. The method gave reproducible results of assay for all the samples tested for sodium hyaluronate.There was no interference observed in the estimation of test samples since the peak eluted at a reasonable retention time. The excipients in ophthalmic solution of sodium hyaluronate as a result of accelerated storage did not interfere with the estimation of the component. The assay of test samples (RT and accelerated) and market samples are summarized in Table 3.

    4. Conclusion

    A size exclusion liquid chromatography method based on UV detection has been developed and validated for determination of sodium hyaluronate in pharmaceutical formulations (ophthalmic solution). The method is specific, simple, rapid, accurate, precise(RSD<2.0%) and linear r2=0.9999. The described method is suitable for routine quality control and stability studies.

    Acknowledgment

    The authors wish to thank Mr. Noor Sherrif, Mr. Anwer Saeed,Mr. Mahmood Jamjoom and colleagues in Jamjoom Pharma for their inspiration and motivation, which together are the true formulas for writing the scientific manuscript.

    [1] J.H. Poulson, Urine and tissue glycosaminoglycan and their interactions, Dan. Med. Bull. 33 (1975) 75—96.

    [2] J.R.E. Frasher, T.C. Laurent, UBG Laurent, Hyaluronan: its nature,distribution,function and turnover,J.Intern.Med.242(1997)27—33.

    [3] R. Sten, Hyaluronan catabolism: a new metabolic pathway, Eur. J.Cell Biol. 83 (7) (2004) 317—325.

    [4] K. Sugahara, N.B. Schwartz, A. Dorfma, Biosyntheses of hyaluronic acid by streptococcus, J. Bio. Chem. 254 (14) (1979) 6252—6261.

    [5] M.R. Wessels, A.E. Moses, JB Goldberg, et al., Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci, Proc.Natl. Acad. Sci. 88 (19) (1991) 8317—8321.

    [6] H.M. Schrager, J.G. Rheinwald, M.R. Wessels, Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection, J. Clin. Invest. 98 (9) (1996) 1954—1958.

    [7] H. Saari, Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate,Inflammation 17 (1993) 403—415.

    [8] P.Algvere,Intravitreal injection of high molecular weight hyaluronic acid in retinal detachment surgery: a preliminary report, Acta Ophthalmol. 49 (1971) 975—976.

    [9] Size-Exclusion Chromatography of Polymers, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), John Wiley & Sons Ltd., 2000,pp. 1—26.

    [10] A. Medvedovici, A. Farca, V. David, Derivatization reactions in liquid chromatography for drug assaying in biological fluids, Adv.Chromatogr. 47 (2009) 283—314.

    [11] N. Volpi, On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers,Anal.Chem.79(16) (2007) 6390—6397.

    [12] K.Kakehi,M.Kinoshita,S.Yasueda,Hyaluronic acid:separation and biological implications, J. Chromatogr. B: Anal. Technol. Biomed.Life Sci. 797 (12) (2003) 347—355.

    [13] L.J.Bao,J.C.Yang,Z.H.He,et al.,Zymohydrolysis with chondroitinase ABC and high performance liquid chromatography used for the determination of hyaluronic acid in shark fin, Se Pu 20 (6) (2002) 557—559.

    [14] I. Koshiis, M. Takenouchi, T. Hasegawa, T. Imanari, Enzymatic method for the simultaneous determination of of hyaluronan and chondroitin sulfates using high-performance liquid chromatography,Anal. Biochem. 265 (1) (1998) 49—54.

    [15] R.J.Midura,A.Salustri,A.Calabro,et al.,High-resolution separation of disaccharide and oligosaccharide alditols from chondroitinsulphate,dermatan sulphate and hyaluronan using CarboPac PA1 chromatography, Glycobiology 4 (3) (1994) 333—342.

    [16] M. Nurminen, A. Dejmek, G. M?rtensson, et al., Clinical utility of liquid-chromatographic analysis of effusions for hyaluronate content,Clin. Chem. 40 (5) (1994) 777—780.

    [17] U.M.Agren,R.Tammi,M.Tammi,A dot-blot assay of metabolically radiolabeled hyaluronan, Anal. Biochem. 217 (2) (1994) 311—315.

    [18] H.Akiyama,S.Shidawara,A.Mada,et al.,Chemiluminescence highperformance liquid chromatography for the determination of hyaluronic acid, chondroitin sulphate and dermatan sulphate, J. Chromatogr.579 (2) (1992) 203—207.

    [19] H. Saari, R.M. Tulamo, Y.T. Konttinen, et al., Methyl prednisolone acetate induced release of cartilage proteoglycans: determination by high performance liquid chromatography, Ann. Rheum. Dis. 51 (2)(1992) 214—219.

    [20] E. Orvisky, M. Kéry Vand Stanciková, Specific high performance liquid chromatographic determination of the molecular weight and concentration of hyaluronic acid in complex mixtures by labeled hyaluronate binding proteins,Biomed.Chromatogr.5(6)(1991)251—255.

    [21] H.Akiyama,H.Toyoda,S.Yamanashi,et al.,Microdetermination of hyaluronic acid in human urine by high performance liquid chromatography, Biomed. Chromatogr. 5 (5) (1991) 189—192.

    [22] M. Zebrower, F.J. Kieras, J. Heaney-Kieras, High pressure liquid chromatographic identification of hyaluronic acid and chondroitin sulphate disaccharides, Glycobiology 1 (3) (1991) 271—276.

    [23] E. Paya, J.Y. Jouzeau, F. Lapicque, et al., Assay of synovial fluid hyaluronic acid using high-performance liquid chromatography of hyaluronidase digests, J. Chromatogr. 566 (1) (1991) 9—18.

    [24] D.M.Whitfield,S.Stojkovski,H.Pang,et al.,Diagnostic methods for the determination of iduronic acid in oligosaccharides, Anal. Biochem. 194 (2) (1991) 259—267.

    [25] N.S. Fedarko, J.D. Termine, P.G. Robey, High-performance liquid chromatographic separation of hyaluronan and four proteoglycans produced by human bone cell cultures, Anal. Biochem. 188 (2)(1990) 398—407.

    [26] N. Motohashi, I. Mori, Quantitation of hyaluronic acid and chondroitin sulphates in rabbit synovial fluid by high-performance liquid chromatography of oligosaccharides enzymatically derived thereof,Chem. Pharm. Bull. 38 (3) (1990) 769—773.

    [27] T. Gherezghiher, M.C. Koss, R.E. Nordquist, et al., Rapid and sensitive method for measurement of hyaluronic acid and isomeric chondroitin sulfates using high-performance liquid chromatography,J. Chromatogr. 413 (1987) 9—15.

    [28] D.Murphy,C.A.Pennock,K.J.London,Gas—liquid chromatographic measurement of glucosamine and galactosamine content of urinary glycosaminoglycans, Clin. Chim. Acta 53 (2) (1974) 145—152.

    [29] ICH Harmonized Tripartite Guideline, International Conference on Harmonization onTechnical Requirements for Registration of Pharmaceuticals for Human Use, Q2A, Text on Validation of Analytical Procedures, Step 4 of the ICH process (1994) and Q2B,Validation of Analytical Procedures:Methodology,Step 4 of the ICH process,ICH Steering Committee (1996) International Conference on Harmonization, Geneva, Switzerland.

    国产国语露脸激情在线看| 久久香蕉国产精品| 免费在线观看亚洲国产| 99精品欧美一区二区三区四区| 日韩精品青青久久久久久| 天天躁夜夜躁狠狠躁躁| 美国免费a级毛片| 久久久久国内视频| 欧美日韩亚洲综合一区二区三区_| 中文字幕人成人乱码亚洲影| 亚洲精品在线观看二区| 国产精品乱码一区二三区的特点 | 无遮挡黄片免费观看| 成人精品一区二区免费| 九色国产91popny在线| 淫妇啪啪啪对白视频| 少妇的丰满在线观看| 可以在线观看的亚洲视频| 露出奶头的视频| 亚洲av电影在线进入| 在线观看一区二区三区| 国产精品国产高清国产av| 两个人看的免费小视频| 首页视频小说图片口味搜索| 欧美人与性动交α欧美精品济南到| 亚洲黑人精品在线| 国产91精品成人一区二区三区| 亚洲精品在线观看二区| 在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲伊人色综图| 久久婷婷成人综合色麻豆| 香蕉久久夜色| 色综合婷婷激情| 国产1区2区3区精品| 在线播放国产精品三级| 国产国语露脸激情在线看| 一区二区三区精品91| 这个男人来自地球电影免费观看| 99香蕉大伊视频| 欧美日韩乱码在线| 国产成人精品久久二区二区91| 夜夜爽天天搞| 亚洲国产精品成人综合色| 国产av精品麻豆| 久久精品影院6| 亚洲狠狠婷婷综合久久图片| 两个人免费观看高清视频| 91麻豆精品激情在线观看国产| 天堂√8在线中文| 国产三级黄色录像| 老汉色av国产亚洲站长工具| 成人永久免费在线观看视频| 老汉色∧v一级毛片| 国产精品影院久久| 欧美一级a爱片免费观看看 | 一本久久中文字幕| 国产一区二区三区综合在线观看| 99国产极品粉嫩在线观看| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 一夜夜www| 一边摸一边抽搐一进一出视频| 电影成人av| 窝窝影院91人妻| 国产成人精品久久二区二区91| 免费少妇av软件| 9热在线视频观看99| 成人三级做爰电影| 香蕉丝袜av| 欧美激情 高清一区二区三区| 一级黄色大片毛片| 亚洲男人的天堂狠狠| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 可以在线观看毛片的网站| 国产亚洲欧美在线一区二区| 国产亚洲精品av在线| 亚洲激情在线av| 国产午夜福利久久久久久| 午夜日韩欧美国产| 国产片内射在线| 久久午夜亚洲精品久久| 嫩草影院精品99| 女人高潮潮喷娇喘18禁视频| 国产精品综合久久久久久久免费 | 又紧又爽又黄一区二区| 欧美绝顶高潮抽搐喷水| 又黄又爽又免费观看的视频| av视频在线观看入口| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 精品午夜福利视频在线观看一区| 99香蕉大伊视频| 国产片内射在线| 九色亚洲精品在线播放| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| 深夜精品福利| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 成人国产综合亚洲| 亚洲av成人不卡在线观看播放网| 视频区欧美日本亚洲| 青草久久国产| 91老司机精品| 丝袜在线中文字幕| 免费高清视频大片| 视频在线观看一区二区三区| 9色porny在线观看| 精品国产超薄肉色丝袜足j| 一区二区日韩欧美中文字幕| 日本 欧美在线| 国产麻豆69| 久久人妻av系列| 一二三四在线观看免费中文在| 在线视频色国产色| 叶爱在线成人免费视频播放| 国内精品久久久久久久电影| 好看av亚洲va欧美ⅴa在| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 禁无遮挡网站| 黄片播放在线免费| 大型黄色视频在线免费观看| 日本免费a在线| 久久性视频一级片| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一区av在线观看| 美女高潮到喷水免费观看| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 免费在线观看亚洲国产| 国语自产精品视频在线第100页| 国产xxxxx性猛交| 18禁美女被吸乳视频| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看 | 精品少妇一区二区三区视频日本电影| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 一级毛片精品| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 国产成人免费无遮挡视频| 欧美另类亚洲清纯唯美| 天堂影院成人在线观看| 成人精品一区二区免费| 一边摸一边抽搐一进一出视频| 亚洲最大成人中文| 亚洲欧美日韩另类电影网站| av天堂在线播放| 国产91精品成人一区二区三区| 天堂√8在线中文| 国产亚洲精品久久久久5区| 亚洲五月婷婷丁香| 国产区一区二久久| 国产1区2区3区精品| 少妇 在线观看| 亚洲成人精品中文字幕电影| 女性生殖器流出的白浆| 亚洲av成人av| 91国产中文字幕| 成人亚洲精品av一区二区| 9191精品国产免费久久| 身体一侧抽搐| 日本精品一区二区三区蜜桃| 国产蜜桃级精品一区二区三区| 国语自产精品视频在线第100页| 丝袜美足系列| 久久国产精品人妻蜜桃| 色尼玛亚洲综合影院| 亚洲欧洲精品一区二区精品久久久| 黑人欧美特级aaaaaa片| 香蕉久久夜色| 中文字幕精品免费在线观看视频| 一级黄色大片毛片| 国产在线观看jvid| 黄色女人牲交| 99在线人妻在线中文字幕| 欧美日韩亚洲综合一区二区三区_| 久9热在线精品视频| 成年女人毛片免费观看观看9| 一区二区三区国产精品乱码| 精品一区二区三区视频在线观看免费| 午夜福利高清视频| 身体一侧抽搐| 国产精品影院久久| 嫩草影视91久久| av视频免费观看在线观看| 日韩免费av在线播放| 男女下面进入的视频免费午夜 | 亚洲国产精品久久男人天堂| 国产高清videossex| 久久久久久久久免费视频了| 黄色丝袜av网址大全| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 啪啪无遮挡十八禁网站| 欧美激情高清一区二区三区| 色播亚洲综合网| 色精品久久人妻99蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕高清在线视频| 国产精品乱码一区二三区的特点 | 亚洲色图 男人天堂 中文字幕| 久久久久精品国产欧美久久久| 在线观看舔阴道视频| 精品一区二区三区视频在线观看免费| 国产成人系列免费观看| АⅤ资源中文在线天堂| 国产av又大| 在线国产一区二区在线| 一进一出好大好爽视频| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2 | 日韩一卡2卡3卡4卡2021年| 日韩国内少妇激情av| 国产不卡一卡二| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 国产精品二区激情视频| 婷婷丁香在线五月| 97碰自拍视频| 久久天躁狠狠躁夜夜2o2o| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 国产成人av教育| netflix在线观看网站| 在线视频色国产色| 国产欧美日韩综合在线一区二区| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久人妻蜜臀av | 91精品三级在线观看| 久久中文字幕人妻熟女| 美女国产高潮福利片在线看| 午夜福利影视在线免费观看| 午夜激情av网站| 成人特级黄色片久久久久久久| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 亚洲一区高清亚洲精品| 日日爽夜夜爽网站| 身体一侧抽搐| 深夜精品福利| 成人手机av| 91麻豆av在线| 欧美乱码精品一区二区三区| 18禁观看日本| 亚洲成av片中文字幕在线观看| 国产精品 国内视频| 欧美国产日韩亚洲一区| 精品福利观看| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 国产亚洲精品久久久久久毛片| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 日韩成人在线观看一区二区三区| 精品国产一区二区久久| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 国产欧美日韩精品亚洲av| 老司机福利观看| 亚洲专区中文字幕在线| 久久性视频一级片| 久久国产精品影院| 亚洲一码二码三码区别大吗| 国产精品亚洲美女久久久| 国产一区二区激情短视频| 亚洲第一电影网av| 巨乳人妻的诱惑在线观看| 一进一出抽搐动态| 999精品在线视频| 亚洲七黄色美女视频| 看片在线看免费视频| 91麻豆精品激情在线观看国产| 久久久久国产一级毛片高清牌| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 久热爱精品视频在线9| 免费观看人在逋| 国产一区在线观看成人免费| 欧美乱妇无乱码| 九色亚洲精品在线播放| 亚洲av熟女| 精品国产国语对白av| 欧美激情 高清一区二区三区| 99久久综合精品五月天人人| 日韩成人在线观看一区二区三区| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 久久久久久大精品| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区 | 老熟妇乱子伦视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人精品一区二区免费| 亚洲av日韩精品久久久久久密| 免费久久久久久久精品成人欧美视频| 婷婷精品国产亚洲av在线| 亚洲成av人片免费观看| 侵犯人妻中文字幕一二三四区| 亚洲国产精品sss在线观看| 久久人妻福利社区极品人妻图片| 久久久久九九精品影院| 国产伦人伦偷精品视频| 欧美中文综合在线视频| 不卡一级毛片| 久久狼人影院| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 午夜福利高清视频| 老鸭窝网址在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产一区二区入口| 免费人成视频x8x8入口观看| av天堂久久9| 999久久久国产精品视频| or卡值多少钱| av天堂久久9| 涩涩av久久男人的天堂| 麻豆av在线久日| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 三级毛片av免费| 999久久久精品免费观看国产| 亚洲人成77777在线视频| 多毛熟女@视频| 亚洲电影在线观看av| or卡值多少钱| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| 黄色视频,在线免费观看| 大码成人一级视频| 757午夜福利合集在线观看| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 激情在线观看视频在线高清| 日韩欧美三级三区| 99久久国产精品久久久| 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 日本一区二区免费在线视频| 午夜激情av网站| 国产精品九九99| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 精品久久久久久久毛片微露脸| 国产精品久久电影中文字幕| 91字幕亚洲| 久久久久久久精品吃奶| 日本三级黄在线观看| 免费在线观看影片大全网站| 天天添夜夜摸| 国产精品一区二区免费欧美| 精品人妻1区二区| www.www免费av| 欧美日韩精品网址| 夜夜爽天天搞| 亚洲欧美日韩另类电影网站| 桃红色精品国产亚洲av| 妹子高潮喷水视频| 久久久国产成人免费| 午夜视频精品福利| 久99久视频精品免费| 一进一出抽搐gif免费好疼| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 黄网站色视频无遮挡免费观看| 成人手机av| 亚洲精品在线美女| 久久午夜亚洲精品久久| 午夜视频精品福利| 精品国产一区二区久久| 亚洲国产毛片av蜜桃av| 欧美另类亚洲清纯唯美| 91成人精品电影| 桃红色精品国产亚洲av| 在线观看www视频免费| 午夜福利在线观看吧| 久热爱精品视频在线9| 国产精品久久视频播放| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 欧美一级a爱片免费观看看 | 看黄色毛片网站| 精品国产乱子伦一区二区三区| 妹子高潮喷水视频| 久久人妻福利社区极品人妻图片| 国产高清videossex| 亚洲伊人色综图| 一边摸一边抽搐一进一小说| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| 国产麻豆成人av免费视频| 老司机在亚洲福利影院| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 午夜免费成人在线视频| 男人操女人黄网站| 国产精品乱码一区二三区的特点 | 久久人人爽av亚洲精品天堂| 久久人人精品亚洲av| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 国产精品一区二区精品视频观看| 中国美女看黄片| 亚洲国产精品合色在线| а√天堂www在线а√下载| 免费在线观看日本一区| 极品教师在线免费播放| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| or卡值多少钱| 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 亚洲久久久国产精品| 午夜福利成人在线免费观看| 99riav亚洲国产免费| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 国产精品电影一区二区三区| 精品国产一区二区三区四区第35| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 黄色女人牲交| 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 一区二区三区国产精品乱码| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 波多野结衣高清无吗| 制服诱惑二区| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 中出人妻视频一区二区| 亚洲伊人色综图| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 国产片内射在线| 亚洲久久久国产精品| 男男h啪啪无遮挡| 免费观看人在逋| 午夜激情av网站| 禁无遮挡网站| 亚洲 国产 在线| 99久久精品国产亚洲精品| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 国产91精品成人一区二区三区| 亚洲精品av麻豆狂野| 俄罗斯特黄特色一大片| 欧美精品亚洲一区二区| 后天国语完整版免费观看| 日本免费一区二区三区高清不卡 | 久热这里只有精品99| 久久热在线av| 露出奶头的视频| 色老头精品视频在线观看| 久久久久九九精品影院| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 国产xxxxx性猛交| 午夜久久久久精精品| 在线天堂中文资源库| 女人爽到高潮嗷嗷叫在线视频| 免费搜索国产男女视频| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 亚洲国产精品sss在线观看| 成人18禁在线播放| 亚洲av成人av| 欧美乱色亚洲激情| 国产成人影院久久av| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区| 人人澡人人妻人| 露出奶头的视频| 97人妻天天添夜夜摸| 国产av又大| 波多野结衣av一区二区av| 天堂影院成人在线观看| 久久久精品欧美日韩精品| 久久久久国产精品人妻aⅴ院| 亚洲人成电影观看| 人人妻人人澡欧美一区二区 | av有码第一页| 老熟妇乱子伦视频在线观看| 精品熟女少妇八av免费久了| 一级a爱片免费观看的视频| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 国产精品98久久久久久宅男小说| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| 亚洲在线自拍视频| 久久人妻熟女aⅴ| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 久久亚洲精品不卡| 我的亚洲天堂| 狠狠狠狠99中文字幕| 身体一侧抽搐| 精品日产1卡2卡| 国产一区二区三区综合在线观看| 色婷婷久久久亚洲欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 看免费av毛片| 久久人妻熟女aⅴ| 国产一级毛片七仙女欲春2 | 在线十欧美十亚洲十日本专区| 如日韩欧美国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| svipshipincom国产片| 视频区欧美日本亚洲| 一二三四在线观看免费中文在| 热99re8久久精品国产| 黄色女人牲交| 在线观看舔阴道视频| 一本久久中文字幕| 亚洲欧美日韩无卡精品| 欧美一级a爱片免费观看看 | 十八禁网站免费在线| 精品久久久精品久久久| 青草久久国产| 国产av在哪里看| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 国产91精品成人一区二区三区| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 久久久国产成人精品二区| 999久久久国产精品视频| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 首页视频小说图片口味搜索| 亚洲第一av免费看| 日本三级黄在线观看| 精品国产美女av久久久久小说| 黑人欧美特级aaaaaa片| 国产精品日韩av在线免费观看 | 99re在线观看精品视频| 成人亚洲精品av一区二区| 丰满的人妻完整版| 精品午夜福利视频在线观看一区| 精品国产一区二区三区四区第35| svipshipincom国产片| 91精品三级在线观看| 亚洲午夜理论影院| 大陆偷拍与自拍| 在线十欧美十亚洲十日本专区| 精品免费久久久久久久清纯| 一二三四在线观看免费中文在| 亚洲成av人片免费观看| 在线观看www视频免费| 一进一出抽搐动态| 欧美精品亚洲一区二区| cao死你这个sao货| 在线观看www视频免费| 亚洲av片天天在线观看| 97人妻天天添夜夜摸| 51午夜福利影视在线观看| 成人三级做爰电影| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 国产精品永久免费网站| 国产av在哪里看| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 99在线视频只有这里精品首页| 国产午夜福利久久久久久| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 亚洲人成77777在线视频| x7x7x7水蜜桃| 自线自在国产av| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 老司机午夜十八禁免费视频| 美女大奶头视频|