• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Fair Distribution of Discrete Resources

    2013-12-19 01:41:28SunJianxin

    Sun Jianxin

    (Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000)

    1 The Principles and Axioms of Fair Distributing Discrete Resources

    A method of fair distributing discrete resources must meet the principles as follows:

    A.Equal-for-Members Principle:Each member is equally important for distributing resources,there is no special member who enjoys special preferential rights.

    B.Symmetry-of-Department Principle:The resources distributed to each department rely only on the population of the department,and have nothing to do with the serial number of the department(such as subscript).

    According to above principles,several axioms can be proposed.As a famous try,M.L.Balinski and H.P.Young put forward the five axioms about seats-distributing[1].After appropriate modification and supplement[2],they are adjusted as the nine axioms about fair distributing discrete resources as following:

    Axm.1 Population-monotonicity Axiom:The increasing population of any department would not cause reducing resources of the department.

    Axm.2 Resource-monotonicity Axiom:The increasing total number of resources would not cause reducing resources of any department.

    Proximity is also known as neutrality.

    Axm.5 Scheme-optimality Axiom:The distance in vector space between actual scheme and ideal scheme(i.e.quota) reaches minimum.

    Axm.6 Index-universality Axiom:A simple and uniform index of distributing resources is applicable to all possible situation such as any number of departments (m≥2),any population of the department (pj≥1) as well as any number of resources (nj≥0).

    Index-universality axiom is equivalent to two axioms:method-transparency axiom and method-universality axiom.Because the most transparent is index-method,therefore method-universality can be replace by index-universality.

    Axm.7 Department-unbiasedness Axiom:All deviations between relative unfair-degree and standard value(i.e.1)of each department are equally important(i.e.with equal weighted).

    Axm.8 Index-unbiasedness Axiom:If choose index ‘a(chǎn)’ as unfair-degree,must consider both pre-index a-(index before the adjustment) and post-index a+(index after the adjustment),and both are equally important(The most important character of discrete function with arbitrary step).

    Axm.9 Population-sequentialityAxiom:The sequence of distributing resources is relied on population of corresponding department,i.e.resources allocated to the department with more population can’t less than the department with less population.

    Unfortunately the nine axioms mentioned are compatible not all,although they are complete.

    2 The Mathematical Model of Fair Distributing Discrete Resources

    The meaning of variables in this paper are as follows:

    mis total number of departments in the group;

    pjis population of j-th department;

    pis total population of the group;

    nis total number of discrete resources for distributing(nis integer) ;

    njis number of discrete resources distributing to j-th department(njis integer) ;

    [x]=max{n|n≤x,n∈Z} is lower integer of real numberx;

    qj=npj/pis ideal distributing (quota) of j-th department;

    bj=qj-njis deviation of actual distributing resources from ideal quota of j-th department;

    bj*=qj-[qj]=(qj) is decimal part of quota;

    gj=njris covered people by resources of j-th department;

    aj=pj-gj=bjris deviation of covered people from population of j-th department;

    r=p/nis average representative-rate of group;

    rj=pj/njis representative-rate of j-th department;

    rj-=pj/nj-is pre-representative-rate of j-th department;

    rj+=pj/nj+is post-representative-rate of j-th department;

    d=1/r=n/pis average distributing-rate of group;

    dj=1/rj=nj/pjis distributing -rate of j-th department;

    tj=dj/dis relative distributing-rate of D-to-G of j-th department;

    tij=di/djis relative distributing-rate of i-th department to j-th department;

    uj=rj/ris relative representative-rate of D-to-G of j-th department;

    uij=ri/rjis relative representative-rate of i-th department to j-th department;

    The main equality describing relation between variables:

    gj=njr,nj=gjd,rd=1;

    pj=njrj,nj=pjdj,rjdj=1;

    dj=tjd,rj=ujr,tjuj=1;

    pj=qjr,qj=pjd;

    pj=njrj=qjr=gjuj;

    nj=pjdj=gjd=qjtj.

    For the problem of fair distributing discrete resources a discrete optimized model can be constructed.As an index vectorX=(x1,…,xm)choose resource vectorN=(n1,…,nm),population vectorP=(n1r,…,nmr),distributing-rate vectorD=(d1,…,dm),representative-rate vectorR=(r1,…,rm),relative distributing-rate vectorT=(t1,…,tm),or relative representative-rate vectorU=(u1,…,um).As an ideal index vectorX0=(x01,…,x0m) choose respectivelyN0=(q1,…,qm),P0=(p1,…,pm),D0=(d,…,d),R0=(r,…,r),T=(1,…,1 ),orU=(1,…,1).The distance of vector space is weighted norm ‖·‖k,w(a,h)=‖·‖k,h(a),here

    (2.1)

    (2.2)

    Lemma 2.1‖P-P0‖k,h(p)=r‖N-N0‖k,h(p)=rc1‖D-D0‖k,k+h=c1‖T-T0‖k,k+h,

    c1={p(k+h)/p(h)}1 / k.

    Similarly,we can prove the lemma 2.2 and their deductions as following: (proof is omited)

    Lemma 2.2All distances are equivalent ifnj>0(j=1,2,…,m)

    ‖N-N0‖k,h(N)=d‖N-N0‖k,h(N)=dc2‖R-R0‖k,k+h(N)=c2‖U-U0‖k,k+h(N),

    c2={n(k+h)/n(h)}1/ k.

    Deduction 2.3‖P-P0‖k,0=r‖N-N0‖k,0=rc1‖D-D0‖k,k(P)=c1‖T-T0‖k,k(P),

    c1={p(k)/m}1 / k.

    Deduction 2.4‖N-N0‖k,0=d‖P-P0‖k,0=dc2‖R-R0‖k,k(N)=c2‖U-U0‖k,k(N),

    c2={n(k)/m}1/ k,nj>0.

    According to lemma 2.1 and 2.2,it is easy to get some formulas of equivalent distances:

    (1)‖P-P0‖k,h(P)=r‖N-N0‖k,h(P);

    (2)‖N-N0‖k,h(P)=c1‖D-D0‖k,k+h(P),c1={p(k+h)/p(h)}1 / k;

    (3)‖N-N0‖k,h(N)=d‖P-P0‖k,h(N);

    (4)‖P-P0‖k,h(N)=c2‖R-R0‖k,k+h(N),c2={n(k+h)/n(h)}1/ k;

    (5)‖T-T0‖k,h(P)=r‖D-D0‖k,h(P);

    (6)‖U-U0‖k,h(N)=d‖R-R0‖k,h(N).

    Besides the 6 kinds of equivalent distance in lemma 2.1,and 2.2,there exist just 4 kinds of equivalence distance with parameterk=∞:

    (7)‖N-N0‖∞,h(N)= ‖N-N0‖∞,h(P)= ‖N-N0‖∞,h(D)= ‖N-N0‖∞,h(R),h∈{0,1,2};

    (8)‖P-P0‖∞,h(N)= ‖P-P0‖∞,h(P)= ‖P-P0‖∞,h(D)= ‖P-P0‖∞,h(R),h∈{0,1,2};

    (9)‖D-D0‖∞,h(N)= ‖D-D0‖∞,h(P)= ‖D-D0‖∞,h(D)= ‖D-D0‖∞,h(R),h∈{0,1,2};

    (10)‖R-R0‖∞,h(N)= ‖R-R0‖∞,h(P)= ‖R-R0‖∞,h(D)= ‖R-R0‖∞,h(R),h∈{0,1,2}.

    3 The Relation between Models and Indexes

    Firstly,classic distributing method of discrete resources can be divided into two categories: model-method and index-method. Secondly the index-method still can be devided into two kinds: one is all-index method,the other is half-index method. So called all-index method means that the distributing each resource is according to the index such as d’Hondt Method. So called half-index method means that after pre-distributing the distributing each remaining resources is according to the index such as Hamiltonian Method.

    Furthermore method will be different if index different. So many method is directly named as index. In fact,index is a real monotone discrete function ofnjwith parameterspj,p,n. that is

    Ij=f(nj;pj,p,n),j=1,2,…,m.

    Many method of resource-distributing can be obtained from some discrete optimalized model of resource-distributing.

    Similarly from every model of resource-distributing may be obtained a method which index of max-losser priority or min- gainer priority is corresponding to the model.

    Once the parameters of model are determined,the corresponding index are determined as well. In fact,there is the following proposition:

    Theorem 3.1Let the optimization model of fair distributing discrete resources

    min‖X-X0‖k,h(A),h∈{0,1,2}

    Then it’s corresponding index of max-loss priority is

    (3.1)

    ProofIfk=0,by the property of norm it is available that

    (C1)‖X1-X0‖0,h(A)< ‖X2-X0‖0,h(A);

    By (C3) we can know that the proposition is true whenk=0.

    Ifk=1 or 2,by definition of norm

    (C1)‖X1-X0‖k,h(A)< ‖X2-X0‖k,h(A);

    By(C3)we can know that the proposition is true whenk=1 or 2.

    Ifk=∞,by property of norm we have

    (C1)‖X1-X0‖∞,h(A)< ‖X2-X0‖∞,h(A);

    There exist four cases as following:

    ForX=N,(C5) is equivalent to 1-b1<1-b2,that isb2

    Similarly,we can prove the proposition be true forX=P,R,U. The proof is omited.

    Comprehensive of four cases,whenk=∞,h∈{0,1,2}

    So far,the Theorem 3.1 is proved.

    Theorem 3.2Let the optimization model of fair distributing discrete resources

    min‖X-X0‖k,h(A),h=∞

    Then it’s corresponding index of max-loss priority is

    (3.2)

    This proposition can easy be obtaind from (3.1) ash→∞. The proof is omited.

    Put out several deductions and their proofs are omitted:

    According to lemma 2.1 and 2.2 and their special cases,it is shown there exist 10 kinds of equivalent distance,in which only four kinds such as (1)(3)(5)(6) with different variables and same parameters; There are two kinds such as (2)(4) with different variables and different parameters; There are 4 kinds such as (7)(8)(9)(10) with same variables and different parameters. It is clear that two equivalent indexes occurred if and only if there are two equivalent distances with different variables and the same parameters. It is not difficult to know that D-indexes is equivalent to the T-indexes,R-indexes is equivalent to U-indexes; Although P-indexes equivalent to N-indexes,but considering the symmetry is helpful to compare,so both retained.

    In order save space,here only to be given a table of relation between index and model with parameterh=0,see Table 3.1.

    Table 3.1 the relation between parameters of model and index Imax or Imin(h=0)

    4 The Relationship between Axioms and Models

    By lemma 2.1 and 2.2,‖N-N0‖0,h (P)= ‖D-D0‖0,h (P),‖P-P0‖0,h (N)= ‖R-R0‖0,h (N),it means that vector spaces described by different distances are overlapping.In order to convenient,below is no longer considered the caseX∈{N,P}&k= 0.

    The General weighted norms withh>0 except equivalent distance (2)&(4) are biased to departments.Hence they are not fair. So below are confined to consider all cases with parameterh= 0.

    It is not difficult to prove the following propositions:

    Theorem 4.1The population-monotonicity (Axm.1) which be equivalent to population- sequentiality(Axm.9) is satisfied if and only if by the solution of following model:

    ProofA)At first to prove that Axm.9 is satisfied if and only if by the solution of model:

    (4.1)

    A1)Consider thatX=D,k=1,let (n1,n2,…,nm)(m≥2) is the solution of the model:

    (4.2)

    Suppose thatp1>p2,then mustn1≥n2because there exist only two cases in the process of distributing:

    There exist no other case. Easy to know thatn1≥n2is holding from beginning to the end.

    So far we had proved thatn1≥n2ifp1>p2for the model (4.1) asX=D,h=0,k=1.

    Suppose thatp1>p2,then mustn1≥n2-1 in the middle of process andn1≥n2in the end because there exist only four cases in the process of distributing:

    There will must ben1≥n2because next remaining resource don’t allocate to department 2. Hence may back to (1) ifi>2,or turn to (4) ifi=1.

    At this time a remaining resource will allocate to department 2 and the casen2=n1+1 is occurred. Then turn to (3);

    In fact,from the known conditionS2>S1(refer to (2)) deduced several equivalent inequalities as following:

    Ifm=2,d=n/(p1+p2), then (C3)is equivalent to

    (C4)n>4n0+2;

    (C5)Δ=n-n1--n2-=n-2n0-1>2n0+1≥1.

    Ifm>2,might as well suppose that the last distributing of department 3~mis (n3,…,nm),letn*=n-n3-…-nm,then(C3) is equivalent to

    (C7)Δ=n*-2n0-1>2n0+1≥1.

    Thus next remaining resource don’t allocate to department 2 until department 1 add at least 1,the process may back to (3) ifSi=max{Sj}&i>2 ,else turn to (1) or (2) ifSi=max{Sj}&i=1;

    It is clear thatn1≥n2still is holding even if a remaining resource is allocated to department 2. Thus the process may back to (4)ifn1>n2or turn to (1) or (2) ifn1=n2.

    There exist no other case. Easy to know thatn1≥n2is holded in the end.

    So far it has been provedp1>p2impliesn1≥n2in model (4.1) ask=1 or 2 (X=D,h= 0).

    B)Secondly to prove that Axm.9 is equivalent to Axm.1. In the fact,the casep1>p2withn1≥n2happens up to now,if some years ago the population of department 1 just equal to population of department 2 today,i.e.

    p1′=p2,n1′=n2.

    (*)

    For department 1 the resources increased fromn2ton1as its population increasing fromp2top1. So Axm.9 is equivalent to Axm.1.

    But for discrete problem cannot guarantee equality(*) always exists. In general,to prove it must use reduction to absurdity. It can be divided into two propositions:

    B1)One hand,Axm.1 implies Axm.9. If not so,assuming that does not meet the Axm. 9,which means that at certain time there exist department 1 and 2 such thatp1>p2andn1p2andn2′

    B2)The other hand,Axm.9 implies Axm.1.If not so,assuming that does not meet the Axm.1,which means that after a few years,there is a department 1 which resources is decreasing as it’s population increasing,namelyp1′>p1andn1′p2′ andn1′

    C)So far it has been proved the Theorem 4.1 is true ifX=D. Pay attention tor=1/d,Aj(r) =1/Hj(d),refer the table 3.1 and the lemma 2.1& 2.2 it is easy to know that the Theorem 4.1 is true as well ifX∈{R,T,U}.

    Theorem 4.2The resource-monotonicity(Axm.2)is satisfied if and only if by the solution of following model:

    min‖X-X0‖1,0,, st.∑nj=n,nj∈Z0+,X∈{D,R,T,U}.

    ProofIt is clear that premise of resource-monotonicity ism≥3.

    Firstly we consider thatX=D,k=1(h=0). To prove it only ifm= 3,and the rest by analogy.

    ‖D3-D0‖1,0≤‖D1-D0‖1,0,‖D3-D0‖1,0≤‖D2-D0‖1,0.

    (4.3)

    (4.4)

    In fact,whether inequality(4.3) or inequality(4.4) are equivalent to following inequality

    A3(d)≤A1(d),A3(d)≤A2(d).

    (4.5)

    So the proposition is correct asX=D. Pay attention tor=1/d,therefore the proposition is correct asX=R.

    In fact the conditionk=1 is both sufficient and neccesary. It is enough to prove that cannot guarantee that model meet resources monotonicity,ifkis not equal to 1 (k=0,2 or ∞).For example,ifk=2(h=0) the model may not meet resources monotonicity,because the inequilities:

    ‖D3-D0‖2,0≤‖D1-D0‖2,0, ‖D3-D0‖2,0≤‖D2-D0‖2,0.

    (4.6)

    Their equivalent conditions are

    (4.7)

    If you want to prove to the model meet resources monotonicity,must deduced the following inequality (4.8) from (4.6):

    (4.8)

    Their equivalent conditions are

    (4.9)

    But must add conditionpi≥p3(i=1,2) to deduce (4.9) from (4.7). It means that the all population of departments must be equal by sysmetry. In general case the populations are different(at least is not all the same).

    We can also prove proposition by counter-example.In particular forX=R,k=∞,h=0 provide the counter-example as follows:

    m=3,p1=p2=23,p3=54,p=100.

    (This example still is applied in case ask=2,the result is in brakets at the end of every lines.)

    Whenn=10,try to compare three schemes: (denote max {A,B,C} asA∨B∨C)

    (1) (2,2,6):‖R-R0‖∞,0=

    (23/2-10)∨(23/2-10)∨(10-54/6)=1.5∨1.5∨1 =1.5; (5.5)

    (2) (2,3,5):‖R-R0‖∞,0=

    (23/2-10)∨(10-23/3)∨(54/5-10)=1.5∨7/3∨0.8=7/3; (8.33)

    (3) (3,3,4):‖R-R0‖∞,0=

    (10-23/3)∨(10-23/3)∨(54/4-10)= 7/3∨7/3∨3.5=3.5. (23.14)

    Obviousely the optimal solution is (2,2,6). Asn=11,try to compare three schemes:

    (1) (2,2,7):‖R-R0‖∞,0=

    (2) (2,3,6):‖R-R0‖∞,0=

    (3) (3,3,5):‖R-R0‖∞,0=

    It is easy to know that optimal solution of the model becomes to (3,3,5),i.e.the resources of department-3 decreased from 6 to 5 as total resources is increasing from 10 to 11.

    ForX=R,k=0(h=0) we provide the counter-example as follows:

    m=3,p1=p2=43,p3=14,p=100.

    Whenn=10,let’s try to compare three schemes:

    Obviousely the optimal solution is (4,4,2). Asn=11,let’s try to compare three schemes:

    It is easy to know that optimal solution of the model becomes to (5,5,1),i.e.the resources of department-3 decreased from 2 to 1 as total resources is increasing from 10 to 11.

    As a result,the Theorem 4.2 is true.

    ProofConsider thatX=N,k∈{1,2,∞},h=0.Give an assumption thatN*= (n1,n2,…,nm) (m≥2)is the solution of the model as following:

    (4.10)

    If not so,then two cases may occue: (for examplek=1)

    |(n1-d) -q1| +|(n2+d)-q2|+…=m‖N’-N0‖1,0.

    Ifc≤d,similarly can prove schemeN″=(n1-c,n2+c,…,nm) is beter thanN*=(n1,n2,…,nm) which is contradicted with assumption.

    d+(1-b1)+…+bm-d+1+…+bm>(1-b1) +…+(1-bm-d+1)+…+(1-bm)=

    So far the Theorem 4.3 had been proved ask=1.The propopsition can be proved similarly ask=2 andk=∞, the proof is omited.

    But the proposition is not true instead ofk=0. In fact,there exist the counter-example as following:

    counter-example 4.1Letpj=2(j=1,2,…,9),p10=82 andn=10. Find out the solution of the model:

    (4.11)

    and verify the solution of model (4.11) don’t meet resource- proximity.

    Solutionp=∑pj=9(2)+82=100.d=n/p=10/100=0.1.qj=pjd=0.2(j<10) andq10=8.2.

    It means just the model(4.10) satisfies resource-proximity. As a result,the Theorem 4.3 is true.

    min‖P-P0‖k,0,,

    ProofPay attention to the model as follows:

    (4.12)

    Theorem 4.5The scheme-optimality(Axm.5)is satisfied if and only if by the solution of following model:

    ProofConsider that all of ‖X-X0‖k,hare unfair-degrees of resources-distributing if and only ifX∈{N,P,D,R,T,U}. Because norm ‖X-X0‖k,hbecomes general distance of vector-space ifk=2,soXis nearest index-vector from ideal pointX0ifXto be the solution of following model:

    Therefore the solution X of the model is the optimal. As a result,the Theorem 4.5 is true.

    Theorem 4.6The index-universality (Axm.6) is satisfied if and only if by the solution of following model:

    ‖X-X0‖k,h≠∞,

    X∈{N,P,D,T},k,h∈{0,1,2,∞}.

    In this case the departments 1 and 2 mentioned above can be compared to determine the distributing-scheme according to their distances.

    As a result,the Theorem 4.6 is true.Consider following example as real evidence.

    Example 4.2Letm=3,p1=2,p2=9,p3=89(p=100).n=10,r=10(d=0.1). Calculate all distances in table and fill results in corresponding blank space,see table 4.1.(data of 3-nd Dept. are omited)

    table 4.1 the distance data of example 4.2

    Theorem 4.7The department-unbiasedness(Axm.7) is satisfied if and only if by the solution of following model:

    ProofIt is clear that the weighted value of every department is same,i.e.wj=1/mifh=0 andX=T.It implies that all deviations of relative distributing-rate of each department from standard-value 1 are equally important. By lemma 2.1 the proposition is still correct whenX=UorDorR. As a result,the Theorem 4.7 is true.

    In addition,Axm.7 is equivalent to Axm.1 or Axm.9 because their model are the same.

    Theorem 4.8The index-biasedness (anti-Axm.8) is satisfied if and only if by the solution of following model:

    ProofConsider that the other possible beyondX∈{N*,P*,D*,R*,T*,U*} and *∈{+,-}.It means that Some departments use pre-distributing index,some departments are post-distributing index. Consider a resource to transfer between two kinds of departments,and will appear at the same time with pre - after index. As a result,the Theorem 4.8 is true.

    5 The Proof of Impossibility Theorem

    Temporarily take no account of axiom 8,according to the Theorem 4.1~4.7 each of axioms(Axm.1~Axm.7) can to show by the different ranges of variable with parameter of model in Veen Diagram as folowings. So lemma 5.1 is true(refer the diagram 5.1).

    Lemma 5.1About axioms of resource-distributing there are mainly some conclusions as follows:

    (1)The Axm.1(population-monotonicity) is equivalent to the Axm.7(department- unbiased- ness). In order to simplify,Axm.7 always is replaceded by Axm.1 later and Axm.7 is omited;

    (2)The solution of model which meet the Axm.2(resource-monotonicity) satisfies Axm.1(department-unbiasedness);

    (3)The solution of model which meet the Axm.3(resource- proximity) satisfies the Axm.6(index- universality);

    (4)Axm.3(resource- proximity) in {N,D,T} is equivalent to Axm.4(population - proximity) in {P,R,U}.

    (5)Axm.1(population-monotonicity) is incompatible with Axm.3(resource- proximity) or Axm.4(population -proximity).By (2) it implies that Axm.2(resource-monotonicity) is incompatible with Axm.3(resource-monotonicity) or Axm.4(resource-proximity) as well.

    (6)Axm.2(resource-monotonicity) is incompatible with Axm.5(scheme-optimality).

    Diagram 5.1 Veen Diagram which subsets are region of parameters satisfied Axm.1-7

    Theorem 5.2(Impossibility Theorem) A method of resource-distributing which will be satisfy the Axm.2 (resource-monotonicity) and the Axm.3 (resource-proximity) at the same time is not possible.

    ProofBy the diagram 5.1 it is easy to know that the intersection of region meat Axm.2 with region meat Axm.3 is empty set. So the theorem 5.2 is true.

    Deduction 5.3A mothod of resource-distributing which will be satisfy the Axm.1 (population- monotonicity),Axm.2 (resource-monotonicity),Axm.3 (resource - proximity),Axm.4 (population - proximity) and Axm.5 (scheme-optimality) at the same time is not possible.

    Deduction 5.4A mothod of resource-distributing which will be satisfy the Axm.1 (population- monotonicity),Axm.2 (resource-monotonicity),Axm.3 (resource-proximity),Axm.4 (population-proximity),Axm.5 (scheme-optimality),Axm.6 (index-universality) and Axm.8 (index-unbiasedness) at the same time is not possible.

    6 Extreme System of Compatible Axioms

    Since there exist no method to satisfy all axioms of resources-distributing,we are able only to pick out the extreme system of compatible axioms ( ESCA for short ) in the seven axioms Axm.1~6 & 8(Axm.7 and Axm.9 are redundant) which mentioned more or less in the resources- distributing problems.

    Might as well assume that the seven axioms are equally important. It is easy to obtained the ESCA by lemma 5.1 as follows(as far as possible choose the Axm.8):

    (1)ESCA1={Axm.1,2,6,8}={population-monotonicity axiom,resource-monotonicity axiom,index- universality axiom,index-unbiasedness axiom};

    (2)ESCA2={Axm.1,5,6,8}={population-monotonicity axiom,scheme-optimality axiom,index-universality axiom,index-unbiasedness axiom};

    (3)ESCA3={Axm.3,5,6,8}={resource-proximity axiom,scheme-optimality axiom,index- universality axiom,index-unbiasedness axiom};

    (4)ESCA4={Axm.4,5,6,8}={population-proximity axiom,scheme-optimality axiom,index- universality axiom,index-unbiasedness axiom}.

    7 The further results

    According to the theory about fair distributing discrete resources mentioned above,the author obtains the optimal methods in four types of resources(see[3]).The main results are as following:

    The optimal method is W- method for distributing seats without fixed size which index isWj=d-Aj(d); and the optimal method is S- method for distributing seats with fixed size which index isSj=Wj/pj.

    Hamiltonian method is a good method,but applies only to distributing non-permanent discrete resource.

    About the fair distributing discrete resources,the summarized results are in table 7.1.

    Tab.7.1 The Optimal Methods of Distributing Different Resaurces

    Reference:

    [1]Balinski M L,Young H P.Fair Representation: Meeting the Ideal of One Man,One Vote[M].Newhaven:Yale University Press,1982:191,

    [2]Sun Jianxin. Compatibility & completeness of Axioms about Seats Distribution[J].Mathematics in Practice and Theory,2011,41(4):78-84.

    [3]Sun Jianxin. The Optlmal Methods of Distribution of Discrete Resources[J].Journal of Shaoxing University,2013,33(7):12-16.

    美女主播在线视频| 国产亚洲av片在线观看秒播厂| av黄色大香蕉| 亚洲久久久国产精品| 在线天堂最新版资源| 国产真实伦视频高清在线观看| 国产精品一及| 天天躁日日操中文字幕| 直男gayav资源| 欧美老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 久久婷婷青草| 91午夜精品亚洲一区二区三区| 日韩中文字幕视频在线看片 | 国产精品久久久久久久久免| a 毛片基地| 成人毛片60女人毛片免费| 国产精品麻豆人妻色哟哟久久| 久久精品夜色国产| 妹子高潮喷水视频| 亚洲人成网站在线播| 国产成人精品一,二区| 久久久欧美国产精品| 国产欧美亚洲国产| 精品熟女少妇av免费看| 亚洲精品日韩在线中文字幕| 亚洲精品日韩av片在线观看| 国产一区亚洲一区在线观看| 日本av手机在线免费观看| 我要看黄色一级片免费的| 亚洲成人一二三区av| 亚洲国产精品国产精品| 日韩在线高清观看一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲,一卡二卡三卡| 毛片女人毛片| 直男gayav资源| 99re6热这里在线精品视频| 国产成人精品久久久久久| 婷婷色综合大香蕉| 国产精品免费大片| 最近最新中文字幕免费大全7| 日韩强制内射视频| 亚洲婷婷狠狠爱综合网| 国模一区二区三区四区视频| 色婷婷久久久亚洲欧美| 晚上一个人看的免费电影| 免费黄频网站在线观看国产| 国产精品国产av在线观看| 97超碰精品成人国产| 最近的中文字幕免费完整| 日本wwww免费看| www.色视频.com| 欧美性感艳星| 少妇猛男粗大的猛烈进出视频| 亚洲精品第二区| 91精品国产九色| 精品久久久噜噜| 国产在线视频一区二区| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久久久按摩| 在线观看三级黄色| 国产高清有码在线观看视频| 热99国产精品久久久久久7| 久久精品国产a三级三级三级| 日韩成人伦理影院| 国产免费一级a男人的天堂| 久久99精品国语久久久| 国产成人精品婷婷| 男女边吃奶边做爰视频| 综合色丁香网| 色婷婷久久久亚洲欧美| 一级av片app| av在线app专区| 男人添女人高潮全过程视频| 久久鲁丝午夜福利片| 成人毛片a级毛片在线播放| 精品人妻偷拍中文字幕| 自拍偷自拍亚洲精品老妇| 2022亚洲国产成人精品| 尾随美女入室| 久久久午夜欧美精品| 免费久久久久久久精品成人欧美视频 | 久久久久久久国产电影| 99久久精品一区二区三区| 网址你懂的国产日韩在线| 成人毛片60女人毛片免费| 国产精品福利在线免费观看| 国产成人精品一,二区| 国产成人精品福利久久| 免费高清在线观看视频在线观看| 国产成人精品婷婷| 国产精品嫩草影院av在线观看| 乱码一卡2卡4卡精品| 网址你懂的国产日韩在线| 午夜福利在线在线| 亚洲熟女精品中文字幕| 一本色道久久久久久精品综合| 国产免费视频播放在线视频| 久久韩国三级中文字幕| 嫩草影院新地址| 中文乱码字字幕精品一区二区三区| 国产精品蜜桃在线观看| av线在线观看网站| 亚洲三级黄色毛片| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 高清日韩中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品.久久久| 日本免费在线观看一区| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 2018国产大陆天天弄谢| 亚洲精品国产色婷婷电影| 噜噜噜噜噜久久久久久91| 插阴视频在线观看视频| 丰满少妇做爰视频| 国产黄片视频在线免费观看| 啦啦啦中文免费视频观看日本| 久久99热6这里只有精品| 国产精品久久久久久久久免| 老熟女久久久| 亚洲人与动物交配视频| 亚洲国产成人一精品久久久| 九九爱精品视频在线观看| 国产日韩欧美在线精品| av线在线观看网站| 亚洲第一av免费看| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩东京热| 日韩,欧美,国产一区二区三区| 久久女婷五月综合色啪小说| 久久国产精品大桥未久av | 亚洲欧美精品自产自拍| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 精品人妻偷拍中文字幕| 十分钟在线观看高清视频www | 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 日韩免费高清中文字幕av| 国产精品久久久久久精品古装| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 国产真实伦视频高清在线观看| 国产视频首页在线观看| 亚洲欧美中文字幕日韩二区| 国产 一区 欧美 日韩| 尾随美女入室| 精品一区二区免费观看| 亚洲,欧美,日韩| 男人舔奶头视频| 国产av国产精品国产| 如何舔出高潮| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 免费看日本二区| 免费av不卡在线播放| 日韩中文字幕视频在线看片 | 久久精品国产自在天天线| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 欧美区成人在线视频| 一级a做视频免费观看| 天堂俺去俺来也www色官网| 黄色日韩在线| 日韩中文字幕视频在线看片 | 街头女战士在线观看网站| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 少妇人妻一区二区三区视频| 男人爽女人下面视频在线观看| 国产精品国产av在线观看| 少妇人妻一区二区三区视频| 成年人午夜在线观看视频| 熟女av电影| 九九久久精品国产亚洲av麻豆| 麻豆成人午夜福利视频| 看十八女毛片水多多多| 激情 狠狠 欧美| 亚洲人成网站在线播| 国产精品一区二区性色av| 国产精品精品国产色婷婷| 国产深夜福利视频在线观看| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 久久这里有精品视频免费| av国产免费在线观看| 亚洲四区av| 亚洲国产精品999| 美女国产视频在线观看| 免费看av在线观看网站| 制服丝袜香蕉在线| 亚洲成人手机| 亚洲精品一二三| 亚洲国产av新网站| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 久久影院123| av线在线观看网站| 久久国产乱子免费精品| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久 | 五月伊人婷婷丁香| 精品少妇黑人巨大在线播放| 国产男女超爽视频在线观看| 午夜日本视频在线| 国国产精品蜜臀av免费| 成人二区视频| 欧美人与善性xxx| 国产乱人视频| 亚洲精品国产色婷婷电影| 国产精品国产三级国产专区5o| 亚洲精华国产精华液的使用体验| 人妻少妇偷人精品九色| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类| 久久av网站| 深夜a级毛片| 久久国产亚洲av麻豆专区| 中文字幕免费在线视频6| 黑丝袜美女国产一区| 成人国产av品久久久| 麻豆国产97在线/欧美| 久久人人爽人人片av| 高清视频免费观看一区二区| 久久99精品国语久久久| 舔av片在线| 久久久久精品性色| 国产免费又黄又爽又色| 久久久精品免费免费高清| 国产 精品1| videos熟女内射| 亚洲中文av在线| 日本午夜av视频| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 免费大片黄手机在线观看| 精品国产乱码久久久久久小说| 久久 成人 亚洲| 久久久久久人妻| 亚洲成色77777| 精品一区二区免费观看| av国产久精品久网站免费入址| 精品亚洲成国产av| 身体一侧抽搐| 亚州av有码| 国产精品久久久久成人av| 国产成人a区在线观看| 交换朋友夫妻互换小说| 亚洲国产欧美人成| 97精品久久久久久久久久精品| 赤兔流量卡办理| 欧美日韩在线观看h| 国产片特级美女逼逼视频| 少妇高潮的动态图| 舔av片在线| 欧美97在线视频| 久久久久精品久久久久真实原创| 欧美丝袜亚洲另类| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 久久av网站| 午夜激情久久久久久久| 一个人免费看片子| 亚洲天堂av无毛| 99久久综合免费| 久久久久久久久久久丰满| 插逼视频在线观看| 18禁裸乳无遮挡动漫免费视频| 水蜜桃什么品种好| 国产精品99久久久久久久久| 成人黄色视频免费在线看| 久久久久久久精品精品| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| av在线观看视频网站免费| 国精品久久久久久国模美| 亚洲不卡免费看| 国产欧美亚洲国产| 99久久精品热视频| 美女cb高潮喷水在线观看| h视频一区二区三区| 汤姆久久久久久久影院中文字幕| 国产高清有码在线观看视频| 97在线人人人人妻| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图 | 人人妻人人澡人人爽人人夜夜| 精品午夜福利在线看| a 毛片基地| 国产精品.久久久| 久久久国产一区二区| 成年免费大片在线观看| 大香蕉久久网| 我的女老师完整版在线观看| 免费黄色在线免费观看| 欧美+日韩+精品| 日产精品乱码卡一卡2卡三| 高清不卡的av网站| 观看免费一级毛片| 久久久亚洲精品成人影院| 日本爱情动作片www.在线观看| av在线app专区| 日韩av在线免费看完整版不卡| 国产综合精华液| 日日啪夜夜爽| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 久久久久精品性色| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 97热精品久久久久久| 成人免费观看视频高清| 久久6这里有精品| 亚洲在久久综合| 国产成人精品婷婷| 中文字幕制服av| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久com| 日韩在线高清观看一区二区三区| 又粗又硬又长又爽又黄的视频| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www | 精品视频人人做人人爽| 各种免费的搞黄视频| 91精品国产九色| 99国产精品免费福利视频| 国产又色又爽无遮挡免| 婷婷色麻豆天堂久久| 久久人人爽人人爽人人片va| 大香蕉97超碰在线| 亚洲,一卡二卡三卡| 成人美女网站在线观看视频| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| av免费在线看不卡| 一区二区三区四区激情视频| 精品一区二区三卡| 久久99精品国语久久久| 欧美zozozo另类| 精品久久久噜噜| 欧美bdsm另类| 国产精品一二三区在线看| 性高湖久久久久久久久免费观看| 国产男女内射视频| 国产深夜福利视频在线观看| 亚洲美女黄色视频免费看| av国产久精品久网站免费入址| kizo精华| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 有码 亚洲区| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 一级毛片电影观看| 国产大屁股一区二区在线视频| 日韩中字成人| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 狠狠精品人妻久久久久久综合| 国产高潮美女av| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 色哟哟·www| 99热这里只有是精品50| 亚洲国产av新网站| 蜜桃亚洲精品一区二区三区| 全区人妻精品视频| 国产av国产精品国产| 97超碰精品成人国产| 我的女老师完整版在线观看| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 丰满少妇做爰视频| 久久久精品免费免费高清| 99热国产这里只有精品6| 中文乱码字字幕精品一区二区三区| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频 | 日本av免费视频播放| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看 | 中文字幕久久专区| av一本久久久久| 国产精品国产av在线观看| 噜噜噜噜噜久久久久久91| 18+在线观看网站| 青春草亚洲视频在线观看| 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 日本一二三区视频观看| 22中文网久久字幕| 三级国产精品片| 欧美精品一区二区免费开放| 久久久久久人妻| 看非洲黑人一级黄片| 老熟女久久久| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 我要看日韩黄色一级片| 九草在线视频观看| 一区二区三区乱码不卡18| 精品熟女少妇av免费看| 水蜜桃什么品种好| 国产精品无大码| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| 国产色婷婷99| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 精品亚洲成国产av| 免费av中文字幕在线| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 18禁裸乳无遮挡免费网站照片| av福利片在线观看| 热99国产精品久久久久久7| 中文乱码字字幕精品一区二区三区| 身体一侧抽搐| 建设人人有责人人尽责人人享有的 | 久久99精品国语久久久| 亚洲精品中文字幕在线视频 | 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 丰满人妻一区二区三区视频av| 黄色欧美视频在线观看| 91久久精品国产一区二区三区| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 亚洲丝袜综合中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 欧美国产精品一级二级三级 | 国产精品不卡视频一区二区| 偷拍熟女少妇极品色| 欧美人与善性xxx| 国产视频首页在线观看| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 亚洲aⅴ乱码一区二区在线播放| 赤兔流量卡办理| 日本vs欧美在线观看视频 | 亚洲va在线va天堂va国产| 国产成人freesex在线| 免费久久久久久久精品成人欧美视频 | av专区在线播放| 色吧在线观看| 国产精品久久久久久久久免| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 久久av网站| 久久久国产一区二区| 久久久久久久大尺度免费视频| 街头女战士在线观看网站| 久久久久精品性色| 制服丝袜香蕉在线| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 国产精品.久久久| 国产高清国产精品国产三级 | 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 国产av一区二区精品久久 | 久久久久视频综合| 国产91av在线免费观看| 久久久午夜欧美精品| 国产淫片久久久久久久久| 国产在线视频一区二区| 多毛熟女@视频| 99久久人妻综合| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 亚洲国产精品999| xxx大片免费视频| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 国产69精品久久久久777片| 在线观看av片永久免费下载| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 久久精品久久久久久噜噜老黄| 最近2019中文字幕mv第一页| 国产av精品麻豆| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美,日韩| 中国国产av一级| 99热这里只有是精品50| 在线观看一区二区三区| 建设人人有责人人尽责人人享有的 | 插阴视频在线观看视频| 少妇高潮的动态图| 91久久精品国产一区二区三区| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| 99久久人妻综合| 看非洲黑人一级黄片| 老熟女久久久| 亚洲精品日韩在线中文字幕| 丝袜脚勾引网站| 国产欧美日韩精品一区二区| 日日撸夜夜添| 亚洲精品国产av蜜桃| 欧美三级亚洲精品| 美女xxoo啪啪120秒动态图| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 欧美三级亚洲精品| 国产人妻一区二区三区在| 欧美精品一区二区免费开放| 亚洲国产精品国产精品| 国产精品三级大全| 久久鲁丝午夜福利片| 午夜福利视频精品| 国产高清不卡午夜福利| 一级毛片我不卡| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 亚洲精品,欧美精品| 色视频www国产| 亚洲av男天堂| 国产淫语在线视频| 亚洲精品久久午夜乱码| 夜夜看夜夜爽夜夜摸| 久久久久性生活片| 美女国产视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久久久国产精品人妻一区二区| 最黄视频免费看| 免费人成在线观看视频色| 美女福利国产在线 | 日本一二三区视频观看| 国产精品无大码| 成人美女网站在线观看视频| 啦啦啦中文免费视频观看日本| 中文天堂在线官网| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 欧美日韩综合久久久久久| 成年免费大片在线观看| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| 日韩一区二区视频免费看| 卡戴珊不雅视频在线播放| 亚洲欧美精品自产自拍| 精品99又大又爽又粗少妇毛片| 国产精品免费大片| 久久国产精品大桥未久av | 国产午夜精品一二区理论片| 丰满少妇做爰视频| 日本av免费视频播放| 免费人成在线观看视频色| 毛片一级片免费看久久久久| av在线观看视频网站免费| 三级国产精品片| 99久久精品热视频| av专区在线播放| 综合色丁香网| 国产精品.久久久| 久久国内精品自在自线图片| 22中文网久久字幕| 三级国产精品片| 久久久久精品久久久久真实原创| 伊人久久国产一区二区| 国产国拍精品亚洲av在线观看| 人人妻人人看人人澡| 国产av国产精品国产| 久久久久久久久久人人人人人人| 麻豆成人午夜福利视频| 国产精品成人在线| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 亚洲国产精品999| 亚洲成人手机| 亚洲第一区二区三区不卡| 人妻少妇偷人精品九色| 深夜a级毛片| 一个人免费看片子| 亚洲精品国产色婷婷电影| 夫妻性生交免费视频一级片| 大香蕉97超碰在线| 欧美精品一区二区大全|