袁 帥,付和平,武曉東,*,張曉東,查木哈, 張福順,甘紅軍
(1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)生態(tài)環(huán)境學(xué)院,呼和浩特 010019; 2. 草業(yè)與草地資源教育部重點(diǎn)實(shí)驗(yàn)室, 呼和浩特 010019; (3. 中國(guó)農(nóng)業(yè)科學(xué)院草原研究所, 呼和浩特 010010; 4. 內(nèi)蒙古阿拉善盟草原站, 巴彥浩特 750306)
荒漠嚙齒動(dòng)物群落對(duì)開(kāi)墾干擾的響應(yīng)及其種群生態(tài)對(duì)策
袁 帥1, 2,付和平1, 2,武曉東1, 2,*,張曉東1, 2,查木哈1, 2, 張福順3,甘紅軍4
(1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)生態(tài)環(huán)境學(xué)院,呼和浩特 010019; 2. 草業(yè)與草地資源教育部重點(diǎn)實(shí)驗(yàn)室, 呼和浩特 010019; (3. 中國(guó)農(nóng)業(yè)科學(xué)院草原研究所, 呼和浩特 010010; 4. 內(nèi)蒙古阿拉善盟草原站, 巴彥浩特 750306)
開(kāi)墾對(duì)功能相對(duì)脆弱的荒漠生態(tài)系統(tǒng)是重要的干擾,這種干擾往往導(dǎo)致棲息地破碎化,并對(duì)動(dòng)植物群落產(chǎn)生強(qiáng)烈影響。作為荒漠生態(tài)系統(tǒng)的重要成分,嚙齒動(dòng)物群落受到開(kāi)墾干擾后對(duì)環(huán)境的響應(yīng)及其群落中種群的生態(tài)對(duì)策,是荒漠生態(tài)系統(tǒng)生物多樣性及其功能維持穩(wěn)定的重要基礎(chǔ)。2006—2011年,采用標(biāo)志重捕法對(duì)內(nèi)蒙古阿拉善荒漠區(qū)未開(kāi)墾和開(kāi)墾草地嚙齒動(dòng)物群落格局及其不同生態(tài)對(duì)策種群的數(shù)量組成進(jìn)行了專(zhuān)門(mén)研究。目的(1)明確開(kāi)墾干擾下嚙齒動(dòng)物群落格局時(shí)間尺度變化;(2)驗(yàn)證假設(shè):人為干擾區(qū)(開(kāi)墾區(qū))嚙齒動(dòng)物群落中r-對(duì)策者占據(jù)優(yōu)勢(shì),未干擾區(qū)(未開(kāi)墾區(qū))以K-對(duì)策者為主;(3)依據(jù)嚙齒動(dòng)物群落中不同生態(tài)對(duì)策種群的數(shù)量組成來(lái)判斷群落所受干擾的程度。結(jié)果表明,開(kāi)墾干擾降低了嚙齒動(dòng)物群落多樣性,改變了群落中不同生態(tài)對(duì)策種群的數(shù)量組成,種群以r-對(duì)策者為優(yōu)勢(shì);未開(kāi)墾區(qū)嚙齒動(dòng)物群落中以K-對(duì)策種群為主。開(kāi)墾區(qū)嚙齒動(dòng)物群落受到嚴(yán)重干擾。
嚙齒動(dòng)物群落; 干擾; 生態(tài)對(duì)策; 生物多樣性; 荒漠
嚙齒動(dòng)物是功能相對(duì)脆弱的荒漠生態(tài)系統(tǒng)中的重要成分,由于其種類(lèi)多,數(shù)量相對(duì)較高,食性多樣,在食物網(wǎng)結(jié)構(gòu)中成為重要的次級(jí)生產(chǎn)者和消費(fèi)者,是草原環(huán)境與其相互依存、相互作用的進(jìn)化產(chǎn)物[1]。此外,由于嚙齒動(dòng)物具有較強(qiáng)的繁殖力及其群落對(duì)干擾快速響應(yīng)的能力[2],使其成為評(píng)估環(huán)境的重要指示物種[3- 4]。因此,研究嚙齒動(dòng)物群落對(duì)外部干擾的響應(yīng)機(jī)制及其群落中主要種群生態(tài)對(duì)策的格局變動(dòng),對(duì)于認(rèn)識(shí)荒漠區(qū)生物多樣性變化及荒漠生態(tài)系統(tǒng)功能的維持具有重要意義。
種群生態(tài)對(duì)策一般分為r-對(duì)策和K-對(duì)策。r-對(duì)策者具有壽命短、體型小、繁殖力強(qiáng)的特點(diǎn),而K-對(duì)策者與之相反,相對(duì)壽命長(zhǎng)、體型大、繁殖力弱。r-/K-選擇認(rèn)為,在具有非密度制約死亡的不穩(wěn)定環(huán)境中,r-對(duì)策者要比K-對(duì)策者更加適應(yīng)生存[5- 6]。因此,群落中不同生態(tài)對(duì)策者的數(shù)量組成是判斷群落所受干擾程度的重要依據(jù)。
開(kāi)墾對(duì)天然草地是一種重要的干擾,已有研究表明,開(kāi)墾不僅降低土壤有機(jī)質(zhì)含量[7- 8],改變草地原有的理化性狀[9- 10],而且可以直接導(dǎo)致動(dòng)物生境改變[11- 12],對(duì)動(dòng)植物群落產(chǎn)生強(qiáng)烈影響[13- 14]。目前,國(guó)內(nèi)已有關(guān)于草地或荒漠區(qū)開(kāi)墾對(duì)嚙齒動(dòng)物群落影響的相關(guān)研究,并取得了重要成果[14- 17]。但有關(guān)荒漠嚙齒動(dòng)物群落對(duì)開(kāi)墾干擾的響應(yīng)以及群落中種群的生態(tài)對(duì)策等方面的研究較少。2006—2011年,在內(nèi)蒙古阿拉善荒漠區(qū),采用標(biāo)志重捕法研究了未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落的變化過(guò)程,目的(1)明確開(kāi)墾干擾下嚙齒動(dòng)物群落結(jié)構(gòu)時(shí)間尺度變化;(2)驗(yàn)證假設(shè):人為干擾區(qū)(開(kāi)墾區(qū))嚙齒動(dòng)物群落中r-對(duì)策者占據(jù)優(yōu)勢(shì),未干擾區(qū)(未開(kāi)墾區(qū))以K-對(duì)策者為主;(3)依據(jù)嚙齒動(dòng)物群落中不同生態(tài)對(duì)策者的數(shù)量組成來(lái)判斷群落所受干擾的程度。
研究區(qū)(104°10′—105°30′E,37°24′—38°25′N(xiāo))位于內(nèi)蒙古阿拉善左旗南部的荒漠景觀中,地處騰格里沙漠東緣。氣候?yàn)榈湫偷拇箨懶愿咴瓪夂?。年降水?5—215mm,主要集中在7—9月。年蒸發(fā)量3000—4000mm。土壤為灰漠土和灰棕土。草場(chǎng)類(lèi)型屬于溫性荒漠類(lèi)型,植被稀疏,結(jié)構(gòu)單調(diào),以旱生、超旱生和鹽生的灌木、小灌木、半灌木和小半灌木為主。建群種以藜科(Chenopodiaceae)、菊科(Compositae)和蒺藜科(Zygophyllaceae)植物為主。在此本底植被條件下,依據(jù)該地區(qū)的草地利用方式,選擇未開(kāi)墾區(qū)和開(kāi)墾區(qū)2種生境作為取樣樣區(qū)[18]。
(1)未開(kāi)墾區(qū) 面積206.6 hm2,1997年開(kāi)始禁牧。植物群落建群種為紅砂(Reaumuriasoongorica)、珍珠豬毛菜(Salsolapasserina),其次為霸王(Zygophyllumpterocarpum)、駝絨藜(Ceratoideslatens)、狹葉錦雞兒(Caraganastenophylla)、黑沙蒿(Artemisiaordosica)等小灌木,草本優(yōu)勢(shì)種為白草(Pennisetumflaecidum),其次為糙隱子草(Cleistogenessquarosa),伴生植物有霧冰藜(Bassiadasyphylla)等,植被蓋度約為29.5%。
(2)開(kāi)墾區(qū) 面積180 hm2,1994年開(kāi)墾,原生植被與未開(kāi)墾區(qū)類(lèi)似。開(kāi)墾后植被以人工種植的梭梭(Haloxylonammodendron)、沙拐棗(Calligonummongolicum)和花棒(Hedysarumscoparium)等喬、灌木和多年生草本紫花苜蓿(Medicagosativa)等為主,伴生植物有1年生霧冰藜等,植被蓋度約65%。
2.1 動(dòng)物取樣
分別選擇2個(gè)未開(kāi)墾區(qū)和2個(gè)開(kāi)墾區(qū),在每個(gè)區(qū)中心建立1個(gè)固定的標(biāo)志重捕樣地,樣地面積1 hm2。方格式布放活捕籠(42 cm × 17 cm × 13cm),行距15m,籠距15m,以新鮮花生米為誘餌[18]。2006—2011年每年4—10月上旬進(jìn)行數(shù)據(jù)采集,每次連捕4 d,每天上下午各查籠1次,記錄每個(gè)捕獲個(gè)體的種名、編號(hào)、性別、體重、繁殖狀況及捕獲位置。為避免動(dòng)物因熱死亡,6—8月上旬在11:00—15:30關(guān)籠。以年平均百籠捕獲率統(tǒng)計(jì)物種種群數(shù)量。
2.2 數(shù)據(jù)分析
2.2.1 多樣性指數(shù)
統(tǒng)計(jì)不同樣地內(nèi)嚙齒動(dòng)物種數(shù)及各物種的捕獲數(shù)據(jù),并計(jì)算多樣性指標(biāo):
物種豐盛度
S
(1)
Shannon-Wiener指數(shù)
(2)
Pielou 均勻性指數(shù)
E=H/lnS
(3)
(4)
式中,S為物種數(shù),Pi為第i種個(gè)體在總個(gè)體中所占比例。
2.2.2 豐富度-生物量比較法(ABC曲線(xiàn))及W統(tǒng)計(jì)
依據(jù)Connell[19]的中度干擾假說(shuō)和Huston[20]的物種多樣性廣義假說(shuō),Warwick[21]提出豐富度-生物量比較法(ABC曲線(xiàn)),該方法具有r-/K-選擇的經(jīng)典進(jìn)化論背景,在Lambshead與Shaw[22]K-優(yōu)勢(shì)曲線(xiàn)的基礎(chǔ)上發(fā)展而來(lái),用以評(píng)估群落受干擾的程度。ABC曲線(xiàn)是以群落中各種群豐富度及生物量的累積優(yōu)勢(shì)為縱坐標(biāo),以群落中物種排序的對(duì)數(shù)轉(zhuǎn)換值為橫坐標(biāo)繪制得出的曲線(xiàn)。該方法主要描述3種理想狀態(tài):(1)無(wú)干擾,生物量曲線(xiàn)位于豐富度曲線(xiàn)上方;(2)適度干擾,生物量曲線(xiàn)比較接近并且相交一次或多次;(3)重度干擾,豐富度曲線(xiàn)位于生物量曲線(xiàn)上方。Clarke[23]提出了針對(duì)ABC曲線(xiàn)的W統(tǒng)計(jì),計(jì)算公式為:
式中,S為群落中物種數(shù),bj為按照生物量從高到低排序時(shí)前j個(gè)物種的累積生物量比例;aj為按照豐富度從高到低排序時(shí)前j個(gè)物種的累積豐富度比例。當(dāng)W逐漸接近1時(shí), 表示群落生物量?jī)?yōu)勢(shì)逐漸由單一物種所統(tǒng)治,但各物種的豐富度趨于相同;當(dāng)W逐漸接近-1時(shí),情況剛好相反。
2.2.3 差異性檢驗(yàn)
為了評(píng)估未開(kāi)墾與開(kāi)墾區(qū)之間嚙齒動(dòng)物群落的差異,將年份作為隨機(jī)因素對(duì)多樣性指標(biāo)及W統(tǒng)計(jì)值在混合效應(yīng)模型中進(jìn)行了差異性檢驗(yàn)。所有分析用SAS9.2軟件完成,顯著水平為α=0.05,應(yīng)用Dunnett′st檢驗(yàn)進(jìn)行均值比較。
3.1 群落結(jié)構(gòu)
2006—2011年共布放活捕籠9408籠日,捕獲嚙齒動(dòng)物3科6屬7種(表1),其中跳鼠科(Dipodidae)2種,包括:三趾跳鼠(Dipussagitta)和五趾跳鼠(Allactagasibirica);倉(cāng)鼠科(Cricetidae)4種,包括:子午沙鼠(Merionesmeridianus),長(zhǎng)爪沙鼠(Merionesunguiculatus),小毛足鼠(Phodopusroborovskii)和黑線(xiàn)倉(cāng)鼠(Cricetulusbarabensis);松鼠科(Sciuridae)1種為:阿拉善黃鼠(Spermophilusalaschanicus)。研究期間,未開(kāi)墾區(qū)捕獲嚙齒動(dòng)物7種,優(yōu)勢(shì)鼠種為三趾跳鼠,次優(yōu)勢(shì)種為子午沙鼠;開(kāi)墾區(qū)捕獲嚙齒動(dòng)物5種,優(yōu)勢(shì)鼠種為子午沙鼠。依據(jù)所捕獲嚙齒動(dòng)物的相對(duì)體型大小,繁殖后代數(shù)量,以及壽命長(zhǎng)短將其劃分為K-對(duì)策者與r-對(duì)策者兩種[6],其中阿拉善黃鼠、五趾跳鼠和三趾跳鼠相對(duì)體型較大,繁殖力較弱,壽命較長(zhǎng)為K-對(duì)策者(表2)[24- 28];子午沙鼠、長(zhǎng)爪沙鼠、黑線(xiàn)倉(cāng)鼠和小毛足鼠為r-對(duì)策者。
未開(kāi)墾區(qū)和開(kāi)墾區(qū)r-對(duì)策者和K-對(duì)策者在群落中的捕獲量比例和物種豐盛度見(jiàn)圖1。由圖1可知,未開(kāi)墾區(qū)K-對(duì)策者捕獲量比例顯著高于r-對(duì)策者(Plt;0.05),而開(kāi)墾區(qū)恰相反,r-對(duì)策者捕獲量比例極顯著高于K-對(duì)策者(Plt;0.01);未開(kāi)墾區(qū)中K-對(duì)策者物種數(shù)多于r-對(duì)策者,但差異并不顯著,而開(kāi)墾區(qū)內(nèi)的K-對(duì)策者物種數(shù)顯著低于r-對(duì)策者(Plt;0.01)(圖1)。
表1 未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落結(jié)構(gòu)及捕獲量比例
表2 不同生態(tài)對(duì)策嚙齒動(dòng)物的生物學(xué)特征
圖1 不同對(duì)策者在未開(kāi)墾與開(kāi)墾區(qū)的組成Fig.1 Composition of captured rodents with different bionomic strategies in non-cultivated and cultivated sites圖中“*”表示Plt;0.05,“**”表示Plt;0.01; 均值比較使用Dunnett′s t檢驗(yàn)
3.2 群落多樣性指數(shù)
未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落多樣性指數(shù)變化見(jiàn)圖2。由圖2可知,未開(kāi)墾區(qū)嚙齒動(dòng)物群落Shannon-Wiener指數(shù)及Simpson指數(shù)最低值出現(xiàn)在2009年,而開(kāi)墾區(qū)這兩個(gè)指數(shù)的最低值出現(xiàn)在2010年。未開(kāi)墾區(qū)的Pielou均勻性指數(shù)在2008年最低,而開(kāi)墾區(qū)這一指數(shù)的最低值出現(xiàn)在2008和2010年(圖2)。方差分析表明,未開(kāi)墾區(qū)的嚙齒動(dòng)物群落物種數(shù)、Shannon-Wiener指數(shù)和Simpson指數(shù)均顯著高于開(kāi)墾區(qū)(Plt;0.05),但均勻性指數(shù)差異不顯著(表3)。
圖2 2006—2010未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落多樣性指數(shù)Fig.2 Rodent community diversity indices between non-cultivated and cultivated treatments from 2006 to 2010
多樣性指數(shù)Diversityindex未開(kāi)墾Nocultivation開(kāi)墾CultivationSEMFP豐盛度Richness(S)5.503.500.2930.000.01Shannon-Wiener指數(shù)(H)1.140.760.0816.010.01Pielou均勻性指數(shù)Pielouevennessindex(E)0.650.560.062.940.15Simpson指數(shù)(D)0.620.450.068.920.03
當(dāng)Plt;0.05為差異顯著,Dunnett′st檢驗(yàn)進(jìn)行均值比較; SEM表示均值標(biāo)準(zhǔn)誤
3.3 群落的ABC曲線(xiàn)及W統(tǒng)計(jì)
未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落豐富度與生物量累積優(yōu)勢(shì)曲線(xiàn)見(jiàn)圖3和圖4。由圖3可知,未開(kāi)墾區(qū)嚙齒動(dòng)物群落在2006年與2010年的生物量累積優(yōu)勢(shì)大于豐富度累積優(yōu)勢(shì),表明該區(qū)嚙齒動(dòng)物群落未受到干擾,生物量由少數(shù)物種主導(dǎo)(圖3)。其余年份未開(kāi)墾區(qū)生物量累積優(yōu)勢(shì)曲線(xiàn)均與豐富度累積優(yōu)勢(shì)曲線(xiàn)接近和相交,表明該區(qū)嚙齒動(dòng)物群落受到適度干擾(圖3)。
圖3 2006—2011年未開(kāi)墾區(qū)嚙齒動(dòng)物群落豐富度與生物量累積優(yōu)勢(shì)曲線(xiàn)Fig.3 Cumulative dominance curves on abundance and biomass of rodent communities in non-cultivated sites from 2006 to 2011
由圖4可知,開(kāi)墾區(qū)2007年嚙齒動(dòng)物群落豐富度累積優(yōu)勢(shì)曲線(xiàn)與生物量累積優(yōu)勢(shì)曲線(xiàn)較為接近,但其仍處于生物量累積優(yōu)勢(shì)曲線(xiàn)上方; 2010年嚙齒動(dòng)物群落豐富度累積優(yōu)勢(shì)大于生物量累積優(yōu)勢(shì),與其他年份相反。上述結(jié)果表明,除2010年外,其他年份開(kāi)墾區(qū)均處于過(guò)度干擾過(guò)程,群落中種群數(shù)量由少數(shù)物種主導(dǎo)。
未開(kāi)墾與開(kāi)墾區(qū)嚙齒動(dòng)物群落的W統(tǒng)計(jì)見(jiàn)圖5。未開(kāi)墾區(qū)各年W統(tǒng)計(jì)值均大于0,而開(kāi)墾區(qū)除2010年大于0之外,其余年份均小于0(圖 5)。差異分析可知,未開(kāi)墾區(qū)的W統(tǒng)計(jì)值顯著大于開(kāi)墾區(qū)(Plt;0.05),表明非開(kāi)墾區(qū)具有較高的豐富度多樣性及較低的生物量多樣性,是非干擾群落,開(kāi)墾區(qū)具有較低的豐富度多樣性及較高的生物量多樣性,為重度干擾群落。
圖4 2006—2011年開(kāi)墾區(qū)嚙齒動(dòng)物群落豐富度與生物量累積優(yōu)勢(shì)曲線(xiàn)Fig.4 Cumulative dominance curves on abundance and biomass of rodent communities in cultivated sites from 2006 to 2011
圖5 2006—2011年未開(kāi)墾與開(kāi)墾區(qū)中嚙齒動(dòng)物群落的W統(tǒng)計(jì) Fig.5 W-statistic for rodent communities in non-cultivated and cultivated sites from 2006 to 2011*表示Plt;0.05; 均值比較使用Dunnett′s t檢驗(yàn)
4.1 群落結(jié)構(gòu)與多樣性
關(guān)于群落結(jié)構(gòu)及其多樣性,有多種假說(shuō)對(duì)其進(jìn)行了解釋。Paine的捕食假說(shuō)認(rèn)為,局域動(dòng)物的物種多樣性與該系統(tǒng)內(nèi)捕食者的數(shù)量,以及它們阻止單一獵物壟斷重要資源的效率有關(guān)[29]。即某一物種獨(dú)占適宜生境的效率受捕食者的制約。Soykan與Sabo的研究表明,生產(chǎn)力越高的棲息地將支持更多的捕食者,而捕食者的增多顯然會(huì)抑制獵物中的某一種獨(dú)占環(huán)境資源的速率,進(jìn)而增加獵物的多樣性[30]。但其研究所謂的高生產(chǎn)力棲息地未涉及到頻繁的人為干擾。本研究中生產(chǎn)力較高的開(kāi)墾區(qū)卻具有較低的嚙齒動(dòng)物群落多樣性,可能是由于頻繁的農(nóng)事干擾使捕食者較少出現(xiàn)所導(dǎo)致。從群落結(jié)構(gòu)來(lái)看,開(kāi)墾干擾降低了嚙齒動(dòng)物群落的物種豐盛度、Shannon-Wiener指數(shù)及Simpson指數(shù),使得動(dòng)物的棲息生境趨于破碎化,在較大的時(shí)間尺度上動(dòng)物種類(lèi)趨于減少,群落結(jié)構(gòu)也趨于簡(jiǎn)單,系統(tǒng)更加脆弱,而未開(kāi)墾區(qū)卻相反。武曉東等曾對(duì)同一區(qū)域的嚙齒動(dòng)物研究發(fā)現(xiàn),未開(kāi)墾區(qū)嚙齒動(dòng)物物種數(shù)略低于開(kāi)墾區(qū)[18]。主要由于時(shí)間尺度(3a)和空間尺度(40 hm2)與本研究的差異所致。
Downes 等的棲息地異質(zhì)性假說(shuō)認(rèn)為,棲息地結(jié)構(gòu)在局部尺度上調(diào)節(jié)物種多樣性,復(fù)雜的棲息地通常與較高的物種豐富度有關(guān)[31]。大多數(shù)支持該假說(shuō)的研究都以植物群落的物理結(jié)構(gòu)充當(dāng)動(dòng)物棲息地的本底[12, 32- 33],雖然有大量的實(shí)例證明棲息地異質(zhì)性假說(shuō)[31,34],但也有一些研究表明棲息地異質(zhì)性的增加會(huì)導(dǎo)致物種多樣性的下降[35- 36]。Tew等在這兩種相互矛盾結(jié)論的基礎(chǔ)上提出了關(guān)鍵結(jié)構(gòu)假說(shuō),認(rèn)為生物多樣性在具有關(guān)鍵結(jié)構(gòu)的生態(tài)系統(tǒng)中要比在復(fù)雜結(jié)構(gòu)生態(tài)系統(tǒng)中更為脆弱,關(guān)鍵結(jié)構(gòu)的喪失或質(zhì)量下降會(huì)造成物種多樣性的衰減[37]。從結(jié)構(gòu)的復(fù)雜性來(lái)看,本研究中開(kāi)墾區(qū)由于植物種類(lèi)相對(duì)單一,植被的物理結(jié)構(gòu)復(fù)雜性顯然要低于未開(kāi)墾區(qū),而開(kāi)墾干擾形成的較高植被蓋度,縱橫交錯(cuò)的灌渠及道路顯然不適合喜歡開(kāi)闊生境,活動(dòng)范圍較大的跳鼠生存[38]。因此,開(kāi)墾區(qū)一些關(guān)鍵結(jié)構(gòu)的喪失,造成了群落多樣性的降低。
無(wú)論是捕食者假說(shuō)還是棲息地異質(zhì)性假說(shuō),理論依據(jù)均著重于動(dòng)物群落本身的外因,沒(méi)有真正解釋群落內(nèi)部物種自身受到何種程度影響而形成現(xiàn)有群落格局的內(nèi)因。Huston 在這些假說(shuō)的基礎(chǔ)上提出了非平衡假說(shuō)[20],這一假說(shuō)用競(jìng)爭(zhēng)種群的增長(zhǎng)率及替代速率來(lái)解釋群落多樣性格局。該假說(shuō)認(rèn)為,大多數(shù)群落處于非平衡態(tài),在這一狀態(tài)中種群的周期減少和環(huán)境的波動(dòng)阻止了競(jìng)爭(zhēng)平衡,從而形成一個(gè)穩(wěn)定的多樣性水平,競(jìng)爭(zhēng)者種群的增長(zhǎng)率增加通常會(huì)導(dǎo)致多樣性下降。本研究子午沙鼠1a繁殖2—3次,平均胎仔數(shù)6.2(表2),種群增長(zhǎng)大于每年繁殖1次的三趾跳鼠,而且子午沙鼠與三趾跳鼠存在空間生態(tài)位重疊,二者在同一生境中存在競(jìng)爭(zhēng)[39],加之開(kāi)墾區(qū)的低捕食壓力以及跳鼠生境關(guān)鍵結(jié)構(gòu)的喪失,也間接有利于子午沙鼠的種群增長(zhǎng)。因此,外因與內(nèi)因的共同作用導(dǎo)致了開(kāi)墾區(qū)較低的嚙齒動(dòng)物群落多樣性。
4.2 種群的生態(tài)對(duì)策及群落干擾程度
種群生態(tài)對(duì)策問(wèn)題是近代生態(tài)學(xué)研究倍受關(guān)注的理論熱點(diǎn)和難點(diǎn)[40]。比較經(jīng)典的生態(tài)學(xué)對(duì)策當(dāng)屬r-對(duì)策和K-對(duì)策[5- 6]?;趓-對(duì)策和K-對(duì)策理論,生活在干擾棲息地中的種群會(huì)在數(shù)量的成倍增長(zhǎng)上投入較多能量,從而可以快速的占據(jù)棲息地。因此,在非密度制約死亡的不穩(wěn)定環(huán)境中,r-對(duì)策者為優(yōu)勢(shì),而較高的物種豐盛度會(huì)促進(jìn)K-選擇[41]。本研究未開(kāi)墾區(qū)K-對(duì)策者占優(yōu)勢(shì),開(kāi)墾區(qū)r-對(duì)策者占優(yōu)勢(shì),K-對(duì)策者均具有冬眠習(xí)性,r-對(duì)策者則不具備這一特點(diǎn)。冬眠可使嚙齒動(dòng)物在嚴(yán)酷的自然環(huán)境中明顯提高存活率[42- 43],從而延長(zhǎng)壽命。此外,ABC曲線(xiàn)和W統(tǒng)計(jì)結(jié)果也表明,未開(kāi)墾區(qū)嚙齒動(dòng)物群落中種群數(shù)量?jī)?yōu)勢(shì)被多個(gè)物種所主導(dǎo),而生物量?jī)?yōu)勢(shì)被個(gè)別物種占據(jù),即K-對(duì)策者在群落中占據(jù)優(yōu)勢(shì),群落處于未受干擾或適度干擾程度;開(kāi)墾區(qū)嚙齒動(dòng)物群落中種群數(shù)量?jī)?yōu)勢(shì)被少數(shù)物種所主導(dǎo),而生物量?jī)?yōu)勢(shì)被多個(gè)物種占據(jù),因此群落中r-對(duì)策者為優(yōu)勢(shì),表明群落受到了嚴(yán)重干擾。
武曉東等用敏感性反應(yīng)來(lái)描述荒漠區(qū)嚙齒動(dòng)物群落在不同人為干擾下優(yōu)勢(shì)種的替代現(xiàn)象,得出不同嚙齒動(dòng)物種對(duì)不同干擾的敏感性差異[14,18]。但未對(duì)敏感性反應(yīng)機(jī)制做出進(jìn)一步解釋。依據(jù)本研究對(duì)未開(kāi)墾和開(kāi)墾區(qū)嚙齒動(dòng)物群落中種群生態(tài)對(duì)策的劃分結(jié)果,開(kāi)墾干擾下K-對(duì)策者在群落中比例顯著下降,表明開(kāi)墾干擾不適合K-選擇物種生存,即K-對(duì)策者是開(kāi)墾干擾的敏感者。但本研究中開(kāi)墾干擾同樣使r-對(duì)策者小毛足鼠數(shù)量減少,甚至從開(kāi)墾區(qū)消失,就其生態(tài)生物學(xué)特性來(lái)看,小毛足鼠全年主要以植物種子為食[44],生境中多種不同結(jié)實(shí)期的植物種子會(huì)延長(zhǎng)小毛足鼠的食物利用期。開(kāi)墾區(qū)植被單一,種子成熟時(shí)間相對(duì)集中,不利于活動(dòng)范圍較小的小毛足鼠全年食物獲取。此外,小毛足鼠體型較小,挖掘能力有限[45],更適宜于在松軟的沙質(zhì)環(huán)境中生存[27],而開(kāi)墾區(qū)相對(duì)較少的沙質(zhì)環(huán)境也可能是其分布的限制因子之一。因此短期來(lái)看,具有不同生活史對(duì)策的物種對(duì)環(huán)境變化采取了不同的行為響應(yīng),能夠快速適應(yīng)環(huán)境變化的物種繼續(xù)留存,而另一些物種由于遇到其進(jìn)化史中未遇到的人為干擾采取了非適應(yīng)響應(yīng)[46],通過(guò)遷出或死亡而減少非適宜生境中種群數(shù)量或滅絕[47],非適應(yīng)響應(yīng)導(dǎo)致了物種分布、多樣性和群落格局的變化。長(zhǎng)期來(lái)看,個(gè)體通過(guò)非適應(yīng)響應(yīng)選擇是否在變化的環(huán)境中存活或繁殖,變化的環(huán)境又反過(guò)來(lái)影響了物種進(jìn)化過(guò)程,進(jìn)而影響其對(duì)生活史特性的選擇[48]。嚙齒動(dòng)物是環(huán)境變化的重要指示者之一[4],嚙齒動(dòng)物群落受外因擾動(dòng)后的變化程度及其不同生態(tài)對(duì)策者在荒漠生態(tài)系統(tǒng)中的功能與作用,是進(jìn)一步研究人為干擾下嚙齒動(dòng)物群落和荒漠生態(tài)系統(tǒng)穩(wěn)定性需要探討的重要問(wèn)題。
綜上所述,本研究開(kāi)墾干擾降低了嚙齒動(dòng)物群落多樣性,改變了群落中不同生態(tài)對(duì)策者的數(shù)量組成,并且使群落處于重度干擾過(guò)程。人為干擾生境(開(kāi)墾區(qū))嚙齒動(dòng)物群落中物種以r-對(duì)策者為優(yōu)勢(shì),未干擾生境(未開(kāi)墾區(qū))群落中物種以K-對(duì)策者為主。
致謝: 內(nèi)蒙古農(nóng)業(yè)大學(xué)研究生鄂晉、吉晟男、韓艷靜等對(duì)野外數(shù)據(jù)收集給予幫助;野外工作同時(shí)也得到了內(nèi)蒙古阿拉善盟草原站的幫助;加拿大半干旱農(nóng)業(yè)研究中心的B. Biligetu博士潤(rùn)色英文摘要;內(nèi)蒙古農(nóng)業(yè)大學(xué)高福光博士,李元恒博士以及澳大利亞陳超博士幫助查詢(xún)文獻(xiàn),特此致謝。
[1] Zhong W Q. Role and management of rodent in grassland ecosystem. Bulletin of Biology, 2008, 43(1):1- 3.
[2] Clark B K, Kaufman D W, Finck E J, Kaufman G A. Small mammals in tall-grass prairie: Patterns associated with grazing and burning. Prairie Naturalist, 1989, 21(4): 177- 184.
[3] Dale V H, Beyeler S C. Challenges in the development and use of ecological indicators. Ecological Indicators, 2001, 1(1): 3- 10.
[4] Leis S A, Leslie D M, Engle D M, Fehmi J S. Small mammals as indicators of short-term and long-term disturbance in mixed prairie. Environmental Monitoring and Assessment, 2008, 137(1/3): 75- 84.
[5] MacArthur R H, Wilson E O. The Theory of Island Biogeography. Princeton N J: Princeton University Press,1967.
[6] Pianka E R. On r and K selection. American Naturalist, 1970, 104(940): 592- 597.
[7] Aguilar R, Kelly E F, Heil R D. Effects of cultivation on soils in northern great plains rangeland. Soil Science Society of America Journal, 1988, 52(4): 1081- 1085.
[8] Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 1993, 20(3): 161- 193.
[9] Jiao Y, Zhao J H, Xu Z. Effects of a conversion from grassland to cropland on soil physical-chemical properties in the agro-pastoral ecotone of Inner Mongolia: analysis of a 50-year chronosequence. Ecology and Environmental Sciences, 2009, 18(5):1965- 1970.
[10] Zhang W L, Chen S P, Miao H X, Lin G H. Effects on carbon flux of conversion of grassland steppe to cropland in China. Journal of Plant Ecology, 2008, 32(6):1103- 1110.
[11] Jepsen J U, Topping C J, Odderskr P, Andersen P N. Evaluating consequences of land-use strategies on wildlife populations using multiple-species predictive scenarios. Agriculture, Ecosystems and Environment, 2005, 105(4):581- 594.
[12] Benton T G, Vickery J A, Wilson J D. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 2003, 18(4): 182- 188.
[13] Jin X X, Zhang D M. Rodent Community Structure and Species Diversity Analysis in Mosuowan Reclamation. Chinese Journal of Zoology, 2005, 40(6): 30- 37.
[14] Wu X D, A J, Fu H P, Jin H. Desert rodent communities patterns under different disturbances: the canonical correlation analysis of rodent and plant communities. Acta Ecologica Sinica, 2008, 28(12):6000- 6017.
[15] Zhang D M, Aniwar, Jiang T, Jian Y L. Analysis of the rodent community diversity and species variation in the Junggar Basin. Chinese Biodiversity, 1998, 6(2): 92- 98.
[16] Liu J K, Liang J R, Sha Q. The community and biomass change in rodents under the condition of reclaiming the desert into farmland in Nomhon, Qinghai province. Acta Zoologica Sinica, 1979, 25(3):260- 267.
[17] Fu H P, Wu X D, Yang Z L. Diversity of small mammals communities at different habitats in Alashan region,Inner Mongolia. Acta Theriologica Sinica, 2005, 25(1):32- 38.
[18] Wu X D, Fu H P. Fluctuations and patterns of desert rodent communities under human disturbance: the fluctuating tendency and the sensitive response of their population. Acta Ecologica Sinica, 2006, 26(3):849- 861.
[19] Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199(4335): 1302- 1310.
[20] Huston M. A general hypothesis of species diversity. The American Naturalist, 1979, 113(1): 81- 101.
[21] Warwick R M. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology, 1986, 92(4): 557- 562.
[22] Lambshead P J D, Platt H M, Shaw K M. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. Journal of Natural History, 1983, 17(6): 859- 874.
[23] Clarke K R. Comparisons of dominance curves. Journal of Experimental Marine Biology and Ecology, 1990, 138(1/2): 143- 157.
[24] Lu H Q, Ma Y, Zhao G Z. Prediction and Management of Rodent Pest. Beijing: Agricultural Publishing House, 1988: 32- 59.
[25] Hang W J, Xu S J. Rodents and Lagomorphs of China. Shanghai: Fudan University Press, 1995:99- 267.
[26] Zhang Z B, Wang Z W. Ecology and Management of Rodent Pest in Agriculture. Beijing: China Ocean Press, 1998:22- 23.
[27] Wu X D, Fu H P, Yang Z L. Researches on Rodents in Semi-Desert and Desert in China. Beijing: Science Press, 2009: 48- 73.
[28] Ma Y, Wang F G, Jin S K, Li S H. Glires (Rodents and Lagomorphs) of Northern Xinjiang and Their Zoogeographical Distribution, China. Beijing: Science Press, 1987:228- 230.
[29] Paine R T. Food web complexity and species diversity. American Naturalist, 1966,100(910): 65- 75.
[30] Soykan C U, Sabo J L. Spatiotemporal food web dynamics along a desert riparian-upland transition. Ecography, 2009, 32(2): 354- 368.
[31] Downes B J, Lake P S, Schreiber E S G, Glaister A. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs, 1998, 68(2): 237- 257.
[32] Murdoch W W, Evans F C, Peterson C H. Diversity and pattern in plants and insects. Ecology, 1972, 53 (3): 819- 829.
[33] Sullivan T P, Sullivan D S, Lindgren P M F. Influence of repeated fertilization and cattle grazing on forest ecosystems: Abundance and diversity of forest-floor small mammals. Forest Ecology and Management, 2012, 277: 180- 195.
[34] Riojas-López M E. Response of rodent assemblages to change in habitat heterogeneity in fruit-oriented nopal orchards in the Central High Plateau of Mexico. Journal of Arid Environments, 2012, 85: 27- 32.
[35] Ralph C J. Habitat association patterns of forest and steppe birds of Northern Patagonia, Argentina. The Condor, 1985, 87(4): 471- 483.
[36] Sullivan T P, Sullivan D S, Lindgren P M F. Influence of variable retention harvests on forest ecosystems. II. Diversity and population dynamics of small mammals. Journal of Applied Ecology, 2001, 38(6): 1234- 1252.
[37] Tews J, Brose U, Grimm V, Tielb?rger K, Wichmann M C, Schwager M, Jeltsch F. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 2004, 31(1): 79- 92.
[38] Zhao K T. Studies on ecology ofDipussagittaPallas. Chinese Journal of Zoology, 1964, (2): 59- 62.
[39] Fu H P, Wu X D, Yang Z L. Niche characteristics of rodents by diverse disturbance in Alashan Desert, Inner Mongolia. Acta Ecologica Sinica, 2005, 25(10): 2637- 2643.
[40] Sun R Y. Principles of Animal Ecology. 3rd ed. Beijing: Beijing Normal University Press, 2001:243- 244.
[41] Lipowsky A, Roscher C, Schumacher J, Schmid B. Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation ofTaraxacumofficinaleinto r- and K-Strategists. PLoS ONE, 2012, 7(1): e28121.
[42] Lebl K, Bieber C, Adamík P, Fietz J, Morris P, Pilastro A, Ruf T. Survival rates in a small hibernator, the edible dormouse: a comparison across Europe. Ecography, 2011, 34(4): 683- 692.
[43] Bieber C, Ju?kaitis R, Turbill C, Ruf T. High survival during hibernation affects onset and timing of reproduction. Oecologia, 2012,169(1): 155- 166.
[44] Wan X R, Liu W, Wang G H, Zhong W Q. Food consumption and feeding characters ofPhodopusroborovskiion Hunshandake sandy land of Inner Mongolia. Chinese Journal o f Eco logy, 2007, 26(2); 223- 227.
[45] Wang G H, Zhong W Q, Wan X R. Biological habit of desert hamster in the Hunshandake desert in Inner Mongolia. Chinese Journal of Ecology, 2001, 20(6); 65- 67.
[46] Ghalambor C K, McKay J K, Carroll S P, Reznick D N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments.FunctionalEcology, 2007, 21(3): 394- 407.
[47] Badyaev A V. Stress-induced variation in evolution: from behavioral plasticity to genetic assimilation. Proceedings of the Royal Society of London Series B Biological Sciences, 2005, 272(1566):877- 886.
[48] Tuomainen U, Candolin U. Behavioral responses to human-induced environmental change. Biological Reviews, 2011, 86(3): 640- 657.
參考文獻(xiàn):
[1] 鐘文勤. 嚙齒動(dòng)物在草原生態(tài)系統(tǒng)中的作用與科學(xué)管理.生物學(xué)通報(bào), 2008,43(1):1- 3.
[9] 焦燕, 趙江紅, 徐柱. 農(nóng)牧交錯(cuò)帶開(kāi)墾年限對(duì)土壤理化特性的影響.生態(tài)環(huán)境學(xué)報(bào), 2009,18(5):1965- 1970.
[10] 張文麗, 陳世蘋(píng), 苗海霞, 林光輝. 開(kāi)墾對(duì)克氏針茅草地生態(tài)系統(tǒng)碳通量的影響.植物生態(tài)學(xué)報(bào), 2008,32(6):1103- 1110.
[13] 靳新霞, 張大銘. 莫索灣墾區(qū)嚙齒動(dòng)物群落結(jié)構(gòu)與物種多樣性分析. 動(dòng)物學(xué)雜志, 2005,40(6): 30- 37.
[14] 武曉東, 阿娟, 付和平, 金珩. 人為不同干擾條件下荒漠嚙齒動(dòng)物群落格局的動(dòng)態(tài)特征——?jiǎng)游锱c植物群落的典型相關(guān)分析. 生態(tài)學(xué)報(bào), 2008,28(12):6000- 6017.
[15] 張大銘, 艾尼瓦爾, 姜濤, 蹇友里. 準(zhǔn)噶爾盆地嚙齒動(dòng)物群落多樣性與物種變化的分析. 生物多樣性, 1998, 6(2): 92- 98.
[16] 劉季科, 梁杰榮, 沙渠. 諾木洪荒漠墾植后農(nóng)田鼠類(lèi)群落和生物量的變化. 動(dòng)物學(xué)報(bào), 1979, 25(3):260- 267.
[17] 傅和平, 武曉東, 楊澤龍. 阿拉善地區(qū)不同生境小型獸類(lèi)群落多樣性研究. 獸類(lèi)學(xué)報(bào), 2005, 25(1):32- 38.
[18] 武曉東, 付和平. 人為干擾下荒漠嚙齒動(dòng)物群落格局——變動(dòng)趨勢(shì)與敏感性反應(yīng). 生態(tài)學(xué)報(bào), 2006, 26(3): 849- 861.
[24] 盧浩泉, 馬勇, 趙桂芝. 害鼠的分類(lèi)測(cè)報(bào)與防治. 北京:農(nóng)業(yè)出版社,1988: 32- 59.
[25] 黃文幾, 徐士菊. 中國(guó)嚙齒類(lèi). 上海:復(fù)旦大學(xué)出版社,1995:99- 267.
[26] 張知彬, 王祖望. 農(nóng)業(yè)重要害鼠的生態(tài)學(xué)及控制對(duì)策. 北京:海洋出版社,1998:22- 23.
[27] 武曉東, 付和平, 楊澤龍. 中國(guó)典型半荒漠與荒漠區(qū)嚙齒動(dòng)物研究.北京:科學(xué)出版社, 2009: 48- 73.
[28] 馬勇,王逢貴,金善科,李思華.新疆北部地區(qū)嚙齒動(dòng)物的分類(lèi)和分布.北京:科學(xué)出版社,1987: 228- 230.
[38] 趙肯堂. 三趾跳鼠(DipussagittaPallas)的生態(tài)研究. 動(dòng)物學(xué)雜志, 1964, (2): 59- 62.
[39] 付和平,武曉東,楊澤龍. 不同干擾條件下荒漠嚙齒動(dòng)物生態(tài)位特征. 生態(tài)學(xué)報(bào),2005, 25(10): 2637- 2643.
[40] 孫儒泳. 動(dòng)物生態(tài)學(xué)原理 (第三版). 北京: 北京師范大學(xué)出版社, 2001:243- 244.
[44] 宛新榮,劉偉,王廣和,鐘文勤. 渾善達(dá)克沙地小毛足鼠的食量與食性動(dòng)態(tài). 生態(tài)學(xué)雜志, 2007, 26(2): 223- 227.
[45] 王廣和, 鐘文勤, 宛新榮.渾善達(dá)克沙地小毛足鼠的生物學(xué)習(xí)性. 生態(tài)學(xué)雜志, 2001, 20(6); 65- 67.
Responseandpopulationbionomicstrategiesofdesertrodentcommunitiestowardsdisturbanceofcultivation
YUAN Shuai1,2, FU Heping1,2, WU Xiaodong1,2,*, ZHANG Xiaodong1,2, CHA Muha1,2, ZHANG Fushun3, GAN Hongjun4
1CollegeofEcologyandEnvironmentalScience,InnerMongoliaAgriculturalUniversity,Huhhot010019,China2KeyLaboratoryofPratacultureGrasslandResources,MinistryofEducation,Huhhot010019,China3GrasslandResearchInstitute,ChineseAcademyofAgriculturalSciences,Huhhot010010,China4TheGrasslandResearchStationofAlashan,Bayehot750306,China
Cultivation on grassland ecosystem, as one of the greatest disturbance, is well studied. Grassland cultivation, especially in desert region, often results in habitat fragmentation, and subsequently affects plant and animal communities. Under intensive disturbance, the responses of rodent species with different bionomic strategies to environmental change could play a key role in determining structure of their communities. Few literatures on Chinese western desert have focused on the impacts of cultivation on rodents. A study was conducted from 2006 to 2011at cultivated and non-cultivated sites to investigate effect of cultivation on rodent community diversity, community structure with different bionomic strategies, and their population abundance in Alashan, Inner Mongolia, China. We expected that rodents withrstrategy will dominate in cultivated site, whileKstrategists will dominate in non-cultivated site. Rodent communities monitoring using live trapping method showed that cultivation significantly decreased Shannon-Wiener index and Simpson index, but did not affect Pielou evenness index. In the cultivated site, species richness and population abundance of rodents withrstrategy were higher than those ofKstrategy. In non-cultivated site, rodent population abundance was lower forrstrategists thanKstrategists. ABC curve analysis showed that cumulative dominance of species abundance was higher cumulative dominance of species biomass in cultivated site. The results suggested that cultivation had a negative impact on the rodent community diversity, and severely disturbed rodent community, therefore, excluded or decreased rodents withKstrategy. Our results supported our hypothesis that rodents withrstrategy will be dominant in communities in cultivated site.
rodent community; disturbance; bionomic strategies; biodiversity; desert
國(guó)家自然科學(xué)基金項(xiàng)目(30160019,30560028,30760044,31160096)
2012- 11- 28;
2013- 04- 01
*通訊作者Corresponding author.E-mail: wuxiaodong_hgb@163.com
10.5846/stxb201211281691
袁帥,付和平,武曉東,張曉東,查木哈, 張福順,甘紅軍.荒漠嚙齒動(dòng)物群落對(duì)開(kāi)墾干擾的響應(yīng)及其種群生態(tài)對(duì)策.生態(tài)學(xué)報(bào),2013,33(20):6444- 6454.
Yuan S, Fu H P, Wu X D, Zhang X D, Cha M H, Zhang F S, Gan H J.Response and population bionomic strategies of desert rodent communities towards disturbance of cultivation.Acta Ecologica Sinica,2013,33(20):6444- 6454.