• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of Structure Optimization for Engine Exhaust Manifold

    2013-12-07 07:33:23MAOWenqun
    機(jī)床與液壓 2013年1期
    關(guān)鍵詞:熱應(yīng)力設(shè)計(jì)方案塑性

    MAO Wenqun

    Yueyang Hengli Automobile Air-conditioner Co., LTD, Yueyang 414000, China

    DesignofStructureOptimizationforEngineExhaustManifold

    MAO Wenqun*

    YueyangHengliAutomobileAir-conditionerCo.,LTD,Yueyang414000,China

    Crackfailureisoneoftypicalfailuremodesinexhaustmanifoldoftheengine.Inordertofindthefailurecauseandimprovethestructureofexhaustmanifold,thepaperresearchedonstructureoptimizationdesignofengineexhaustmanifold.Inthepaper,itconstructedtheanalyticalmodelofthermalstressofengineexhaustmanifold,researchedonfailuremechanismofmanifoldcrackingundertheconditionofcoldandthermalimpact,basedonreductionofthermalstress,residualstressandplasticstrainforthefocusedpositionofmanifold,andproposedtheoptimaldesignsolutionofexhaustmanifoldstructure.Theanalysisofsimulationexperimentsdemonstratedthatundertheconditionofcoldandthermalloadimpact,foreachindexlocatedatthekeyareasof“V”shapeonmanifold,allthethermalstress,residualstressandplasticstrainarehigherthandesignedlimitationvalue,anditisthemaincauseresultedinmanifoldcrackingfailure.Bymeansofthetechnicalmeasuresuchasreinforced“V”shapeandmakingsubdivisionofconnectionpositionandsoon,itcanimprovethestatusofstressconcentration,andtheexperienceresultsvalidatethatthesolutionofexhaustmanifoldoptimizationdesignisreasonableandeffective.

    exhaustmanifold,temperaturefield,thermalstress,structureoptimization

    Along with ceaseless enhancing of engine performance, also the thermal load of engine key components and parts would be continuously increased[1]. The exhaust manifold is considered as one of main heated parts in engine. In the working process of engine, the exhaust manifold bears very high heating load impact. It is large in temperature difference of inner and outside surface, and it is easy to result in failure of exhaust manifold such as steam leakage, high temperature oxidation, heat fatigue, cracking, and even rupture, and therefore it seriously affects security and reliability of the engine.

    For the orthostichous four-cylinder engine of automobile-used, the temperature generally is the range from 150℃ to 200℃ in the outside surface of exhaust manifold, and its temperature generally is the range from 700℃ to 800℃ in the endocoele of exhaust manifold, and therefore it is necessary to demand of exhaust manifold material for being better in high temperature mechanical properties and service performance. Based on the application experience and data of documents and materials in Dongfeng Co., LTD, China[2], gave respectively the applicable operating temperature range and strength limit of exhaust manifold for over ten sorts of materials such as HT200 and austenitic nodular cast iron and so on. The reference[3] carried on the physicochemical analysis for crack position of exhaust manifold, and taking the advance of fatigue strength and yield limit as the target, and it proposed a series of control measures for the manifold casting process. By means of CFD software and nonlinear analysis software of structures[4-6], it computed the temperature field and thermal stress (thermal deformation) of engine exhaust manifold, and proposed the solution of structure optimization in exhaust manifold. The reference[7] carried on the two-way coupling analysis and made the experimental verification for the temperature field of internal and external flow field in engine exhaust manifold. In the reference[8], the radiation heat transfer and nonlinearity of material are considered. It established the model of CFD&FEA coupling analysis in engine exhaust manifold, and made the experiment of temperature field and strain bench for exhaust manifold. Here it takes a certain type of engine exhaust manifold which appears the cracking many times in the experiment as an example, builds the model of thermal fatigue analysis in exhaust manifold, and researches on the failure mechanism when the engine bench test appears the cracking. It discussed the influence of thermal impact load for the distribution of thermal stress, residual stress and plasticity strain of exhaust manifold. Based on the above analysis result, this paper proposed a sort of improvement solution of exhaust manifold, and made the bench experiment. The test result validated its effectiveness for the optimization solution of exhaust manifold structure.

    1.Crack failure of exhaust manifold

    When the test time arrives at 137 h in the reliability experiment of 500 h the connection position (position of “V”shape) of exhaust manifold appears the cracking failure shown as in Fig.1, and it appears obvious phenomenon of surface oxidation at the position of cracking failure. According to the failure pattern, it can preliminarily judge that the failure is the fatigue break-down of manifold structure resulted in thermal impact load.

    According to the above judgement, the paper only considers the influence of thermal stress, residual stress and plasticity strain for failure of manifold cracking. When it computes the thermal stress of exhaust manifold, it firstly computes the transient internal flow field of exhaust manifold by Fire of 3D CFD software and figures out the heat exchange coefficient of transient convection and ambient temperature of exhaust manifold, and obtains the heat exchange coefficient of transient convection and ambient temperature of exhaust manifold by time average method. Then it computes the inner surface temperature and heat exchange coefficient of exhaust manifold. Finally the temperature of inner surface node is mapped into the finite element model of exhaust manifold structure, and then it computes the temperature field thermal stress of model by means of nonlinear analysis software ABQUS of the structure.

    Fig.1 Crack failure of engine exhaust manifold

    Considering the performance of anti-thermal fatigue and deformation of material under the condition of thermal shock, the exhaust manifold adopts the medium silicon-molybdenum heat resistant nodular cast iron material, and the formula and properties refers to GGV SiMo4.5 in German standard DIN1694-TL047[9]. Under the condition of room temperature (20℃), the tensile strength is 550 MPa, and the yield strength is 470 MPa. And under the condition of high temperature (700℃), it is respectively reduced as 72.7 MPa and 66.4 MPa[10].

    1.1.Innerflowfieldanalysisofexhaustmanifold

    The condition of bench simulation test is as the following. The transient control equation of inner flow field of exhaust manifold adopts compressible N-S equation, the turbulence model adopts standard k-ε model, the wall surface treats in accordance with standard wall surface function, and the catalytic converter adopts porous medium model. Under the above conditions assumed, the control equation of flow and heat-transfer equation is as the following.

    (1)

    In which,ρis the density,φis the generalized variable,Uis the speed,Γφis the generalized diffusion coefficient, andSφis the singular source term.

    Under the condition of the bench test, the test result of exhaust temperature of manifold is shown as in Fig.2, and the highest exhaust temperature is 843℃. The temperature boundary condition of exhaust manifold and wall of three catalytic is shown as in Fig.3. The highest temperature of the internal flow field of the three way catalytic converter reaches to 1 261℃, and the average temperature of exhaust manifold reaches about 1 200℃.

    Fig.2 Temperature of manifold exhaust

    Fig.3 In-wall temperature field and heat exchange coefficient

    1.2.Thermalfatigueanalysisofexhaustmanifold

    The Fig.4 shows the assembly of exhaust manifold and the installing status. The entrance flange of exhaust manifold connects to cylinder cover through ten pieces of M10 screw bolt, and the exhaust manifold connects with three way catalytic converters through three pieces of M10 screw bolt, and the support of three way catalytic converters connects with cylinder body through two pieces of M10 screw bolt. The Fig.5 shows the finite element model of thermal fatigue analysis of exhaust manifold. The exhaust manifold itself adopts C3D10 of Two order tetrahedral elements, and the assembly of three way catalytic converters adopts C3D8 of hexahedron element, and also the simple cylinder and cylinder head model adopt C3D8 of hexahedron element. When it computes it makes constraint for three pieces of translational degree of freedom of cylinder body, four angles of the cylinder head and the bottom surface of cylinder body. The calculation condition simulates the experiment of thermal shock of exhaust shaft. It has to carry through analysis computation of thermal fatigue for the six cycles so as to get the stable thermal strain.

    Fig.4 Status of installing for exhaust manifold

    Fig.5 Finite element model of exhaust manifold

    2.Analysis of computing result

    The Fig.6 is the distribution of temperature field in steady state of exhaust manifold. The highest and lowest temperature is respectively 875℃ and 140℃, and the performance of selected material satisfies the design demand. If the temperature field is mapped into the internal surface of exhaust manifold, then through computing it can obtain the thermal stress of manifold shown as in Fig.7. The biggest thermal stress(516 MPa)of exhaust manifold is respectively located at the corner of airway root 1 and airway root 2, and under the condition of exceeding the room temperature, the yield limit of material probably results in plastic deformation. It is more than 60 MPa to the stress located at the position of manifold“V”shape, and it exceeds 75 MPa in local location. Therefore it exceeds the yield limit (66.4 MPa) of material under the condition of corresponding temperature (700℃), and even it exceeds the ultimate tensile strength (72.7 MPa) of material in local position.

    Fig.6 Temperature field of manifold

    Fig.7 Thermal stress of manifold

    The residual stress after cooling of exhaust manifold is shown as in Fig.8, and the biggest residual stress (756 MPa) presented to the position in“V”shape of manifold exceeds seriously the yield limit and ultimate tensile strength of material under the condition of corresponding temperature (20℃). And at the same time, the plastic strain amplitude (0.495) of exhaust manifold located at the position of “V”shape of manifold is also exceeds the design limit value (0.38) shown as in Fig.9.

    Fig.8 Residual stress of manifold

    Fig.9 Plasticity strain of manifold

    From the above result it can be seen that it puts up better homogeneity in analysis result of thermal stress and residual stress as well as plastic strain of exhaust manifold, and the position of cracking failure of engine exhaust manifold is accordance with that it appears in the bench test shown as in Fig.1. Therefore it can be considered that the thermal fatigue damage, resulted in lack of design in exhaust manifold structure, is to give rise to main cause of cracking failure of engine exhaust manifold. Because it is very sudden, undersize in filleted corner, and poorer in lateral stiffness of exhaust manifold to the connection transition (located at“V”shape position) between air passage of exhaust manifold in the original design, so it leads to that under the condition of temperature load impact the manifold produces a unacceptable stress concentration and finally forms the fissure. Therefore it is necessary to make the structure optimization for the above mentioned position.

    3.Design of structure optimization for exhaust manifold

    The enlargement of chamfer fillet located at“V”shape position of exhaust manifold can buffer its stress concentration. But it can bring about heterogeneous wall thickness and being large in local thickness for exhaust manifold, influence the casting quality of semifinished product, and make the rate of spoiled products in semifinished product increase, so it should keep the filleted corner to be invariant in the V”shape position. The Fig.10 shows the optimal design scheme of exhaust manifold, and it increases a piece of reinforcement between air passage 1 and air passage 4 as well as air passage 2 and air passage 3. And at the same time it heightens the original parting line to form a piece of reinforcement, and strengthens the “V”shape position of exhaust manifold. After increasing the reinforcement at“V”shape position of exhaust manifold, the thermal deformation at“V”shape position of exhaust manifold reduces, and the specific elongation of medium silicon-molybdenum vermicular graphite cast iron is lower than spheroidal graphite cast iron. Therefore it probably bring about the flange deformation enlargement of connected cylinder head, and it is incapable to ensure effective seal between exhaust manifold and cylinder head. So it has to cut off the flange of connected cylinder head and air admission in exhaust manifold from the middle of air passage 2 and air passage 3, and it remains a gap in the middle. The Fig.11 shows the thermal stress of exhaust manifold after structure optimization, and after optimization, it would be reduce by a big margin to the stress of each position of exhaust manifold. Although it exceeds the yield limit under corresponding temperature in local position, but generally it does not appear to exceed the status of tensile strength under corresponding temperature. The maximum thermal stress(520 MPa)produces similarly at the position of root fillet of air passage 1 and air passage 2, compared with original structure, the maximum thermal stress keeps basically the same level. But the stress of connected position (“V”shape position) between air passage of exhaust manifold reduces about 50~60 MPa, and it basically is controlled in the range of material yield limit under corresponding temperature.

    Fig.10 Optimal scheme of manifold structure

    Fig.11 Thermal strain after optimization

    After structure optimization, the residual stress distribution of exhaust manifold (Fig.12) is different from the residual stress distribution of the original structure, the maximum residual stress presents to the root segment of No.1 air passage and No.2 air passage. The maximum value from 756 MPa increases to 805 MPa. Probably it still results in cracking failure, and therefore it needs further to make the structure optimization. But the residual stress of“V”shape position of exhaust manifold drops down about 50~120 MPa, and it improves the concentration status of residual stress at “V”shape position of exhaust manifold enormously. The Fig.13 shows the plastic strain amplitude of optimal scheme of exhaust manifold, and its plastic strain value is under the plastic strain of original structure far and away. Therefore it satisfies the design demand of plastic deformation of the material.

    Fig.12 Residual stress after optimization

    Fig.13 Plasticity strain after optimization

    After making the qualified sample piece according to scheme of optimal design, it successively makes lots of reliability experiment validation. And after experiment accomplishing, through the inspection it finds that there is not any problem of oxidation of delamination in the exhaust manifold, and the surface of exhaust manifold is not any fissure. After completing the alternating load test for 400 hour, the exhaust manifold is shown as in Fig.14. From the Fig.14, it can be seen that there is not any fissure in the surface and its interior, and it shows that the optimal design scheme of the exhaust manifold is reasonable.

    Fig.14 Exhaust manifold after fatigue test

    4.Conclusions

    Aimed at the crack failure of exhaust manifold for a certain type of engine, it built the analytical model of thermal stress of engine exhaust manifold, and analyzed the thermal stress, residual stress and plasticity strain of manifold under the action of cold and thermal shock load. The analysis result demonstrated that the main cause, which resulted in cracking failure of exhaust manifold, would be that each index located at manifold “V” shape position always is higher than the design extreme. Based on the above analysis result, it proposed the solution of optimal design, by means of the methods such as reinforcement at the “V” shape position, subdivision of connection position in outside surface and so on, it improved the status of stress concentration of “V” shape position. The experiment result shows that the proposed optimal solution is reasonable and feasible.

    [1] Xiate G Y. The Heat Transfer and Heat Load of Internal Combustion Engine[M].Beijing:China Agricultural Machinery Press,1981.

    [2] GUO Quanling,ZHAO Xinwu.Recommended Working Temperature Summarization of Different Cast Iron Grades Used for Engine Exhaust Manifolds[J].Machinability and others,2011(2):82-85.

    [3] WU Guigen,PENG Donghua,LU Ping.Failure analysis of engine exhaust manifold wall[J].HEAT TREATMENT OF METALS,2011,36(9):90-92.

    [4] LI Longchao,XU Tao.The Thermal-structure Coupled Analysis on Exhaust Manifold of a Certain Diesel Engine[J].Auto Engineer,2011(3):55-57.

    [5] SUN Liwang,ZHU Qingshan,HOU Xianjun,et al.Analysis of thermal stress for engine exhaust manifold based on direct fluid-solid coupling[J].Journal of Henan Agricultural University,2012,46(2):81-84.

    [6] Wang Hui,Li Longchao,Yao Wei.Application of CFD & FEA Coupling Analysis in Solving Thermal Deformation of Exhaust Manifold[J].SMALL INTERNAL COMBUSTION ENGINE AND MOTORCYCLE,2012,41(3):15-17.

    [7] DENG Banglin,LIU Jingping,YANG Jing,et al.Thermal Stress Analysis of Gasoline Engine Exhaust Manifold Based on Two-Way FSI[J].Transactions of CSICE,2011,29(6):549-554.

    [8] CAO Yuanfu,YANG Zhenyu,KE Yan.Simulation and Experimental Study on the Thermal Loads of Exhaust Manifold[J].Automotive Engineering,2012,34(5):418-422.

    [9] JIN Yongxi.Discussion About Material and Technique of Si-Mo Heat-Resistant Vermicular Iron Exhaust Manifold[J].FOUNDRY,2005,54(12):1238-1244.

    [10] LI Xiuzhen,YU Huashun,LIU Taiqiang,et al.Study on Medium-silicon Heat-resistant Compacted Graphite Iron and Its Application[J].FOUNDRY,1997(2):18-20.

    發(fā)動機(jī)排氣歧管結(jié)構(gòu)的優(yōu)化設(shè)計(jì)

    毛文群

    岳陽恒立冷氣設(shè)備股份有限公司,湖南 岳陽 414000

    開裂失效是發(fā)動機(jī)排氣歧管典型的失效模式之一。為了找出失效原因并改進(jìn)發(fā)動機(jī)排氣歧管結(jié)構(gòu),研究了發(fā)動機(jī)排氣歧管結(jié)構(gòu)的優(yōu)化設(shè)計(jì)。構(gòu)建了發(fā)動機(jī)排氣歧管熱應(yīng)力分析模型,研究了歧管在冷熱沖擊條件下開裂的失效機(jī)理,基于降低歧管關(guān)注位置的熱應(yīng)力和殘余應(yīng)力與塑性應(yīng)變,提出了排氣歧管結(jié)構(gòu)的優(yōu)化設(shè)計(jì)方案。仿真實(shí)驗(yàn)分析顯示,在歧管“V”形位置處的各項(xiàng)指標(biāo)在冷熱沖擊載荷作用下,其熱應(yīng)力、殘余應(yīng)力和塑性應(yīng)變均高于設(shè)計(jì)極限值,是導(dǎo)致歧管開裂失效的主要原因。借助在“V”形位置加筋及外表面連接位置剖分等技術(shù)措施,可改善應(yīng)力集中狀況。實(shí)驗(yàn)結(jié)果驗(yàn)證了該排氣歧管優(yōu)化設(shè)計(jì)方案的合理性與有效性。

    排氣歧管;溫度場;熱應(yīng)力;結(jié)構(gòu)優(yōu)化

    U464

    2012-10-25

    *MAO Wenqun.E-mail:warkins@163.com

    10.3969/j.issn.1001-3881.2013.06.024

    猜你喜歡
    熱應(yīng)力設(shè)計(jì)方案塑性
    基于可持續(xù)理念舊建筑改造設(shè)計(jì)方案探討
    基于應(yīng)變梯度的微尺度金屬塑性行為研究
    WNS型鍋爐煙管管端熱應(yīng)力裂紋原因分析
    硬脆材料的塑性域加工
    鈹材料塑性域加工可行性研究
    數(shù)據(jù)中心ECC設(shè)計(jì)方案研究
    石英玻璃的熱輔助高效塑性域干磨削
    采用單元基光滑點(diǎn)插值法的高溫管道熱應(yīng)力分析
    高壓電力系統(tǒng)規(guī)劃設(shè)計(jì)方案探討
    電子制作(2016年21期)2016-05-17 03:53:23
    某輕卡線束設(shè)計(jì)方案
    欧美少妇被猛烈插入视频| 亚洲熟女精品中文字幕| 有码 亚洲区| 美女内射精品一级片tv| 精品人妻熟女av久视频| 999精品在线视频| 最黄视频免费看| 国产免费现黄频在线看| 国产不卡av网站在线观看| av视频免费观看在线观看| 国产精品不卡视频一区二区| 日本欧美视频一区| 国产一级毛片在线| 少妇熟女欧美另类| 亚洲欧美日韩另类电影网站| 日日爽夜夜爽网站| 国模一区二区三区四区视频| 亚洲精品国产av成人精品| 亚洲av免费高清在线观看| 日韩免费高清中文字幕av| 成人二区视频| 丰满少妇做爰视频| 99久久综合免费| 91久久精品国产一区二区成人| 午夜91福利影院| 久久午夜福利片| 美女xxoo啪啪120秒动态图| 亚洲国产最新在线播放| 插阴视频在线观看视频| 国产69精品久久久久777片| av线在线观看网站| 国产一区有黄有色的免费视频| 在线精品无人区一区二区三| 日日啪夜夜爽| 亚洲无线观看免费| 国产成人一区二区在线| 午夜免费男女啪啪视频观看| av免费在线看不卡| 人体艺术视频欧美日本| 久久免费观看电影| 久久免费观看电影| 亚洲av国产av综合av卡| 这个男人来自地球电影免费观看 | 亚洲一级一片aⅴ在线观看| 精品久久国产蜜桃| 国产亚洲欧美精品永久| 久久韩国三级中文字幕| 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| 亚洲情色 制服丝袜| av在线播放精品| 一本一本综合久久| 热99国产精品久久久久久7| 中文字幕亚洲精品专区| 亚洲av成人精品一区久久| 少妇的逼水好多| 另类亚洲欧美激情| 80岁老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 亚洲欧美精品自产自拍| 老司机影院毛片| 91久久精品电影网| 国产精品偷伦视频观看了| 亚洲精品色激情综合| 天堂8中文在线网| 五月天丁香电影| 蜜桃国产av成人99| av线在线观看网站| 欧美变态另类bdsm刘玥| 亚洲精品美女久久av网站| 久久国产精品大桥未久av| 国产精品国产三级专区第一集| freevideosex欧美| 日韩不卡一区二区三区视频在线| 高清av免费在线| 99九九线精品视频在线观看视频| 久久久久精品性色| 亚洲国产毛片av蜜桃av| 欧美激情 高清一区二区三区| 黄色配什么色好看| 午夜免费观看性视频| 80岁老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 在线观看免费视频网站a站| 男人添女人高潮全过程视频| 久久国产精品男人的天堂亚洲 | 91精品一卡2卡3卡4卡| 国产又色又爽无遮挡免| 国产在线视频一区二区| 午夜视频国产福利| 精品熟女少妇av免费看| 你懂的网址亚洲精品在线观看| 国产在线免费精品| 最近中文字幕2019免费版| 久久久久久久久久久免费av| videosex国产| 亚洲av二区三区四区| 满18在线观看网站| 91久久精品电影网| 欧美日韩精品成人综合77777| 中国三级夫妇交换| av专区在线播放| 久久久国产欧美日韩av| 麻豆成人av视频| 国产女主播在线喷水免费视频网站| 精品久久久久久久久亚洲| 久久精品人人爽人人爽视色| 国产一区二区三区综合在线观看 | 91成人精品电影| 成人午夜精彩视频在线观看| 久久久精品免费免费高清| 新久久久久国产一级毛片| 日韩一区二区视频免费看| 久久久久久久亚洲中文字幕| 亚洲国产精品成人久久小说| 国产在视频线精品| 丰满少妇做爰视频| 一级a做视频免费观看| 大片电影免费在线观看免费| 美女xxoo啪啪120秒动态图| 美女内射精品一级片tv| 狂野欧美激情性bbbbbb| 老熟女久久久| 午夜免费男女啪啪视频观看| 99热这里只有精品一区| 国语对白做爰xxxⅹ性视频网站| 嫩草影院入口| 午夜老司机福利剧场| 国产视频内射| 能在线免费看毛片的网站| 久久精品久久精品一区二区三区| av国产精品久久久久影院| 亚洲欧美日韩卡通动漫| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 日本午夜av视频| 久久精品久久久久久噜噜老黄| 日本与韩国留学比较| 亚洲国产av新网站| 色婷婷av一区二区三区视频| 欧美另类一区| 人人澡人人妻人| 国产成人av激情在线播放 | 狂野欧美白嫩少妇大欣赏| 一本大道久久a久久精品| 一边摸一边做爽爽视频免费| 九九爱精品视频在线观看| 男女无遮挡免费网站观看| 亚洲av二区三区四区| 大陆偷拍与自拍| 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 亚洲av日韩在线播放| 99re6热这里在线精品视频| 亚洲无线观看免费| 色网站视频免费| 久久久午夜欧美精品| 91aial.com中文字幕在线观看| 七月丁香在线播放| 久久久久久久精品精品| 国产精品一二三区在线看| 久久久久久久国产电影| 蜜桃在线观看..| 国产精品不卡视频一区二区| 国产av码专区亚洲av| 精品熟女少妇av免费看| 97超视频在线观看视频| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 伊人久久国产一区二区| 成人午夜精彩视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲中文av在线| 伦理电影大哥的女人| 色5月婷婷丁香| 不卡视频在线观看欧美| 黄片无遮挡物在线观看| 97在线视频观看| 99久久精品国产国产毛片| 欧美日韩亚洲高清精品| 你懂的网址亚洲精品在线观看| 成年人免费黄色播放视频| 国产永久视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 亚洲国产精品成人久久小说| 亚洲国产精品国产精品| 免费大片黄手机在线观看| 超色免费av| 国产精品三级大全| 欧美 亚洲 国产 日韩一| 自线自在国产av| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 一级片'在线观看视频| 免费观看的影片在线观看| 午夜视频国产福利| 最新中文字幕久久久久| 韩国av在线不卡| .国产精品久久| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 中文天堂在线官网| 亚洲高清免费不卡视频| 午夜福利,免费看| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频| 成人毛片a级毛片在线播放| 观看美女的网站| tube8黄色片| 国产黄频视频在线观看| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 国产成人免费观看mmmm| 91精品国产九色| av.在线天堂| 人人澡人人妻人| 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 七月丁香在线播放| 中文字幕亚洲精品专区| 久久99蜜桃精品久久| 能在线免费看毛片的网站| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 亚洲高清免费不卡视频| 国产成人freesex在线| 精品午夜福利在线看| 亚洲精品456在线播放app| 永久免费av网站大全| xxxhd国产人妻xxx| 国产精品国产av在线观看| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 日本-黄色视频高清免费观看| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 成人国产av品久久久| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 午夜日本视频在线| 人妻人人澡人人爽人人| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 国产成人精品一,二区| 日本色播在线视频| 99热全是精品| 男的添女的下面高潮视频| 亚洲成人手机| 亚洲在久久综合| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆| 国产精品成人在线| 最近的中文字幕免费完整| 亚洲av二区三区四区| 久久午夜综合久久蜜桃| 国产亚洲精品第一综合不卡 | 黄色怎么调成土黄色| 国产av精品麻豆| 欧美性感艳星| 秋霞伦理黄片| 国产一区亚洲一区在线观看| 十八禁高潮呻吟视频| av播播在线观看一区| 国产精品熟女久久久久浪| 久久久久久久久久久免费av| 成人18禁高潮啪啪吃奶动态图 | 国产伦精品一区二区三区视频9| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱| 大片电影免费在线观看免费| 天天影视国产精品| 国产欧美日韩综合在线一区二区| 999精品在线视频| 国产精品 国内视频| 99九九在线精品视频| 国产在线视频一区二区| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 亚洲综合色网址| 蜜桃久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区| 亚洲av在线观看美女高潮| 大陆偷拍与自拍| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 少妇的逼水好多| 日韩中文字幕视频在线看片| 新久久久久国产一级毛片| 观看av在线不卡| 在线 av 中文字幕| 日本欧美视频一区| 国产 精品1| 国产亚洲一区二区精品| 中国美白少妇内射xxxbb| 22中文网久久字幕| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 日产精品乱码卡一卡2卡三| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av| 日本wwww免费看| 午夜福利影视在线免费观看| 欧美97在线视频| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 97精品久久久久久久久久精品| 成年人免费黄色播放视频| 少妇丰满av| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 久久久国产精品麻豆| 在线观看国产h片| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 国产成人免费观看mmmm| 亚洲国产精品国产精品| www.色视频.com| 久久久久久久国产电影| 久久久久精品久久久久真实原创| 免费黄网站久久成人精品| av免费观看日本| 国产亚洲一区二区精品| 国产一区二区三区av在线| 久久精品国产亚洲网站| 大香蕉久久成人网| 成人二区视频| freevideosex欧美| a级毛色黄片| 久久久午夜欧美精品| 熟女人妻精品中文字幕| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 22中文网久久字幕| 99热6这里只有精品| a级毛片在线看网站| 精品一区二区三区视频在线| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美 | 99久久精品国产国产毛片| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 在线看a的网站| 亚洲欧美日韩卡通动漫| 国产精品.久久久| 久久韩国三级中文字幕| 亚洲人成77777在线视频| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 午夜福利,免费看| 成人漫画全彩无遮挡| 尾随美女入室| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 久久久国产精品麻豆| 午夜福利视频精品| .国产精品久久| 久久午夜福利片| 国产男女超爽视频在线观看| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 99久国产av精品国产电影| 亚洲欧美一区二区三区黑人 | 免费观看无遮挡的男女| 国产成人精品在线电影| 美女cb高潮喷水在线观看| 全区人妻精品视频| 在线 av 中文字幕| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 91国产中文字幕| 热re99久久精品国产66热6| 99国产综合亚洲精品| av电影中文网址| 中文字幕人妻丝袜制服| 五月天丁香电影| 午夜福利网站1000一区二区三区| 午夜激情福利司机影院| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 国产色婷婷99| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 成人影院久久| 欧美+日韩+精品| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 国产综合精华液| 亚洲在久久综合| 久久国产亚洲av麻豆专区| 国产成人精品在线电影| 春色校园在线视频观看| 天堂中文最新版在线下载| 日韩亚洲欧美综合| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 免费黄网站久久成人精品| 极品人妻少妇av视频| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 制服人妻中文乱码| 免费看光身美女| 国产成人免费无遮挡视频| 看十八女毛片水多多多| 精品久久久精品久久久| 我的老师免费观看完整版| 狂野欧美激情性bbbbbb| 日本色播在线视频| 亚洲国产精品国产精品| 高清av免费在线| 久久久欧美国产精品| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 99久久综合免费| 国产高清国产精品国产三级| av专区在线播放| 成人18禁高潮啪啪吃奶动态图 | √禁漫天堂资源中文www| 97超碰精品成人国产| 午夜免费鲁丝| 国产av精品麻豆| 日本欧美国产在线视频| 亚洲精品久久久久久婷婷小说| 久久久精品区二区三区| 国产极品粉嫩免费观看在线 | 亚洲色图 男人天堂 中文字幕 | 成人综合一区亚洲| 搡老乐熟女国产| 欧美+日韩+精品| 久久国产亚洲av麻豆专区| 高清午夜精品一区二区三区| 丝袜脚勾引网站| 91国产中文字幕| 亚洲精品国产av蜜桃| 在线播放无遮挡| 国产视频首页在线观看| 国产一区二区三区综合在线观看 | 下体分泌物呈黄色| 精品国产露脸久久av麻豆| av在线播放精品| 午夜视频国产福利| 七月丁香在线播放| 午夜精品国产一区二区电影| 少妇被粗大猛烈的视频| 涩涩av久久男人的天堂| 男女高潮啪啪啪动态图| 黄色配什么色好看| 亚洲四区av| 亚洲精品亚洲一区二区| 亚洲人成网站在线播| 成人国产av品久久久| 成人国产av品久久久| 一级毛片电影观看| 久久鲁丝午夜福利片| 一级毛片我不卡| 永久免费av网站大全| 建设人人有责人人尽责人人享有的| 五月伊人婷婷丁香| av在线老鸭窝| 久久午夜综合久久蜜桃| .国产精品久久| 亚洲精品日本国产第一区| 日本与韩国留学比较| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 日本黄色日本黄色录像| 高清欧美精品videossex| 婷婷色麻豆天堂久久| 中文字幕亚洲精品专区| 中文精品一卡2卡3卡4更新| 91精品一卡2卡3卡4卡| 国产免费视频播放在线视频| 国产免费一级a男人的天堂| a级毛色黄片| 日韩制服骚丝袜av| h视频一区二区三区| 国产精品女同一区二区软件| 美女脱内裤让男人舔精品视频| 亚洲欧美一区二区三区国产| 少妇丰满av| 精品久久久噜噜| 久久影院123| 国产白丝娇喘喷水9色精品| 99久久精品国产国产毛片| 欧美亚洲 丝袜 人妻 在线| 国产精品蜜桃在线观看| 国产成人精品婷婷| 亚洲国产日韩一区二区| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 人妻系列 视频| 如日韩欧美国产精品一区二区三区 | 亚洲精品国产av蜜桃| av又黄又爽大尺度在线免费看| 久久亚洲国产成人精品v| videossex国产| 久久热精品热| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品久久久久久久久亚洲| 在线观看一区二区三区激情| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| 久久久久国产精品人妻一区二区| 日本wwww免费看| 一区二区日韩欧美中文字幕 | 国产精品久久久久成人av| 免费人妻精品一区二区三区视频| 乱人伦中国视频| a级毛片免费高清观看在线播放| videosex国产| 狂野欧美白嫩少妇大欣赏| 搡女人真爽免费视频火全软件| 国产色婷婷99| 免费av中文字幕在线| 免费看不卡的av| 免费大片18禁| 一区二区日韩欧美中文字幕 | 日韩不卡一区二区三区视频在线| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 18禁观看日本| 亚洲国产精品专区欧美| 91成人精品电影| 一本色道久久久久久精品综合| 91成人精品电影| 午夜激情久久久久久久| 免费少妇av软件| 精品久久国产蜜桃| kizo精华| 色视频在线一区二区三区| 亚洲国产精品999| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 久久人妻熟女aⅴ| 久久久久精品性色| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 日本黄色片子视频| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 高清av免费在线| 久久久欧美国产精品| 国产黄片视频在线免费观看| 国产精品.久久久| 插阴视频在线观看视频| 亚洲国产精品一区二区三区在线| 狂野欧美激情性bbbbbb| 91国产中文字幕| 中文字幕免费在线视频6| 女人精品久久久久毛片| 国产一区有黄有色的免费视频| 精品久久久久久久久av| 日韩成人伦理影院| 免费观看无遮挡的男女| 国产熟女欧美一区二区| 下体分泌物呈黄色| 国产一区二区三区av在线| 内地一区二区视频在线| av免费在线看不卡| 亚洲国产毛片av蜜桃av| 免费观看性生交大片5| 男的添女的下面高潮视频| 国产在线一区二区三区精| 成人18禁高潮啪啪吃奶动态图 | 日韩三级伦理在线观看| 欧美激情极品国产一区二区三区 | 国产不卡av网站在线观看| 婷婷色综合www| 3wmmmm亚洲av在线观看| kizo精华| 免费日韩欧美在线观看| 草草在线视频免费看| 在线播放无遮挡| 国产老妇伦熟女老妇高清| 精品国产一区二区久久| 亚洲精华国产精华液的使用体验| 99久久精品国产国产毛片| 少妇丰满av| 色5月婷婷丁香| 美女国产高潮福利片在线看|