• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction Chatter Stability and Bifurcation in Milling Machine

    2013-12-07 07:35:35ZHAODeminZHANGQichang
    機(jī)床與液壓 2013年1期
    關(guān)鍵詞:石油大學(xué)天津大學(xué)工程學(xué)院

    ZHAO Demin, ZHANG Qichang

    1.Department of Engineering Mechanics, College of Storage & Transportation and Architectural Engineering,China University of Petroleum, Qingdao 266555,China;2.Department of Mechanics,College of Mechanical Engineering, Tianjin University, Tianjin 300072,China

    PredictionChatterStabilityandBifurcationinMillingMachine

    ZHAO Demin1*, ZHANG Qichang2

    1.DepartmentofEngineeringMechanics,CollegeofStorage&TransportationandArchitecturalEngineering,ChinaUniversityofPetroleum,Qingdao266555,China;2.DepartmentofMechanics,CollegeofMechanicalEngineering,TianjinUniversity,Tianjin300072,China

    TheshiftedChebyshevpolynomialsandFloquettheoryareadoptedforthepredictionchatterstabilityandbifurcationinmilling.Thestabilitylobesdiagramisobtained.Thestabilityinmillingcanwellbepredictedbythelobesdiagram.Themuliti-periodicandHopfbifurcationsaredetectedbytheEigen-valuesanalysis.Theresultsshowedthatthestabilitysolutionofthesystemtransformfromthestableequilibriumpointtothelimitcycleoscillatoryaftermultiplecyclebifurcation,andittransformstothequasi-periodicoscillationafterHopfbifurcation.ThenumericalresultsofthePoincarésectionprovethattheoccurrenceofthequasi-periodicoscillation.

    milling,chatterstability,Chebyshevpolynomials,bifurcation

    1.Introduction

    High-speed milling is in aerospace, ship, and many other industries due to its advantages such as high material remove rates, better surface finish and low cost. However, the chatter vibration of the machine tool-workpiece system is not only one of the main limitations for poor workpiece surface quality but also promotes wear of the machine tools. The basic and comprehensive mechanism of the machine chatter was presented by Tobias[1] and Altintas[2].

    Because the cutting force is time-varying, it can be approximated by the zero-order or one-order Fourier series. Based on this principle, the analytical stability prediction method in frequency domain was introduced for the stability lobes in milling by Altintas[2-3]. Altintas[4] and Tang[5] summarized analytical stability prediction method in frequency domain and semi-discretization method in time domain for the two- or multi-degree-of-freedom (MDOF) system modal. The stability analysis on an uncertain dynamics milling model was performed and probabilistic instead of deterministic stability lobes were obtained in Reference[6]. Faassen[7] and Quintana [8] presented an experimental method to identify stability lobes diagram in milling operation. Gradisek[9] revealed periodic and quasi-periodic chatter by using the semi-discretization method. The quasi-periodic solutions of the time-periodic delay differential equations in high speed milling system were also identified by some milling experiments[10].

    The time-varying periodic cutting force approximated by the zero-order or one-order Fourier series is not accurate for high-speed milling. Chebyshev polynomial[11-14] is an efficient computational scheme for the analysis of the periodic system. Therefore, this paper presented a stability theory which predicts chatter stability and bifurcation based on Chebyshev polynomial rather than Fourier series.

    2.Dynamics model of milling

    The cross sectional figure of the 2-degree-of-freedom(2-DOF) high-speed milling tool-workpiece system is shown in Fig. 1. The tool with the diameterD1and teeth numberzrotates at an angular speedΩ(rad/s). The radial immersion angle of the ith tooth varies with time as:φi(t)=Ωt+2π(i-1)/z.apandadescribes the axial and radial depth of immersion, respectively. The dynamics model of this machine tool-workpiece system is given by

    (1)

    Where,M,CandKare the mode mass, damping and stiffness matrix, respectively,F(t) is the cutting force.

    Fig.1 General sketch of the milling dynamic model with 2-DOF

    2.1.Cuttingforcesmodel

    The machine tool chatter vibrations occur due to a self excitation mechanism in generation of chip thickness during machining operations. An oscillatory surface finish left by one of the tooth is removed by the succeeding oscillatory tooth due to the structural vibrations. According to Altintas[4], the resulted chip thickness becomes also oscillatory, which could be expressed by

    hj(t)=(Δx(t)sinφj(t)+

    Δy(t)cosφj(t))g(φj(t))

    (2)

    where Δx(t)=x(t)-x(t-T),Δy(t)=y(t)-y(t-T),g(φj) describes a unit step function determining whether or not thejthtooth is in cutting.

    (3)

    Where,φstandφexare the start and exit angles of the cutter to and from the cutting, respectively.

    The tangentialFtjand radialFrjcutting forces acting on the toothjare proportional to the axial depth of cutapand chip thicknesshj(t),

    Ftj=ktaphj(t),Frj=krFtj

    (4)

    Where, the cutting coefficientsktandkrare constant. Resolve the cutting forces in thexandydirection

    Fxj=-Ftjcosφj-Frjsinφj

    Fyj=Ftjsinφj-Frjcosφj

    (5)

    The total cutting forces on the cutters contributed by all the teeth are given by

    (6)

    Rearranging Eq. (6) in matrix form yields

    (7)

    where:

    2.2.Governingstructuredynamicsmodel

    Substituting Eq.(7) into Eq.(1) yields the following coupled delayed different equations with periodic coefficient:

    (8)

    In order to normalize the delay period toT=τ=1, we apply the following transformation:

    (9)

    (10)

    3.Shifted Chebyshev polynomials analysis

    The shift Chebyshev polynomials can be generated by noting the following equations:

    (11)

    (12)

    (13)

    (14)

    Where,I4is 4-order identity and ? denotes as Kronecker product. Based on the theory of the ordinary differential equation, the solution of the Eq. (10) is given by

    C(s)X(s-1))ds

    (15)

    (16)

    (17)

    Substitute Eqs. (16 ) and (17) into Eq.(15), it yields:

    (18)

    (19)

    By simplify Eq. (19), we obtain:

    (20)

    Similarly, in the interval [i-1,i], the ith Chevbyshev coefficient vector relates to the counterpart of the previous interval as

    (21)

    Wcan be defined as an approximately monodromy operator

    (22)

    Based on the Floquet theory, the Eigen-values of monodromy operatorWcan predict the asymptotic stability of system. The cycle solution of the non-smooth dynamical system is stable if all the Eigen-values lie within the unit circle. The multiple cycle bifurcation occurs if one Eigen-value go through unit circle at point -1 and the saddle-note bifurcation occurs if the one Eigen-value go through unit circle at point +1. The Hopf bifurcation will take place if one pair Eigen-values go through unit circle at complex number.

    4.Simulation and discuss

    The system parameters are chosen according to Altintas[4]. Throughout of the paper, the value of the parameters are chose as:kt=900 (N/mm2),kr=0.3,ωnx=510 Hz,ωny=802 Hz,ζx=0.04,ζy=0.05,kx=96.2×10-6N/m,ky=47.5×10-6N/m,z=4. The cutter applied has four flutes with zero helix and the cutting condition is half immersion down milling. The 12-order shift Chebyshev polynomial is used in the simulation.

    4.1.Chatterstabilityanalysis

    Fig.2 gives the lobes diagram about spindle speedΩversus axial depth of cutap. The curve of the lobes demonstrates that the system with the parameters in the region of below the curve is stable as shown in Fig.3 and contrast to that the system is unstable if the parameters are in the region of above the curve. If the system parameters are on the curve, the system is in critical stability.

    Fig.2 Stability lobes

    Fig.3 The time history plots of x 1 and x 2, when Ω=2.0×104 (r/min), a p=18 mm

    4.2.Chatterbifurcationanalysis

    The bifurcation analysis is only discussed when the milling system changes from stability to critical stability. When the parameters of the system are chosen on the critical stability curve,the real and imaginary part of one pairs of the Eigen-values of monodromy operatorW, whose modules is max among all Eigen-values, varies as the spindle speedΩas shown in Fig.4. The results indicate that when the spindle speed is in the region approximately 1.755×104≤Ω≤2.238×104, the multiple cycle bifurcation takes place. When the spindle speed is in the region 0.5×104≤Ω<1.755×104or 2.238×104<Ω≤5×104, the Hopf bifurcation takes place. No Eigen-values go through unit circle at +1, thus the saddle-note bifurcation never occurs.

    Fig.5 and Fig.6 give the phase plane plots ofxandydirection whenΩ=2.0×104(r/min),ap=20.2 mm andΩ=3.5×104(r/min),ap=19.8 mm. Fig.5 demonstrates that the system converge to limit cycle oscillation (LCO) after multiple cycle bifurcation. The quasi-periodic oscillation occurs after Hopf bifurcation as shown in Fig.6.

    Fig.4 The real and imaginary parts of the Eigen-values versus spindle speed

    Fig.5 The phase plane plots of x and y directions, with Ω=2.0×104(r/min), a p=20.2 mm

    Fig.6 The phase plane plots of x and y directions with Ω=3.5×104(r/min), a p=19.8 mm

    The Poincaré section figures as shown in Fig.7 (a),(b) and Fig.7 (c),(d) are obtained by performing 1.5×104and 21×104iterative times, respectively. WhenΩ=3.5×104(r/min),ap=19.8 mm, the Poincaré sections ofxandydirections are approximately ellipse, which also confirm occurrences of the quasi-periodic motions. Frequency components ration of the response, demonstrated in Fig.7 (a),(b), is approximately 1∶3.

    Fig.7 The Poincaré section of in x and y directions which are obtained by performing different iterative times, when Ω=3.5×104(r/min), a p=19.8 mm, (a),(b):1.5×104 times; (c),(d): 21×104 times

    5.Conclusions

    The paper investigated the machine tool-workpiece system chatter vibrations in high speed milling. The shift Chebyshev polynomial and Floquet theory are efficiently adopted for this type of time-varying periodic delayed system. The stability and bifurcation are analyzed in the paper and the primary results of the present investigation can be summarized as follows:

    The stability lobes have been obtained, which can give stability information about tool spindle speed and axial depth of cutting. Chatter bifurcation is analyzed by the Eigen-values of monodromy operator and the results confirm the multiple cycle bifurcation and Hopf bifurcation have onset in the milling system. After multiple cycle bifurcation, the stability solution of the system transforms from the stable equilibrium point to the LCO. After Hopf bifurcation, the stability solution transforms to the quasi-periodic oscillation. The Poincaré sections obtained also prove the occurrence of the quasi-periodic oscillation and give the frequency components ration of the response. Our achievement in this paper can provide important information for design of the 5-axial milling machine. This method is could be used to study the time-periodic delay-differential dynamics system.

    [1] Tobias S A.Machine Tool Vibration[M].[S.l.]:Blackie and Sons Ltd,1965.

    [2] Altintas Y, Budak E.Analytical Prediction of Stability Lobes in Milling[J].Annals of the CIRP,1995,44(1):357-362.

    [3] Altintas Y.Analytical Prediction of Three Dimensional Chatter Stabolity in Milling[J].Japan Society of Mechanical Engineers International, 2001,44:717-723.

    [4] Altintas Y,Stepan G,Merdol D.Chatter Stability of Milling in Frequency and Discrete Time Domain[J].CIRP Journal of Manufacturing Science and Technology,2008(1):35-44.

    [5] TANG W X,SONG Q H,YU SQ, et al.Prediction of Chatter Stability in High-speed Finishing End Milling Considering Multi-mode Dynamics[J].Journal of Material Processing Technology, 2009,209:2585-2591.

    [6] Totis G.RCPM-A New Method for Robust Chatter Prediction in Milling[J].International Journal of Machine tools & Manufacture,2009,49:273-284.

    [7] Faassen R P H,Van de Wouw N,Oosterling J A J,et al.Prediction of Regenerative Chatter by Modelling and Analysis of High-speed Milling[J].International Journal of Machine tools & Manufacture,2003,43:1437-1446.

    [8] Quintana G,Ciurana J,Teixidor D.A New Experimential Methodology for Identification of Stability Lobes Diagram in Milling Operations[J].International Journal of Machine tools & Manufacture,2008,48:1637-1645.

    [9] Gradisek J,Kalveram M,Insperger T,et al.On Stability Prediction for Milling[J].International Journal of Machine tools & Manufacture,2005,45:769-781.

    [10] Insperger T,Stépán G,Bayly P V,et al.Multiple Chatter Frequencies in Milling Processes[J].Journal of Sound and Vibration,2003,262:333-345.

    [11] Butcher E A,Ma H T,Bueler E,et al.Stability of Linear Time-Periodic Delay-Fifferential Equations via Chebyshev Polynomials[J].International Journal for Numerical Methods in Engineering,2004,59:895-922.

    [12] Sinha S C,Wu D H.An Efficient Computational Scheme for the Analysis of Periodic Systems[J].Journal of Sound and Vibration,1991,151:91-117.

    [13] Butcher E A,Sinha S C.A Hybrid Formulation for the Analysis Time Preiodic Linear systems via Chebyshev Polynomials[J].Journal of Sound and Vibration,1996,195(3):518-527.

    [14] Sinha S C,Butcher E A.Symbolic computation of fundmental solution Matrices for Linear Time-Periodic Dynamical Systems[J].Journal of Sound and Vibration,1997,26(1):61-85.

    AppendixA

    AppendixB

    高速銑削顫振系統(tǒng)穩(wěn)定性及分岔的Chebyshev多項(xiàng)式數(shù)值分析

    趙德敏1*,張琪昌2

    1.中國石油大學(xué)(華東) 儲運(yùn)與建筑工程學(xué)院 工程力學(xué)系,山東 青島 266580;2.天津大學(xué) 機(jī)械工程學(xué)院 力學(xué)系,天津 300072

    采用Chebyshev多項(xiàng)式法和Floquet理論相結(jié)合來預(yù)測銑床運(yùn)行中的顫振和分岔。得到了穩(wěn)定性極限形圖,可以準(zhǔn)確地預(yù)示機(jī)床的穩(wěn)定性。通過系統(tǒng)的特征值分析得到此系統(tǒng)發(fā)生了倍周期分岔和Hopf分岔。系統(tǒng)由穩(wěn)定的平衡點(diǎn)通過倍周期分岔收斂到穩(wěn)定的極限環(huán)運(yùn)動,由Hopf分岔轉(zhuǎn)化到概周期運(yùn)動。龐加萊截面的數(shù)值結(jié)果也證實(shí)了概周期運(yùn)動的發(fā)生。

    銑削;顫振穩(wěn)定性;Chebyshev多項(xiàng)式法;分岔

    TH17

    2012-12-09

    Project supported by the Fundamental Research Funds for the Central Universities (11CX04049A), National Natural Science Foundation of China (10872141)*ZHAO Demin,Doctor.E-mail: zhaodemin@upc.edu.cn

    10.3969/j.issn.1001-3881.2013.06.004

    猜你喜歡
    石油大學(xué)天津大學(xué)工程學(xué)院
    福建工程學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    福建工程學(xué)院
    《天津大學(xué)學(xué)報(bào)(社會科學(xué)版)》簡介
    福建工程學(xué)院
    福建工程學(xué)院
    學(xué)生寫話
    東北石油大學(xué)簡介
    天津大學(xué)學(xué)報(bào)(社會科學(xué)版)2014年總目次
    国产精品亚洲一级av第二区| 亚洲午夜精品一区,二区,三区| 正在播放国产对白刺激| 老司机福利观看| 成人国语在线视频| 桃红色精品国产亚洲av| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区精品| 国产av又大| 真人一进一出gif抽搐免费| 99香蕉大伊视频| 国产精品美女特级片免费视频播放器 | 亚洲男人的天堂狠狠| 十分钟在线观看高清视频www| 午夜福利成人在线免费观看| 高清在线国产一区| 亚洲avbb在线观看| 亚洲成a人片在线一区二区| 亚洲色图 男人天堂 中文字幕| 久久久久九九精品影院| 十八禁人妻一区二区| 久久久国产成人免费| e午夜精品久久久久久久| 午夜成年电影在线免费观看| 淫妇啪啪啪对白视频| 久久精品亚洲精品国产色婷小说| 亚洲一区中文字幕在线| 精品国产亚洲在线| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品综合一区二区三区| 一级a爱视频在线免费观看| 日韩国内少妇激情av| 9191精品国产免费久久| 激情在线观看视频在线高清| 亚洲精品av麻豆狂野| 一本大道久久a久久精品| 手机成人av网站| 黄色 视频免费看| 久久国产精品影院| 精品国产超薄肉色丝袜足j| 欧美+亚洲+日韩+国产| 啦啦啦免费观看视频1| 久久精品国产亚洲av香蕉五月| av欧美777| 国产一区二区在线av高清观看| 免费高清在线观看日韩| 国产高清有码在线观看视频 | 又大又爽又粗| 国产亚洲欧美在线一区二区| 99热只有精品国产| 丁香欧美五月| 免费看a级黄色片| 国产av又大| 黄片大片在线免费观看| 别揉我奶头~嗯~啊~动态视频| 女警被强在线播放| 国产亚洲精品久久久久5区| 制服丝袜大香蕉在线| 免费女性裸体啪啪无遮挡网站| 人成视频在线观看免费观看| 黄片小视频在线播放| 日韩精品免费视频一区二区三区| 色av中文字幕| 狂野欧美激情性xxxx| 国产精品亚洲av一区麻豆| 最近最新中文字幕大全免费视频| 90打野战视频偷拍视频| 亚洲熟妇中文字幕五十中出| 美女高潮到喷水免费观看| 国产亚洲精品久久久久5区| 日本 欧美在线| 成人手机av| 中文字幕人妻熟女乱码| 国产97色在线日韩免费| 丰满人妻熟妇乱又伦精品不卡| 午夜免费鲁丝| 欧美乱色亚洲激情| 少妇粗大呻吟视频| av在线播放免费不卡| 国产精品日韩av在线免费观看 | 欧美另类亚洲清纯唯美| 久久人妻av系列| 国产精品亚洲美女久久久| 超碰成人久久| 国产极品粉嫩免费观看在线| 亚洲黑人精品在线| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码| 欧美成人性av电影在线观看| 午夜福利免费观看在线| 国产亚洲欧美在线一区二区| 19禁男女啪啪无遮挡网站| 精品久久久久久久毛片微露脸| 黑丝袜美女国产一区| 亚洲黑人精品在线| 麻豆国产av国片精品| av片东京热男人的天堂| 久久伊人香网站| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品一区二区www| 一边摸一边抽搐一进一出视频| 亚洲 欧美 日韩 在线 免费| 欧美av亚洲av综合av国产av| 黄色女人牲交| 国产精品一区二区三区四区久久 | 999久久久精品免费观看国产| 精品人妻1区二区| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 99久久久亚洲精品蜜臀av| av有码第一页| 亚洲一区高清亚洲精品| av免费在线观看网站| 免费av毛片视频| 国产精华一区二区三区| 精品卡一卡二卡四卡免费| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| www日本在线高清视频| 亚洲人成网站在线播放欧美日韩| 婷婷六月久久综合丁香| 如日韩欧美国产精品一区二区三区| 精品一区二区三区av网在线观看| 97碰自拍视频| 国产成人精品久久二区二区91| 人妻久久中文字幕网| 曰老女人黄片| 岛国视频午夜一区免费看| 成年人黄色毛片网站| 9色porny在线观看| 国产精品一区二区精品视频观看| 亚洲av成人av| 国产亚洲欧美98| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看| 成人av一区二区三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁在线播放| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 十八禁人妻一区二区| av天堂久久9| 精品国产亚洲在线| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 少妇 在线观看| 亚洲av美国av| 无人区码免费观看不卡| av电影中文网址| 97人妻精品一区二区三区麻豆 | 中亚洲国语对白在线视频| 性欧美人与动物交配| 日本在线视频免费播放| 色在线成人网| 搡老岳熟女国产| 啦啦啦免费观看视频1| 日韩三级视频一区二区三区| 在线天堂中文资源库| 在线观看舔阴道视频| 精品卡一卡二卡四卡免费| 午夜激情av网站| 日本欧美视频一区| 啦啦啦 在线观看视频| 中国美女看黄片| 精品欧美一区二区三区在线| 91在线观看av| 国产精品综合久久久久久久免费 | or卡值多少钱| 欧美人与性动交α欧美精品济南到| 欧美国产日韩亚洲一区| 亚洲国产日韩欧美精品在线观看 | 精品国产国语对白av| 999久久久国产精品视频| 国产欧美日韩精品亚洲av| 国产成人精品在线电影| 99香蕉大伊视频| 人人澡人人妻人| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 老鸭窝网址在线观看| 免费观看人在逋| 亚洲黑人精品在线| 国产不卡一卡二| 男人舔女人的私密视频| 免费看a级黄色片| 18禁国产床啪视频网站| 日韩av在线大香蕉| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 亚洲三区欧美一区| 午夜a级毛片| 免费看美女性在线毛片视频| 国产av又大| 亚洲免费av在线视频| 真人做人爱边吃奶动态| 老汉色∧v一级毛片| 男女午夜视频在线观看| 男女下面进入的视频免费午夜 | 日本五十路高清| 日韩视频一区二区在线观看| aaaaa片日本免费| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 久久香蕉精品热| 亚洲av五月六月丁香网| 精品不卡国产一区二区三区| av欧美777| 成人亚洲精品一区在线观看| 99香蕉大伊视频| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看 | 国产av又大| 精品第一国产精品| 国产乱人伦免费视频| 男人舔女人下体高潮全视频| 久久中文字幕一级| 欧美色欧美亚洲另类二区 | av有码第一页| 精品熟女少妇八av免费久了| 久久青草综合色| 亚洲国产欧美日韩在线播放| 深夜精品福利| 久久精品成人免费网站| 法律面前人人平等表现在哪些方面| 九色亚洲精品在线播放| 他把我摸到了高潮在线观看| 亚洲人成电影观看| 国产av一区在线观看免费| 久热爱精品视频在线9| 1024香蕉在线观看| 国产一区二区三区视频了| 99国产精品一区二区三区| 神马国产精品三级电影在线观看 | 国内久久婷婷六月综合欲色啪| 在线观看免费视频日本深夜| 国产免费av片在线观看野外av| 国产精品av久久久久免费| 久久久久久亚洲精品国产蜜桃av| 啦啦啦韩国在线观看视频| 老司机在亚洲福利影院| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 亚洲一区高清亚洲精品| 一级毛片高清免费大全| 纯流量卡能插随身wifi吗| 久久久水蜜桃国产精品网| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 91在线观看av| 久久精品国产亚洲av香蕉五月| 国产午夜精品久久久久久| 精品熟女少妇八av免费久了| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 国产在线精品亚洲第一网站| 侵犯人妻中文字幕一二三四区| 亚洲av美国av| 欧美人与性动交α欧美精品济南到| 国内精品久久久久精免费| 神马国产精品三级电影在线观看 | 变态另类丝袜制服| 国产欧美日韩综合在线一区二区| 中文字幕高清在线视频| 不卡一级毛片| 午夜福利免费观看在线| 最新在线观看一区二区三区| 色综合婷婷激情| 自线自在国产av| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 在线观看舔阴道视频| 在线视频色国产色| 国产成人精品无人区| 国产精品永久免费网站| 又紧又爽又黄一区二区| 免费av毛片视频| 国产色视频综合| 精品国内亚洲2022精品成人| 午夜福利高清视频| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 免费人成视频x8x8入口观看| 电影成人av| 桃色一区二区三区在线观看| 午夜福利影视在线免费观看| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频 | 亚洲欧美激情在线| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 久久精品亚洲精品国产色婷小说| 午夜福利一区二区在线看| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 一级,二级,三级黄色视频| 丁香六月欧美| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 极品人妻少妇av视频| 久久香蕉精品热| 色播亚洲综合网| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 禁无遮挡网站| 亚洲欧美激情在线| 国产精品av久久久久免费| 老司机福利观看| 99国产极品粉嫩在线观看| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 欧美日本视频| 精品久久久久久久毛片微露脸| 制服人妻中文乱码| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 久久香蕉激情| 黄色 视频免费看| 18美女黄网站色大片免费观看| 少妇熟女aⅴ在线视频| 久久香蕉国产精品| 中文字幕av电影在线播放| 黄片小视频在线播放| 日本三级黄在线观看| 亚洲第一av免费看| www国产在线视频色| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 亚洲一区二区三区色噜噜| 久久精品成人免费网站| 麻豆成人av在线观看| а√天堂www在线а√下载| netflix在线观看网站| 国产午夜精品久久久久久| 两个人看的免费小视频| 岛国视频午夜一区免费看| 伦理电影免费视频| 国产高清激情床上av| 免费久久久久久久精品成人欧美视频| 一a级毛片在线观看| 十分钟在线观看高清视频www| 久久欧美精品欧美久久欧美| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 午夜两性在线视频| 丝袜人妻中文字幕| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 中文字幕色久视频| 精品国产亚洲在线| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av五月六月丁香网| 国产精品九九99| 中文字幕最新亚洲高清| 乱人伦中国视频| 国产精品久久久久久人妻精品电影| 成年人黄色毛片网站| 搞女人的毛片| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 熟妇人妻久久中文字幕3abv| 日本欧美视频一区| 给我免费播放毛片高清在线观看| 精品久久久精品久久久| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 老司机在亚洲福利影院| 久久久久久大精品| 亚洲精品国产色婷婷电影| 此物有八面人人有两片| 亚洲五月天丁香| 看黄色毛片网站| 在线观看免费视频网站a站| 亚洲人成电影免费在线| 亚洲一区中文字幕在线| 黄色视频不卡| 日韩欧美在线二视频| 999久久久国产精品视频| 亚洲黑人精品在线| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看| 首页视频小说图片口味搜索| 国产精品久久久av美女十八| 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 亚洲天堂国产精品一区在线| 国产精品二区激情视频| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 看免费av毛片| 国产午夜精品久久久久久| 看片在线看免费视频| 黄色视频不卡| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕人妻熟女| 欧美性长视频在线观看| 极品教师在线免费播放| 欧美一级a爱片免费观看看 | 日韩成人在线观看一区二区三区| 制服丝袜大香蕉在线| 亚洲国产精品久久男人天堂| 乱人伦中国视频| 青草久久国产| 少妇熟女aⅴ在线视频| 色综合站精品国产| 9色porny在线观看| av在线播放免费不卡| 日韩一卡2卡3卡4卡2021年| 身体一侧抽搐| 男女下面插进去视频免费观看| 丝袜美足系列| 国产精品二区激情视频| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 少妇熟女aⅴ在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产单亲对白刺激| 999精品在线视频| 亚洲av第一区精品v没综合| 精品国产乱子伦一区二区三区| avwww免费| 日本三级黄在线观看| 亚洲视频免费观看视频| 美女午夜性视频免费| 黑人巨大精品欧美一区二区mp4| 亚洲九九香蕉| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| 非洲黑人性xxxx精品又粗又长| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 亚洲av成人不卡在线观看播放网| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡| 母亲3免费完整高清在线观看| 欧美激情久久久久久爽电影 | 亚洲成国产人片在线观看| 免费少妇av软件| 日本在线视频免费播放| 天堂√8在线中文| 午夜日韩欧美国产| 欧美成人性av电影在线观看| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 亚洲 国产 在线| 大码成人一级视频| 久久精品国产清高在天天线| 中文字幕av电影在线播放| 国产精品自产拍在线观看55亚洲| 久久精品亚洲精品国产色婷小说| 日本 欧美在线| 国产午夜福利久久久久久| 操出白浆在线播放| 亚洲国产精品sss在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 精品一品国产午夜福利视频| 黄片播放在线免费| 90打野战视频偷拍视频| 女性被躁到高潮视频| 亚洲一区中文字幕在线| 黄色 视频免费看| 午夜福利,免费看| 窝窝影院91人妻| 丝袜美腿诱惑在线| 看黄色毛片网站| 一夜夜www| 日韩精品中文字幕看吧| 免费观看人在逋| 一级a爱视频在线免费观看| 十八禁人妻一区二区| 亚洲欧美激情在线| 操出白浆在线播放| 日韩欧美国产一区二区入口| 久久久久国产一级毛片高清牌| 男女做爰动态图高潮gif福利片 | 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 999精品在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲伊人色综图| 91麻豆av在线| 国产精品,欧美在线| 日本三级黄在线观看| 免费高清视频大片| 国产人伦9x9x在线观看| 色综合站精品国产| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 午夜福利高清视频| 亚洲欧美精品综合久久99| 久久精品国产清高在天天线| 欧美中文综合在线视频| 变态另类丝袜制服| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 黄网站色视频无遮挡免费观看| 99久久国产精品久久久| 欧美一区二区精品小视频在线| 桃色一区二区三区在线观看| 在线永久观看黄色视频| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 日韩一卡2卡3卡4卡2021年| 午夜福利高清视频| 午夜福利成人在线免费观看| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 日本免费a在线| 国产精品电影一区二区三区| 日本免费a在线| 夜夜看夜夜爽夜夜摸| 嫁个100分男人电影在线观看| 精品人妻1区二区| 国产av一区在线观看免费| 久久婷婷人人爽人人干人人爱 | 国产精品av久久久久免费| 韩国av一区二区三区四区| 欧美成人一区二区免费高清观看 | 亚洲狠狠婷婷综合久久图片| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 午夜两性在线视频| 97超级碰碰碰精品色视频在线观看| 人人妻人人澡欧美一区二区 | 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 俄罗斯特黄特色一大片| 在线观看66精品国产| 日本黄色视频三级网站网址| 国产三级黄色录像| 可以在线观看毛片的网站| 国产精品久久久久久精品电影 | 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 国产高清激情床上av| 欧美久久黑人一区二区| 国产不卡一卡二| 午夜久久久久精精品| av欧美777| 熟妇人妻久久中文字幕3abv| 久久天堂一区二区三区四区| 国产色视频综合| 少妇熟女aⅴ在线视频| 亚洲人成77777在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲第一av免费看| 亚洲欧美精品综合久久99| 精品电影一区二区在线| 久久这里只有精品19| 妹子高潮喷水视频| 夜夜夜夜夜久久久久| 88av欧美| 50天的宝宝边吃奶边哭怎么回事| 大型av网站在线播放| 欧美亚洲日本最大视频资源| 亚洲成av人片免费观看| 村上凉子中文字幕在线| 精品第一国产精品| 亚洲熟妇中文字幕五十中出| 亚洲色图av天堂| 久久久精品国产亚洲av高清涩受| 精品久久久久久,| 我的亚洲天堂| 69av精品久久久久久| 午夜精品国产一区二区电影| 亚洲成国产人片在线观看| 亚洲精品美女久久久久99蜜臀| www日本在线高清视频| 十八禁人妻一区二区| av中文乱码字幕在线| 亚洲情色 制服丝袜| 国产精品爽爽va在线观看网站 | 精品久久久精品久久久| 给我免费播放毛片高清在线观看| 999久久久国产精品视频| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 国语自产精品视频在线第100页| 大香蕉久久成人网| 丁香欧美五月| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区黑人| 麻豆久久精品国产亚洲av|