• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOFT IMAGE SEGMENTATION BASED ON CENTER-FREE FUZZY CLUSTERING

    2013-12-02 01:39:06MaRuning馬儒寧ZhuYan朱燕DingJundi丁軍娣

    Ma Runing(馬儒寧),Zhu Yan(朱燕),Ding Jundi(丁軍娣)

    (1.College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,P.R.China)

    INTRODUCTION

    Image segmentation is a technique of partitioning agiven image into multiple uniform and nonoverlapping regions[1-2].It is an important operation in several applications of image processing,since it represents the first step of low-level processing of image.

    The concept of soft image segmentation is not a new one.Each pixel has a″degree of belonging″to more than one region in soft segmentation[3].The approaches to soft segmentation contain fuzzy clustering algorithms,fuzzy rulebased approach,relative fuzzy connectedness algorithms[4],PDE model for soft segmentation[5],stochastic model based approaches[6]and so on.A great many improved techniques have been proposed in recent years,such as the approaches based on Gaussian mixture model[7-8].

    Clustering methods are one of the most used algorithms in image segmentation,because they are intuitive and,some of them,easy to be implemented.Fuzzy clustering algorithms are precise for their flexibility.Therefore they can reflect the fuzziness and uncertainty of image[9].The experimental results demonstrate the validity of segmentation based on fuzzy clustering.

    Fuzzy clustering algorithm is an unsupervised clustering algorithm based on iterative optimization of objective function.The traditional fuzzy clustering algorithms,such as the classical fuzzy C-means clustering (FCM)[10],possibilistic C-means clustering (PCM)[11-13],need calculate the cluster center. Many questions arise because there may be no″true″cluster centers[14].Each cluster is represented by all of the points in this cluster instead of its center point.So there is no need to calculate the cluster center.We just need formulate the similarity between the sample and the cluster to confirm the cluster which the samples belong to.The above idea is the center-free fuzzy clustering[14].

    A new soft image segmentation method based on center-free clustering is proposed in this paper.The method merges the small regions instead of the pixels.It is too complex to merge the pixels because of the huge number.Some proposed methods that merge the regions are initially segmented by mean-shift segmentation[15-16].Meanshift is proven in generating robust and accurate segmentation results for color images[17].So it is chosen for initial segmenting in the new method.After initial segmentation,many small available regions can be obtained.Then center-free clustering is used to merge these small regions.Quantitative analyses prove that center-free cluster is less sensitive with respect to noise.Because of the capabilities and advantages of center-free clustering algorithm,soft image segmentation based on center-free fuzzy clustering is suitable to be implemented.Compared with traditional image segmentation methods based on clustering,the experimental results show that the new method can get much better effect.

    1 CENTER-FREE FUZZY CLUSTERING AND DATA CLUSTERING RESULTS

    The idea of center-free fuzzy clustering algorithm is that every point in one cluster has its own contribution in presenting that cluster.The similarity between the sample and the cluster ensure the cluster which the sample should belong to.Now the center-free clustering algorithm is introduced.

    For the dataset X={x1,x2,…,xn}∈Rd×n,each sample has a membership of more than one cluster.So each cluster is considered to be a fuzzy set of the sample-set.Every classification result is represented by the membership matrix U,and uijis the membership of the jth sample belonging to the ith cluster.Obviously,uijshould satisfy

    (1)uij∈[0,1],i=1,2,…,c;j=1,2,…,n,where cis the number of expected clusters,nthe size of the given dataset X.

    Point-to-cluster similarity is defined: The similarityρijbetween the jth sample xjand the ith cluster Viis an average weighted similarity fromxjto any number of the ith cluster.That is

    According to the definition,the objective function of the center-free fuzzy clustering algorithm can be formulated as follows

    In Eq.(1),because the item umik·rkjindicates the similarity of xjto sample xkin the ith cluster that is weighted by the membership ofcan be considered as a sum of the linearly weighted similarity between xjto any number of the ith cluster.Therefore,it is easy to know that whenρijgets the maximum,the sample xjwill belong to the ith cluster.Minimizing the objective function is to assign each sample to the cluster which the sample is most similar to.

    Obviously,this objective function is independent on any cluster center.It only involves the fuzzy membership.So the similarity between the sample and the cluster is changed by fuzzy membership matrix.

    When we deal with the dataset,the goal is to find the fuzzy membership matrix U=(uij)c×n,so that objective function Jccfr(U)is minimized under

    The steps and the iterative formulas of this algorithm are described in detail.For the dataset X={x1,x2,…,xn},where xj=(xj1,xj2,…,xjd)T∈Rd,c∈{1,2,…,n}is the number of expected clusters,fuzzy factor m>1.Jccfr(U)under the re-will reach its minimum when Eq.(3)is true.

    This condition can be easily proved with Lagrange multiple method.

    Proof

    The Lagrange function is constructed as follows

    In Eq.(4),we take the derivative of L,partial with respect to uij.The equation equals to zero.Eq.(5)can be obtained.

    That is

    Finally we get

    The proof is finished.

    The steps of the center-free fuzzy clustering algorithm are given as follows:

    Step 1 Give the number of clusters c (1≤c≤n),the fuzzy factor m,a threshold parameter ε,the time of iteration t=1.Initialize the fuzzy membership matrix U(0).

    Step 2 Compute the point-to-cluster similarity by using Eq.(1).

    Step 3 Update the fuzzy membership matrix Uby using Eq.(3).

    Step 4 The algorithm stop if E=‖U(t+1)-U(t)‖<ε.Otherwise,t=t+1and go to Step 2.

    This paper uses four artificial different databases to test center-free fuzzy clustering algorithm.The artificial databases,as shown in Fig.1,include″Normrand2″(Fig.1(a)),″Normrand2 with noises″(Fig.1(b)),″Semicircle″(Fig.1(c)),and″Block5″(Fig.1(d)).

    Fig.1 Four synthetic data sets

    The clustering results of the center-free fuzzy clustering algorithm,F(xiàn)CM,PCM,F(xiàn)PCM,and PCA are shown in Figs.2-6.Comparing these clustering results,it is easy to find that the center-free fuzzy clustering algorithm is much better than the other four methods.If we analyze in detail,to the manifold-structured clusters,only the center-free clustering algorithm can obtain correct results.For Block5,although these five methods all have errors,the center-free clustering algorithm has the minimum error rate.

    The error rates of above experimental results are counted,as shown in following Table 1.

    Fig.2 Clustering results of center-free fuzzy clustering

    Fig.3 Clustering results of FCM

    Fig.4 Clustering results of FPCM

    Fig.5 Clustering results of PCM

    Table 1 Classification error rates of five clustering methods%

    2 PROPOSED SOFT IMAGE SEGMENTATION METHOD

    Considering the superiority of center-free fuzzy clustering algorithm in data experiment,the soft image segmentation based on center-free fuzzy clustering is proposed.The framework of this method is as follows.Firstly the mean-shift method is chosen for initial segmentation,then center-free fuzzy clustering is used to merge regions(the color vector is extracted as feature),and the final segmented image is obtained.

    Fig.6 Clustering results of PCA

    Thinking about the difficulty of merging pixels,we want to extend the merging of pixel to the merging of region.For this purpose,the initial image segmentation is necessary.This step needs to segment an original image into many small regions.There are so many methods to realize this step,such as mean-shift method, watershed method and otsu's method.Although image segmentation using these methods can obtain the over-segmented image,these low-level segmentation methods provide a good basis for region merging.In this paper,the mean-shift method is chosen for initial segmentation.It can obtain smaller number of regions and maintain the image edge better.Because the number of regions is smaller,every region contains much more pixels.Its advantage is that it can reduce the impact of noise.So the actual conditions of the area can be reflected.Some experiments can illustrate the advantage of mean-shift method.The initial segmentation results by mean-shift,watershed and otsu′s methods are shown in Fig.7.

    Mean-shift is a non-parametric probability density analysis technique.Application domains include clustering and image processing.Meanshift segmentation is a clustering algorithm that performs color and texture segmentation[18].For the principle of mean-shift vector always pointing to probability density gradient direction,it is an iterative method.When mean-shift is used in image segmentation,each pixel is treated as an initial sample and calculated by using mean-shift.As a result,they can"shift"to the local maximum value.This algorithm needs to input color and spatial information.Each pixel is expressed by ap+2-dimensional vector(If it is a color image,p=3.If it is a gray image,p=1).Suppose(xs,xr)is the vector,in which xsis the coordinate of pixel and xrthe color information.The pixels belonging to the same region will″shift″to the same local maximum value.The pixels that shift to the same local maximum value are divided into one class.This is the general process of segmentation by using mean-shift.

    Fig.7 Initial segmentation results of three different methods

    After mean-shift initial segmentation,many small regions are obtained.Features of these small regions should be extracted.Generally,different image characteristics are analyzed such as texture,color,central location,edge and size to achieve image segmentation purpose.As for the color images,each pixel has three components,R,G,B,so the color space can be a feature space.The average value of the color is chosen in these small regions as feature in this paper.When the center-free clustering algorithm is used in data,the samples are the two-dimensional points.In image segmentation,these points can be changed into three dimensions.Obviously,this three-dimensional point represents the RGB average of one region.The reason for extracting this feature is that there is no relationship among the shapes or the sizes of the small regions after initial segmentation.In addition,the color of different regions which belong to the same object will have higher similarity.So it is easy to achieve segmentation results if the color vector is clustered.At last,center-free fuzzy clustering is used to merge these small regions.So we extend the cluster of pixel to cluster of region.Theoretically speaking,the number of expected clusters can be arbitrary constant.But in most cases,the choice of the number depends on the tested picture.Object and background are distinguished according to the general situation.

    As for the similarity among the small regions,it is unscientific if the similarity measure is wholly used between the data points as Eq.(1).That is because the small regions which are not adjacency cannot be clustered.That is to say,the small regions should satisfy the property of connectedness.So the similarity measure Rbetween the small regions is modified as

    where ris the same as rin Eq.(1).

    3 SEGMENTATION RESULTS OF DIFFERENT METHODS

    To analyze the effect of image segmentation method based on center-free clustering,experiments in OBIC image database are performed.EDISON system—the mean-shift software is used to obtain initial segmentation map.Matlab is used to cluster the small regions.Now the results of final segmentation by different segmentation methods based on fuzzy clustering are shown in Fig.8,and the rows of images in Fig.8are numbered as Fig.8-1—Fig.8-11.

    F-measure (Eq.(11))is a measure of the test accuracy.It considers both the precision(Np)and the recall(Nr)of the test to compute the score:Precision is the number of correct results divided by the number of all returned results and recall is the number of correct results divided by the number of results that should be returned.To explain this definition,precision can be seen as a measure of exactness or quality,whereas recall is a measure of completeness or quantity.That is to say,high precision means that the algorithm returns more relevant results than irrelevant ones,and high recall means that the algorithm returns most of the relevant results.F-measure reaches its best value at 1and worst value at 0.

    Fig.8 Segmentation results of different methods

    The values of Np,Nrand Fof Fig.8are obtained,as shown in Table 2.

    Table 2demonstrates that the effect of soft image segmentation based on FCM is almost the same as the segmentation based on FPCM.The segmentation results based on PCM are unsa-tisfied because of the unstable property of PCM.Under the complex conditions,soft segmentation based on center-free clustering is better than the other methods.The cluster number is 3in Fig.8-7and Fig.8-9,so it cannot be measured by F-measure.The quantitative analysis illustrates the superiority of the proposed method.

    Table 2 Values of precision,recall,and F-Measure of above experiment

    4 CONCLUSION

    In this paper,the soft segmentation based on center-free clustering algorithm is propsed.Different from traditional fuzzy clustering,it defines an objective function by using the similarity between the sample and the cluster.The center-free clustering algorithm does not need a center.So it solves the problem of noise sensitivity.Experimental results show that the proposed segmentation method is better than the traditional segmentation methods.Although the method cannot get the best effect of segmentation under some conditions,it has the superiority compared with some other segmentation methods.However,centerfree clustering algorithm can easily entrap into local minimum.The weakness will influence the effect of the proposed method,so it needs to be improved in the later work.

    [1] Senthilkumaran N,Rajesh R.Image segmentation—A survey of soft computing approaches[C]∥2009International Conference on Advances in Recent Technologies in Communication and Computing(Artcom 2009).Kottayam,Kerala,India:IEEE,2009:844-846.

    [2] Naz S,Majeed H,Irshad H.Image segmentation using fuzzy clustering:A survey[C]∥2010 6th International Conference on Emerging Technologies(ICET).Islamabad:IEEE,2010:181-186.

    [3] Prewer D,Kitchen L.Soft image segmentation by weighted linked pyramid[J].Pattern Recognition Letters,2001,22(2):123-132.

    [4] Udupa J K,Saha P K,Lotufo R A.Relative fuzzy connectedness and object definition:Theory,algorithms,and applications in image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.

    [5] Posirca I,Chen Y M,Barcelos C Z.A new stochastic variational PDE model for soft Mumford-Shah segmentation[J].Journal of Mathematical Analysis and Applications,2011,384(1):104-114.

    [6] Fuhua C,Yunmei C.A stochastic variational model for multi-phase soft segmentation with bias correction[J].Advanced Modeling and Optimization,2010,12(3):339-345.

    [7] Barcelos C A Z,Chen Y M,Chen F H,et al.A soft multiphase segmentation model via Gaussian mixture[C]∥2009 16th IEEE International Conference on Image Processing.Cairo,Eqypt:IEEE,2009:3997-4000.

    [8] Tang H,Dillenseger J L,Bao X D,et al.A vectorial image soft segmentation method based on neighborhood weighted Gaussian mixture model[J].Computerized Medical Imaging and Graphics,2009,33(8):644-650.

    [9] Wang Zhen,Yang Meng.A fast clustering algorithm in image segmentation[C]∥2010 2nd International Conference on Computer Engineering and Technology(ICCET).Chengdu,China:IEEE,2010:V6-592-V6-594.

    [10]Hung Ming-chuan,Yang Don-lin.An efficient fuzzy C-means clustering algorithm[C]∥Proceedings IEEE International Conference on Data Mining.California,USA:IEEE,2001:225-232.

    [11]Krishnapuram R,Keller J M.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.

    [12]Yang M S,Wu K L.Unsupervised possibilistic clustering[J].Pattern Recognition,2006,39(1):5-21.

    [13]Pal N R,Pal K,Keller J M,et al.A possibilistic fuzzy C-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2005,13(4):517-530.

    [14]Ding Jundi,Ma Runing,Hu Xiaoqing,et al.Fuzzy C-means revisited:Towards a cluster-center-free reformulation[C]∥2010Chinese Conference on Pattern Recognition (CCPR).Chongqing,China:IEEE,2010:1-5.

    [15]Ning J F,Zhang L,Zhang D,et al.Interactive image segmentation by maximal similarity based region merging[J].Pattern Recognition,2010,43(2):445-456.

    [16]Li Junxia,Ma Runing,Ding Jundi.Saliency-seeded region merging automatic object segmentation[C]∥First Asian Conference on Pattern Recognition(ACPR).Beijing,China:IEEE,2011:691-695.

    [17]Luo Q M,Khoshgoftaar T A.Efficient image segmentation by mean-shift clustering and MDL-guided region merging[C]∥16th IEEE International Conference on Tools with Artificial Intelligence.Boca Raton,F(xiàn)L:IEEE,2004:337-343.

    [18]Tai Y W,Jia J Y,Tang C K.Soft color segmentation and its applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1520-1537.

    日韩亚洲欧美综合| 在线免费观看不下载黄p国产| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 大话2 男鬼变身卡| 91狼人影院| 大香蕉久久网| 大陆偷拍与自拍| 国内精品美女久久久久久| 男女啪啪激烈高潮av片| 精品一区在线观看国产| 麻豆成人午夜福利视频| 亚洲av在线观看美女高潮| 国产激情偷乱视频一区二区| 亚洲欧美精品自产自拍| 亚洲av成人av| 久久久久久国产a免费观看| 成人漫画全彩无遮挡| 色综合站精品国产| av一本久久久久| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 日韩成人伦理影院| 亚洲精品,欧美精品| 亚洲国产欧美在线一区| 最后的刺客免费高清国语| 亚洲人成网站在线播| 搞女人的毛片| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 国产乱人偷精品视频| 少妇高潮的动态图| 美女国产视频在线观看| 国产在视频线精品| 日韩欧美国产在线观看| 免费观看在线日韩| 一级毛片 在线播放| 丝袜美腿在线中文| 国产大屁股一区二区在线视频| 国产成人freesex在线| 神马国产精品三级电影在线观看| 舔av片在线| 51国产日韩欧美| 秋霞伦理黄片| av在线观看视频网站免费| 亚洲美女视频黄频| 亚洲内射少妇av| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 网址你懂的国产日韩在线| 欧美bdsm另类| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 大香蕉久久网| 七月丁香在线播放| 国内精品宾馆在线| 国产淫语在线视频| 午夜福利高清视频| 精品久久国产蜜桃| 免费看av在线观看网站| 国产白丝娇喘喷水9色精品| 男人舔女人下体高潮全视频| av卡一久久| 九九爱精品视频在线观看| 国产毛片a区久久久久| 婷婷色综合大香蕉| 色播亚洲综合网| 亚洲国产成人一精品久久久| 日本三级黄在线观看| a级一级毛片免费在线观看| 国产探花极品一区二区| 欧美+日韩+精品| av福利片在线观看| 午夜日本视频在线| or卡值多少钱| 国产视频内射| 日日啪夜夜爽| 国产综合懂色| videos熟女内射| 中文在线观看免费www的网站| 黄色欧美视频在线观看| 搞女人的毛片| 两个人的视频大全免费| av免费观看日本| 国产亚洲91精品色在线| 久久精品久久精品一区二区三区| 久久久色成人| 啦啦啦啦在线视频资源| 午夜久久久久精精品| av在线亚洲专区| 国产精品一区二区在线观看99 | 欧美不卡视频在线免费观看| 少妇人妻一区二区三区视频| 亚洲av电影在线观看一区二区三区 | 亚洲国产欧美在线一区| 国产视频内射| 免费大片黄手机在线观看| 哪个播放器可以免费观看大片| 国产高清有码在线观看视频| 99热这里只有是精品50| 婷婷色麻豆天堂久久| 乱人视频在线观看| 九九爱精品视频在线观看| 精品国产一区二区三区久久久樱花 | 国产成人精品一,二区| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 国产单亲对白刺激| 亚洲国产高清在线一区二区三| 天堂√8在线中文| 成人性生交大片免费视频hd| 午夜视频国产福利| 久久99蜜桃精品久久| 久久精品久久精品一区二区三区| 亚洲在线自拍视频| av播播在线观看一区| 免费观看无遮挡的男女| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| 国产精品久久视频播放| 日本一本二区三区精品| 日产精品乱码卡一卡2卡三| 免费观看性生交大片5| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 日韩av免费高清视频| 秋霞在线观看毛片| 午夜福利视频1000在线观看| 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 亚洲人与动物交配视频| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 亚洲精品影视一区二区三区av| av黄色大香蕉| 国产亚洲5aaaaa淫片| 免费观看性生交大片5| 天堂影院成人在线观看| 国产极品天堂在线| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 神马国产精品三级电影在线观看| 国模一区二区三区四区视频| 天堂av国产一区二区熟女人妻| 免费高清在线观看视频在线观看| 国产在视频线精品| 搞女人的毛片| 一边亲一边摸免费视频| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 国产高清不卡午夜福利| 中国国产av一级| 晚上一个人看的免费电影| 国产老妇女一区| 亚洲内射少妇av| 超碰97精品在线观看| 免费av不卡在线播放| 中文精品一卡2卡3卡4更新| 亚洲人与动物交配视频| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久电影| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片| 亚洲欧美一区二区三区黑人 | 国产高清不卡午夜福利| 搡女人真爽免费视频火全软件| 国产高清国产精品国产三级 | 熟女人妻精品中文字幕| 九草在线视频观看| 国产一区二区亚洲精品在线观看| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 欧美bdsm另类| 男人爽女人下面视频在线观看| 日日摸夜夜添夜夜添av毛片| 日韩欧美三级三区| 国产精品一二三区在线看| h日本视频在线播放| 天堂√8在线中文| 一级av片app| 国产有黄有色有爽视频| 一级二级三级毛片免费看| 内地一区二区视频在线| freevideosex欧美| 国模一区二区三区四区视频| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 色视频www国产| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区 | 精品一区二区免费观看| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网 | 久久精品综合一区二区三区| 成人二区视频| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 边亲边吃奶的免费视频| 国产成人免费观看mmmm| 97精品久久久久久久久久精品| 久久久久国产网址| 婷婷六月久久综合丁香| 国产av国产精品国产| 精品久久久精品久久久| 18禁动态无遮挡网站| a级一级毛片免费在线观看| 国产成人精品久久久久久| 免费电影在线观看免费观看| 18禁裸乳无遮挡免费网站照片| 又爽又黄a免费视频| 亚洲经典国产精华液单| 久久久成人免费电影| 精品久久久久久久末码| 亚洲不卡免费看| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久av不卡| 直男gayav资源| 你懂的网址亚洲精品在线观看| av免费在线看不卡| 日韩成人av中文字幕在线观看| 国产亚洲精品久久久com| 伊人久久国产一区二区| 80岁老熟妇乱子伦牲交| 国产熟女欧美一区二区| 一级毛片 在线播放| 国产亚洲一区二区精品| 日本黄大片高清| 国产黄片视频在线免费观看| 日韩电影二区| 久久久久久久久久黄片| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 精品国内亚洲2022精品成人| 七月丁香在线播放| 蜜桃久久精品国产亚洲av| 国产黄色免费在线视频| 男人和女人高潮做爰伦理| 日本熟妇午夜| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 国产精品1区2区在线观看.| 美女国产视频在线观看| 中文字幕制服av| av网站免费在线观看视频 | 午夜免费观看性视频| 免费av毛片视频| 国产69精品久久久久777片| 精品一区二区三区人妻视频| 丰满少妇做爰视频| 一个人看的www免费观看视频| 中国国产av一级| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 如何舔出高潮| 亚洲国产精品sss在线观看| 在线 av 中文字幕| 插逼视频在线观看| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 久久久久精品性色| 国产熟女欧美一区二区| 一区二区三区免费毛片| 精品酒店卫生间| 亚洲最大成人av| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人片av| 精品一区二区三区人妻视频| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 亚洲精品国产成人久久av| av在线老鸭窝| 99热网站在线观看| 国产精品伦人一区二区| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区 | 成人漫画全彩无遮挡| 国产综合懂色| 美女国产视频在线观看| 中文字幕免费在线视频6| 国产黄色免费在线视频| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99 | 国产 一区 欧美 日韩| 波野结衣二区三区在线| 天堂影院成人在线观看| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| 丝袜美腿在线中文| 成人一区二区视频在线观看| 22中文网久久字幕| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 22中文网久久字幕| 国产亚洲最大av| 最近2019中文字幕mv第一页| 18+在线观看网站| 亚洲欧美日韩无卡精品| videossex国产| 亚洲av中文字字幕乱码综合| 97人妻精品一区二区三区麻豆| 一级毛片我不卡| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 午夜免费激情av| 午夜视频国产福利| 在线观看一区二区三区| 国产精品嫩草影院av在线观看| 日韩成人伦理影院| 一级毛片 在线播放| 少妇人妻精品综合一区二区| 一个人看的www免费观看视频| 亚洲精品乱久久久久久| 亚洲国产色片| 日韩国内少妇激情av| 天堂√8在线中文| 99热这里只有是精品50| 国产男人的电影天堂91| 中文字幕久久专区| 天堂√8在线中文| 一级爰片在线观看| 五月玫瑰六月丁香| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 成人综合一区亚洲| 一级片'在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 搡女人真爽免费视频火全软件| 成人亚洲精品av一区二区| 国产精品无大码| 久久精品国产亚洲网站| 国产黄频视频在线观看| 啦啦啦啦在线视频资源| 亚洲精品日韩av片在线观看| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 免费在线观看成人毛片| 美女脱内裤让男人舔精品视频| 一级毛片久久久久久久久女| av在线亚洲专区| 成人漫画全彩无遮挡| 97超碰精品成人国产| 综合色av麻豆| 亚洲欧美成人精品一区二区| 超碰av人人做人人爽久久| 国产伦理片在线播放av一区| 日韩成人av中文字幕在线观看| 国产伦在线观看视频一区| 国产高清国产精品国产三级 | 日本黄色片子视频| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 99热6这里只有精品| 欧美xxxx黑人xx丫x性爽| 十八禁国产超污无遮挡网站| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 日韩精品有码人妻一区| 亚洲人与动物交配视频| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 99久久人妻综合| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 国产一区二区三区综合在线观看 | 国产亚洲一区二区精品| 国产免费一级a男人的天堂| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 免费av毛片视频| 精品久久久久久久久久久久久| 日日撸夜夜添| 成人综合一区亚洲| 国产视频首页在线观看| 99re6热这里在线精品视频| 观看美女的网站| 特级一级黄色大片| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| 一区二区三区免费毛片| 国产一级毛片七仙女欲春2| 五月天丁香电影| 中文天堂在线官网| a级毛色黄片| 国产一区二区三区av在线| 国产精品蜜桃在线观看| www.色视频.com| 丝袜喷水一区| 天堂√8在线中文| 国产激情偷乱视频一区二区| 欧美一区二区亚洲| 欧美不卡视频在线免费观看| 欧美日韩国产mv在线观看视频 | 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 91久久精品电影网| 色视频www国产| 哪个播放器可以免费观看大片| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区视频9| 伊人久久国产一区二区| 一级片'在线观看视频| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 欧美+日韩+精品| 丝袜美腿在线中文| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 久久热精品热| 免费看日本二区| 精品久久久久久久久亚洲| 99久久人妻综合| 久久久久久久久久黄片| 少妇的逼水好多| 偷拍熟女少妇极品色| 九草在线视频观看| 一区二区三区乱码不卡18| 1000部很黄的大片| 人妻系列 视频| 亚洲欧美日韩无卡精品| 尤物成人国产欧美一区二区三区| 一边亲一边摸免费视频| 伦精品一区二区三区| 国产免费视频播放在线视频 | 少妇人妻精品综合一区二区| 亚洲欧美精品专区久久| 内地一区二区视频在线| 亚州av有码| av专区在线播放| 中国国产av一级| 国产一区二区三区综合在线观看 | 一区二区三区四区激情视频| 久久久久久久久久久免费av| 午夜福利视频1000在线观看| 男女啪啪激烈高潮av片| 免费看日本二区| 婷婷六月久久综合丁香| 精品一区二区三卡| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 一本久久精品| 久久久久久九九精品二区国产| 人妻系列 视频| 男女下面进入的视频免费午夜| 中文字幕人妻熟人妻熟丝袜美| 国产av不卡久久| 天堂av国产一区二区熟女人妻| 丰满少妇做爰视频| 日本欧美国产在线视频| 免费看光身美女| 国产精品三级大全| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 久久精品久久久久久久性| 成年女人看的毛片在线观看| 嫩草影院新地址| 午夜免费观看性视频| 在线免费观看的www视频| 国产一区有黄有色的免费视频 | 亚洲精品第二区| 美女大奶头视频| 99久久人妻综合| 少妇的逼好多水| 欧美人与善性xxx| 精品久久久久久久末码| 在线观看av片永久免费下载| 中文字幕亚洲精品专区| 亚洲精品色激情综合| 欧美高清成人免费视频www| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 国产视频内射| 亚洲av.av天堂| 可以在线观看毛片的网站| 日本av手机在线免费观看| 熟女电影av网| 国产乱来视频区| 免费播放大片免费观看视频在线观看| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| 99视频精品全部免费 在线| 午夜激情欧美在线| 日本wwww免费看| 秋霞伦理黄片| 一二三四中文在线观看免费高清| 永久免费av网站大全| 超碰97精品在线观看| 国产 亚洲一区二区三区 | 精品一区二区三卡| 一个人免费在线观看电影| 国产熟女欧美一区二区| a级毛色黄片| 国产成人91sexporn| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 亚洲自偷自拍三级| 精品少妇黑人巨大在线播放| 国产精品熟女久久久久浪| 亚洲自拍偷在线| 观看免费一级毛片| 青青草视频在线视频观看| 国产精品久久久久久久电影| 建设人人有责人人尽责人人享有的 | 在线观看人妻少妇| 一级二级三级毛片免费看| 精品国产露脸久久av麻豆 | 大话2 男鬼变身卡| 久久草成人影院| 日韩三级伦理在线观看| 内射极品少妇av片p| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 国产亚洲一区二区精品| 亚洲成人av在线免费| 纵有疾风起免费观看全集完整版 | 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 亚洲最大成人手机在线| 欧美xxⅹ黑人| 成人性生交大片免费视频hd| 国产永久视频网站| 午夜激情欧美在线| 亚洲真实伦在线观看| 亚洲精品中文字幕在线视频 | 我的女老师完整版在线观看| av在线老鸭窝| 国产av不卡久久| 看黄色毛片网站| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 搡老妇女老女人老熟妇| 99久久九九国产精品国产免费| 精品久久久精品久久久| 天堂中文最新版在线下载 | 亚洲18禁久久av| 高清毛片免费看| 一级毛片 在线播放| 精品久久久久久久久久久久久| 日韩三级伦理在线观看| a级一级毛片免费在线观看| 亚洲精品影视一区二区三区av| freevideosex欧美| 观看免费一级毛片| 69人妻影院| 国产精品综合久久久久久久免费| 99久久人妻综合| 国产精品精品国产色婷婷| 成年女人看的毛片在线观看| 国产精品蜜桃在线观看| 国产精品日韩av在线免费观看| 白带黄色成豆腐渣| 少妇熟女欧美另类| 七月丁香在线播放| 亚洲在久久综合| 简卡轻食公司| 免费av毛片视频| 国产精品99久久久久久久久| av女优亚洲男人天堂| 婷婷六月久久综合丁香| 久久久久免费精品人妻一区二区| 国产精品嫩草影院av在线观看| 最新中文字幕久久久久| 午夜视频国产福利| 国产在视频线精品| 精华霜和精华液先用哪个| 国产激情偷乱视频一区二区| 性色avwww在线观看| 国产一区二区三区av在线| 久久精品熟女亚洲av麻豆精品 | 伦精品一区二区三区| 男人爽女人下面视频在线观看| 国产视频首页在线观看| 高清午夜精品一区二区三区| 极品教师在线视频| 亚洲欧洲日产国产| 国产熟女欧美一区二区| 国产一级毛片在线| 国产精品三级大全| 国产高清不卡午夜福利| 成年免费大片在线观看| 爱豆传媒免费全集在线观看| 亚洲欧美日韩东京热| 亚洲成人久久爱视频| 99热网站在线观看| 国产精品99久久久久久久久| 精品人妻熟女av久视频| 菩萨蛮人人尽说江南好唐韦庄| 伦精品一区二区三区| 精品一区二区三区视频在线| 亚洲av成人精品一二三区| 国产伦在线观看视频一区| 五月天丁香电影| 亚洲欧美成人综合另类久久久| 18+在线观看网站| 大香蕉97超碰在线| 亚洲美女视频黄频| 国产午夜精品论理片|