• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PREDICTION OF SURFACE ROUGHNESS FOR END MILLING TITANIUM ALLOY USING MODIFIED PARTICLE SWARM OPTIMIZATION LS-SVM

    2013-12-02 01:39:04LiuChunjing劉春景TangDunbing唐敦兵Hehua何華ChenXingqiang陳興強(qiáng)
    關(guān)鍵詞:春景

    Liu Chunjing(劉春景),Tang Dunbing(唐敦兵),He hua(何華) Chen Xingqiang(陳興強(qiáng))

    (1.College of Mechanical and Electronic Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.Department of Mechanical and Electronic Engineering,College of Bengbu,Bengbu,233030,P.R.China)

    INTRODUCTION

    Since titanium alloys like Ti6Al4Vhas dislocation motion obstacles in microstructure,it has additional desired characteristics such as,high strength and excellent mechanical resistance even at elevated temperatures[1-2].Many manufacturers propose titanium alloy applications which offer higher strength and wider processing window than conventional hard steels do[3].Compressor blades,discs and rings for jet engines,airframe and space components,pressure vessels,rocket engine cases,helicopter rotor hubs and fasteners are all made of Ti6Al4Vtitanium alloys[4-8].

    The quality of components,normally referring to dimensional accuracy,form,and surface finish,is the main concern of manufacturing industry.Among them,the arithmetic average of absolute roughness parameter(Ra)is the most extended index of product quality and,in most cases,a technical requirement for mechanical products[9].During cutting titanium alloys,complex interactions are created between the tool and the workpiece at the contact surface.Consequently,significant forces and high temperatures are recorded causing wear and sometimes breakage of the tool.As a result,the dimension precisions of the finished workpiece and the surface roughness are altered,but the generation process of surface roughness is not fully understood[10].Thus,experimental and analytical models,or those called empirical models developed by conventional approaches like the statistical regression technique which is combined with the response surface methodology(RSM),have remained as an alternative in modeling machining process.Although the statistical regression technique works well for modeling,it can not describe precisely the underlying complicated nonlinear relations between machining parameters and surface roughness[11].Researchers proposed several approaches for predicting surface roughness to increase precision.Palani and Natarajan[12]presented a system for automated and flexible noncontact prediction of the surface roughness of end milling parts through a machine vision system with an integrated artificial neural network (ANN).Costes and Moreau[13]proposed a methodology to predict surface topography using tool displacements and based on tool center point.From the recorded signals and the machining parameters,the tool deformation was modeled.Then,from the calculated deflection,the surface topography in 3-D was predicted.Ne?eli,et al[14]used RSM to find out the effect of tool geometry parameters on the surface roughness during turning.The results indicated that the tool nose radius was the dominant factor on the surface roughness.Brezocnik,et al[15]proposed a genetic programming approach to predict surface roughness in end milling process.It was believed that the surface roughness was influenced most highly by feed rate,whereas the vibrations increased the prediction accuracy.Brecher,et al[16]used NC kernel data for monitoring surface roughness in milling operations and developed a human-machine interface through global user data to analyze on-line data with ANN.Zhang,et al[17]studied the development of a surface roughness model for the finish turning of TC11.The multi-quadratic regression equation predicting formula for surface roughness was established by means of the central composite de-sign of experiment.

    As we all know,conventional methods like back-propagation(BP)network model based on empirical risk minimization principle have some drawbacks in practical applications,such as slow convergence,easy immerging in local minimum,network structure and type overdepending on experiences,and so on[18].In recent years,support vector machine(SVM)based on statistical learning theory has been developed and successfully used to solve the problem with small samples,nonlinearity,and higher dimension.SVM is designed to minimize structural risk,so it is usually less vulnerable to overfit,local minimum problem,etc.SVM maps input data into a high dimensional feature space and constructs an optimal separating hyperplane in this space.This basically involves solving aquadratic programming(QP)problem with inequality constraints in dual space[19].Least square (LS)-SVM is a modified version of SVM,in which analytical solutions can be obtained by solving linear equations instead of a QP problem,and it greatly reduces the computational complexity[20].Therefore,aprediction model of surface roughness is established by means of LS-SVM.As the prediction model is smooth,nonconvex and constrained,it can hardly be solved by conventional methods.And considering the bigger dimensions of practical engineering with large-scale problems,to ensure a reliable convergence and improve the convergence speed,the modified partical swarm optimization(PSO)algorithm without calculating the inversion of matrix is applied for the control parameters.

    1 EXPERIMENTAL SETUP AND ANALYSIS

    1.1 Means and materials

    Milling tests are performed on a three-axis vertical milling center with numerical control provided by a FANUC 0i.The machine tool axes have a range of 0—900mm in Xdirection,0—500mm in Ydirection and 0—300mm in Zdirection.It has a 16kW spindle motor with a maxi-mum rotation speed of 15 000rad/m.Prior to machining trials,the six surfaces of the workpiece are machined for removing the hard layer on the outer surface.

    PVD-TiAlN base coated carbide tools with a 12mm diameter and 4flutes are used in the experiments.Rake angle,helix angle and relief an-gle of the tool are 4°,30°and 10°,respectively.The composition and properties of the cutting tools are illustrated in Table 1.

    α-βtitanium alloy′Ti6Al4V′is selected as the workpiece material.The physical and chemical properties of Ti6Al4Valloy are summarized in Tables 2-3.

    Table 1 Composition and property of cuttingtool

    Table 2 Chemical property of titanium alloy Ti6Al4Vwt%

    Table 3 Physical property of titanium alloy Ti6A14V

    The surface roughness(Ra)is measured by using Mitutoyo Surftest 301.The measurements are repeated three times.The considered result is an average of these values for a given machining pass.

    1.2 Orthogonal array experiment

    Taguchi method studies the influence of the input parameters on the outputs by using the analysis of variance(ANOVA)and signal-to-noise(S/N)ratio[21].To determine the influence of control factors on surface roughness,three input parameters are selected:cutting speed,feed rate and axial depth of cut.Moreover,the radial depth of cut is kept as a constant of 8.6mm.The L27(313)orthogonal array is employed.Cutting speed,feed rate and axial depth of cut are arranged in columns 1,2and 5,respectively.The levels of the test factors and the L27(313)orthogonal array are presented in Tables 4-5,respectively.In Table 4,the three experimental variables are coded as X1=(Vc-160)/40,X2=(fz-0.12)/0.02,and X3=(aa-0.35)/0.15.where X1,X2and X3are coded values of the variables.Vcis the cutting speed,fzthe feed rate and aathe axial depth of cut.

    Table 4 Cutting parameters and their levels

    1.3 Result and analysis

    For evaluating the reliability of experimental results and the credibility of mathematical models,the experimental results must be tested.ANOVA is used for graphically analyzing the data to obtain the interaction between the process variables and the responses.The quality of the fit model is expressed by the coefficient of determination R2,and its statistical significance is checked by Fisher′s F-test in the same program.Model terms are evaluated by P (probability)with 95%confidence level[22].ANOVA of surface roughness are shown in Table 6.

    Table 5 Experimental result for surface roughness

    Table 6 Response and ANOVA of surface roughness

    Data given in Table 6demonstrates that the model is significant at the 5%confidence level since P is less than 0.05.R2(0.986 8)ensures a 98.68%adjustment of the model to the experimental data,and only 1.32%does not agree with the model.The correlation coefficient AdjR2is 0.982 9,which indi-cates that there is a good correlation between the predicted values and the test results of surface roughness.Adequate precision(AP)compares the range of the predicted values at the design points with the average prediction error.AP value higher than 4(51.862)for the response confirms that the predicted model can be used to navigate the design space defined by the L27(313)orthogonal experiment.In Table 6,DOF is the degree of freedom,Seq SS the sequential sum of square and Adj SS the adjust sum of square.

    S/N ratios are calculated and listed in Table 5.The highest S/N ratio is observed at the 19th test condition with the cutting parameters listed as 1level(cutting speed),-1level(feed rate)and-1level(axial depth of cut).The values of Raand S/N are also plotted in Figs.1-2.

    Fig.1 S/N ratio at different control levels

    Fig.2 Raat different control levels

    2 MODIFIED PSO LS-SVM

    Given a training data set{(xi,yi)|xi∈ Rn,yi∈ R}ni=1,where xiand yiare the input and the corresponding output,respectively.Using nonlinear relations,the data samples are mapped from the original space to a higher-dimensional characteristic space.In the higher-dimensional space,the optimal decision function is constructed in the form

    where the nonlinear functionφ(·)maps the input pattern into a higher-dimensional feature space.The coefficient vectorωand bias termbare unknown.These unknown parameters can be obtained through solving the following optimization problem

    whereξiis the non-negative slack variable,representing the error in the classification problem.The regularized parameterγis a constant denoting a trade-off between the maximum margin 1/‖ω‖2and the minimum experience risk.

    The corresponding Lagrange function is given as

    where Lis the Lagrangian and aithe Lagrange multiplier.It follows the saddle point condition that the partial derivatives of L with respect to the primal variables(ω,b,ξ,a)have to vanish for optimality.

    Taking partial derivatives of L with respect toω,b,ξand a,the following equations are derived

    According to Karush-Kuhn-Tucker (KKT)conditions[23],the optimization is converted to solving the set of linear Eq.(5)by eliminating the parameters ofωandξof Eq.(4)

    where y=[y1y2… yn]T,Θ=[1 1 …1]T,a=[a1a2… an]T,Ωij=ψ(xi,xj)=φ(xi)Tφ(xj),andψ(·)is a symmetric function satisfying the Mercer condition.The regression function of LS-SVM is

    Duo to Eq.(5),the original problem can be described as

    Generally least square method is used to resolve these equations in LS-SVM.Considering the bigger dimensions of ATAin practical engineering with largescale problems,PSO algorithm with the performance of avoiding calculating the inversion of matrix is applied to resolve the optimum particle S=[s1,s2,…,sn]Tof Eq(7).

    PSO is one of the modern heuristic algorithms developed by Kennedy and Eberhart.It uses a number of particles that constitute a swarm,and each particle represents a potential solution within the search space.The i-th particle has its own best position pbest= (pi1,pi2,…,piD)at which the best fitness is encountered by the particle so far,and the global best position is denoted by gbest=(pg1,pg2,…,pgD)corresponding to all particles in current generation.

    The change of position of each particle from one iteration to another can be computed according to the distance between the current position and its previous best position and the distance between the current position and the best position of swarm.Then the updating of velocity and particle position can be obtained by using the following equations

    where viis the velocity and sithe position of particle,φ1andφ2are accelerative constants,r1and r2random variables uniformly distributed in the range of[0,1].

    To ensure a reliable convergence and improve the convergence speed,the modified PSO is carried out to solve the considered problem by adding convergence factor (χ),inertia weight (μ)and constrain factor (β).Particle iteration formulas are as follows

    3 PREDICTION MODEL OF SURFACE ROUGHNESS

    Based on formation mechanism and process analysis,the main factors affecting the surface roughness are cutting speed,feed rate and depth of cut.Therefore,they are selected as the input variables of the model.The output is surface roughness.Due to the complicated relations between influential factors and surface roughness,the prediction model can not be constructed through analyzing the formation mechanism of surface roughness.Experimental data are used to establish the prediction model directly based on modified PSO LS-SVM.The analysis of surface roughness formation mechanism is converted to the parameter identification problem of prediction model.

    The procedures for establishing the prediction model are as follows:

    Step 1 Record the relations between influencing factors and surface roughness by using L27(313)orthogonal array experiments.

    Step 2 Construct the training set of prediction model based on modified PSO LS-SVM{xi,yi},where i is the experiment number,xithe cutting speed,feed rate and axial depth of cut,yithe i-th experiment value of surface roughness.

    Step 3 Initialize particle swarm randomly,including generating nparticles of s1,s2,…,snto form initial population S(t)and acquiring the velocity matrix v(t)by using the velocity of each particle,where S(t)=[s1,s2,…,sn],v(t)=[v1,v2,…,vn].The initial value of particle best value pbest,iis the initial value of si.

    Step 4 Calculat fitness function f(s)of each particle according to the mean squared deviation of

    Step 5 Compare f(si)of each particle with f(pbest,i),if f(si)<f(pbest,i),then pbest,i=si,and if f(si)<f(gbest,i),then gbest,i=si,where f(si)is fitness function,f(pbest,i)the optimal fitness of iteration process,f(gbest,i)the optimum fitness of particle swarm,gbest,ithe global optimal solution.

    Step 6 Acquire the new swarmS(t+1)by updating the velocity and the position of particle according to Eqs.(10-11).Adjustment rules of

    Step 7 If the maximum iteration number is abtained,stop searching,and output the optimal solution b and{ai}ni=1,or else t=t+1,return to Step 2.

    Step 8 Establish the prediction model of surface roughness based on modified PSO LSSVM by inserting b and {ai}ni=1into Eq.5.

    The model response of^yiis acquired when xiis inserted into the prediction model based on modified PSO LS-SVM.The prediction error can be obtained by comparing predictive value and measured value.

    4 CASE STUDY FOR SURFACE ROUGHNESS MODELING

    Comparison test for surface roughness modeling are carried out by using BP neural network,LS-SVM and modified PSO LS-SVM according to Table 5,respectively.The initial parameters of BP algorithm are given as follows:learning rate:α=0.2;training epochs are equal to 10 000;the numbers of neuron in hidden layer are set as 9and 12.LS-SVM algorithm is directly realized based on Matlab′s(Matlab 7.1programming language)function of matrix operation.The initial parameters of LS-SVM are given as follows:kernel bandwidth:δ=0.45;penalty coefficient:γ=500.In order to solve high dimension problem efficiently,Gaussian radial basis functionφ(x,y)=exp[ -(x-y)(x-y)T/2δ2] is used as the kernel function of LS-SVM.

    The experiments are exerted on a 2.0GHz(M)CPU personal computer with 512MB memory under the operation system of Microsoft Windows XP professional.Time cost of prediction models and learning accuracy of training sets of 4 methods are shown in Table 7.The time cost of modified PSO LS-SVM is one to two orders of magnitude lower than thant of BP neural network,and nearly one order lower than that of LSSVM.

    The confirmation experiments are performed by using those parameters excluding experiment parameters.When the experiments are repeated three times,the following surface roughness results of actual values and prediction values are observed as shown in Table 8.The research results show that the mean square error(MSE)of modified PSO LS-SVM is nearly two to three orders of magnitude lower than that of BP neural network,while it is nearly one order of magnitude lower than that of LS-SVM.The modified PSO LSSVM prediction model can explain the influences of cutting speed,feed rate and axial depth of cut on surface roughness.The surface roughness decreases with the increase of the cutting speed.The higher feed rate and axial depth of cut lead to the increase of surface roughness.Higher cutting speed,lower feed rate and smaller axial depth of cut are more optimal cutting conditions.

    Table 7 Comparison of BP neural network,LS-SVM and modified PSO LS-SVM

    Table 8 Predictive result comparison of surface roughness

    5 CONCLUSION

    A novel prediction model based on modified PSO LS-SVM is proposed.The modified PSO LSSVM model is validated theoretically and experimentally.The research results show that the construction speed of the modified PSO LS-SVM model is two orders of magnitude faster than that of BP model.Moreover,the prediction accuracy is about one order of magnitude higher than that of BP model.The modified PSO LS-SVM prediction model can explain the influences of cutting speed,feed rate and axial depth of cut on the surface roughness of machined titanium alloys.

    In future researches,we will further study the optimizing techniques hybridized with modified PSO LS-SVM to optimize all the cutting parameters that affect the predicted surface roughness.

    [1] Ulutan D,Ozel T.Machining induced surface integrity in titanium and nickel alloys:A review[J].International Journal of Machine Tools and Manufacture,2011,51(3):250-280.

    [2] Boyer R R.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering,1996,213(1/2):103-114.

    [3] Nouari M,Ginting A.Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy[J].Surface and Coatings Technology,2006,200(18/19):5663-5676.

    [4] Arrazola P J,Garay A,Iriarte L M,et al.Machinability of titanium alloys(Ti6Al4Vand Ti555.3)[J].Journal of Materials Processing Technology,2009,209(5):2223-2230.

    [5] Li R,Hegde P,Shih A.High-throughput drilling of titanium alloys[J].International Journal of Machine Tools and Manufacture,2007,47(1):63-74.

    [6] Cheharon C,Jawaid A.The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J].Journal of Materials Processing Technology,2005,166(2):188-192.

    [7] Ginting A,Nouari M.Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material[J].International Journal of Machine Tools and Manufacture,2006,46(7/8):758-768.

    [8] Tansel I N,G¨ulmez S,Demetgul M,et al.Taguchi method-GONNS integration: Complete procedure covering from experimental design to complex optimization[J].Expert Systems with Applications,2011,38(5):4780-4789.

    [9] Quintana G,Rudolf T,Ciurana J,et al.Using kernel data in machine tools for the indirect evaluation of surface roughness in vertical milling operations[J].Robotics and Computer-Integrated Manufacturing,2011,27(6):1011-1018.

    [10]Yallese M,Chaoui K,Zeghib N,et al.Hard machining of hardened bearing steel using cubic boron nitride tool[J].Journal of Materials Processing Technology,2009,209(2):1092-1104.

    [11]Mukherjee I,Ray P.A review of optimization techniques in metal cutting processes[J].Computers &Industrial Engineering,2006,50(1/2):15-34.

    [12]Palani S,Natarajan U.Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2DFourier transform[J].The International Journal of Advanced Manufacturing Technology,2010,54(9/12):1033-1042.

    [13]Costes J P,Moreau V.Surface roughness prediction in milling based on tool displacements[J].Journal of Manufacturing Processes,2011,13(2):133-140.

    [14]Ne?eli S,Yald?z S,T¨urke?E.Optimization of tool geometry parameters for turning operations based on the response surface methodology[J].Measurement,2011,44(3):580-587.

    [15]Brezocnik M,Kovacic M,F(xiàn)icko M.Prediction of surface roughness with genetic programming[J].Journal of Materials Processing Technology,2004,157-158(20):28-36.

    [16]Brecher C,Quintana G,Rudolf T,et al.Use of NC kernel data for surface roughness monitoring in milling operations[J].The International Journal of Advanced Manufacturing Technology,2010,53(19/12):953-962.

    [17]Zhang Hongzhou,Ming Weiwei,An Qinglong,et al.Application of response surface methodology in surface roughness prediction model and parameter optimization[J].Journal of Shanghai JiaoTong University,2010,44(4):447-452.(in Chinese)

    [18]Liu X,Shao C,Ma H,et al.Optimal earth pressure balance control for shield tunneling based on LS-SVM and PSO[J].Automation in Construction,2011,20(4):321-327.

    [19]Luts J,Ojeda F,Van de Plas R,et al.A tutorial on support vector machine-based methods for classification problems in chemometrics[J].Analytica Chimica Acta,2010,665(2):129-145.

    [20]Deng S,Yeh T H.Applying least squares support vector machines to the airframe wing-box structural design cost estimation[J].Expert Systems with Applications,2010,37(12):8417-8423.

    [21]Oktem H,Erzurumlu T,Uzman I.Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part[J].Materials & Design,2007,28(4):1271-1278.

    [22]Tansel I N,G¨ulmez S,Demetgul M,et al.Taguchi Method-GONNS integration: Complete procedure covering from experimental design to complex optimization[J].Expert Systems with Applications,2011,38(5):4780-4789.

    [23]Suykens J A K,Vandewalle J,De Moor B.Optimal control by least squares support vector machines[J].Neural Networks,2001,14(1):23-35.

    猜你喜歡
    春景
    春景
    公民與法治(2022年6期)2022-07-26 06:16:34
    春雪
    花枝妝春景 燈彩耀新年——鄭州市紫荊山公園春節(jié)布景營建側(cè)記
    鹿泉岸下石窯小鎮(zhèn)
    詩選刊(2020年12期)2020-12-03 13:58:18
    春天·春景
    小讀者(2020年2期)2020-03-12 10:34:24
    春上行
    春上行
    人間春景
    中國三峽(2017年3期)2017-06-09 08:14:59
    李春景攝影作品選
    劉英作品
    畫刊(2016年1期)2016-11-01 21:32:37
    成年美女黄网站色视频大全免费| 老司机影院成人| 亚洲综合精品二区| 久久久精品区二区三区| 国产成人精品一,二区| 捣出白浆h1v1| 国产精品人妻久久久久久| 欧美xxⅹ黑人| 日本wwww免费看| 日韩大片免费观看网站| 精品少妇内射三级| 精品99又大又爽又粗少妇毛片| 久久av网站| 最近最新中文字幕大全免费视频 | 欧美亚洲日本最大视频资源| 国产探花极品一区二区| 波多野结衣一区麻豆| www.熟女人妻精品国产 | 最新的欧美精品一区二区| 一级片'在线观看视频| 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 成人国产av品久久久| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 蜜桃国产av成人99| 欧美+日韩+精品| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区三区| www日本在线高清视频| 男女午夜视频在线观看 | 国产免费一区二区三区四区乱码| 高清在线视频一区二区三区| 成年美女黄网站色视频大全免费| 99久久中文字幕三级久久日本| 美女福利国产在线| 极品少妇高潮喷水抽搐| 制服丝袜香蕉在线| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 日本欧美视频一区| 大话2 男鬼变身卡| 夫妻午夜视频| 在线免费观看不下载黄p国产| 亚洲第一av免费看| 五月开心婷婷网| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 最近中文字幕高清免费大全6| 精品一区在线观看国产| 另类亚洲欧美激情| freevideosex欧美| 亚洲国产精品专区欧美| 一边亲一边摸免费视频| av又黄又爽大尺度在线免费看| av播播在线观看一区| 亚洲精品自拍成人| 日韩精品有码人妻一区| 精品久久国产蜜桃| 亚洲精品久久午夜乱码| 老司机亚洲免费影院| 久久99热6这里只有精品| 久久久国产欧美日韩av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成人手机| 高清欧美精品videossex| 久久久精品区二区三区| 秋霞伦理黄片| 少妇的逼水好多| 中文字幕亚洲精品专区| 少妇人妻精品综合一区二区| 久久久精品区二区三区| 老熟女久久久| 国产亚洲av片在线观看秒播厂| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱| 亚洲中文av在线| 国产成人精品久久久久久| 五月伊人婷婷丁香| 精品午夜福利在线看| 免费观看无遮挡的男女| 侵犯人妻中文字幕一二三四区| 男人舔女人的私密视频| 久久毛片免费看一区二区三区| 美女脱内裤让男人舔精品视频| av播播在线观看一区| 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 51国产日韩欧美| 久久精品国产亚洲av天美| 久久久久久久久久成人| 又大又黄又爽视频免费| av电影中文网址| 高清在线视频一区二区三区| 免费观看av网站的网址| 夫妻午夜视频| 久久久久久久国产电影| 男女免费视频国产| 伦理电影免费视频| 亚洲国产成人一精品久久久| 免费女性裸体啪啪无遮挡网站| 久久人人爽人人爽人人片va| 欧美3d第一页| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 三级国产精品片| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| av在线播放精品| 久久久久久久大尺度免费视频| 国产在线免费精品| 精品久久蜜臀av无| 一级黄片播放器| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 久久国内精品自在自线图片| 伦精品一区二区三区| 最新中文字幕久久久久| 又黄又粗又硬又大视频| 亚洲国产精品999| 99香蕉大伊视频| 精品少妇内射三级| 久久久久久久亚洲中文字幕| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| 国产精品不卡视频一区二区| av福利片在线| 午夜福利影视在线免费观看| 中国美白少妇内射xxxbb| 免费观看a级毛片全部| 久久 成人 亚洲| 十八禁高潮呻吟视频| 午夜福利网站1000一区二区三区| 美女xxoo啪啪120秒动态图| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| 内地一区二区视频在线| 最近最新中文字幕大全免费视频 | 天天影视国产精品| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 蜜桃国产av成人99| 寂寞人妻少妇视频99o| av一本久久久久| 麻豆精品久久久久久蜜桃| 国产精品.久久久| 视频区图区小说| 欧美日韩国产mv在线观看视频| 亚洲图色成人| 男女啪啪激烈高潮av片| 亚洲精品av麻豆狂野| 十八禁高潮呻吟视频| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 国产国语露脸激情在线看| 日日爽夜夜爽网站| 人妻 亚洲 视频| av.在线天堂| 久久久久久伊人网av| 欧美日韩av久久| 国产不卡av网站在线观看| 哪个播放器可以免费观看大片| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 亚洲人成网站在线观看播放| 中文天堂在线官网| av天堂久久9| 亚洲欧美中文字幕日韩二区| 久久久a久久爽久久v久久| 免费av不卡在线播放| 看非洲黑人一级黄片| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡 | 国产视频首页在线观看| 国产精品久久久久久精品电影小说| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 国产欧美日韩综合在线一区二区| 天堂8中文在线网| 国产精品久久久久久精品电影小说| 国产爽快片一区二区三区| 久久99热6这里只有精品| 久热这里只有精品99| 国产在线免费精品| 欧美日韩视频精品一区| 欧美日韩视频高清一区二区三区二| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 美女大奶头黄色视频| 大片电影免费在线观看免费| 高清欧美精品videossex| 久久久a久久爽久久v久久| 国产av精品麻豆| www.色视频.com| 嫩草影院入口| 九九爱精品视频在线观看| 97超碰精品成人国产| 国产 一区精品| 又黄又粗又硬又大视频| 精品酒店卫生间| 亚洲av男天堂| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| 美女xxoo啪啪120秒动态图| 91成人精品电影| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 免费看不卡的av| 亚洲国产av新网站| a级毛色黄片| 成人亚洲欧美一区二区av| 欧美精品av麻豆av| 国产色婷婷99| 最新的欧美精品一区二区| videossex国产| 宅男免费午夜| 最近最新中文字幕免费大全7| 亚洲欧美日韩另类电影网站| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜免费资源| 国产精品偷伦视频观看了| 最近手机中文字幕大全| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 高清毛片免费看| 亚洲欧美一区二区三区黑人 | 久久久久网色| 看十八女毛片水多多多| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 亚洲综合色惰| 如何舔出高潮| 大香蕉久久成人网| 欧美精品亚洲一区二区| 国产成人精品久久久久久| 亚洲欧美日韩卡通动漫| 国产不卡av网站在线观看| 日韩大片免费观看网站| 免费黄网站久久成人精品| freevideosex欧美| 下体分泌物呈黄色| 久久国产精品大桥未久av| 精品第一国产精品| 国产午夜精品一二区理论片| 国产男女内射视频| 亚洲精品一区蜜桃| 欧美bdsm另类| 久热久热在线精品观看| 视频在线观看一区二区三区| 下体分泌物呈黄色| 插逼视频在线观看| 国产免费视频播放在线视频| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 18禁观看日本| 日本与韩国留学比较| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| 亚洲精品久久午夜乱码| 亚洲性久久影院| 在线观看三级黄色| 在线观看人妻少妇| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| av.在线天堂| 免费观看无遮挡的男女| 捣出白浆h1v1| 人人妻人人添人人爽欧美一区卜| 两个人免费观看高清视频| 亚洲国产av影院在线观看| 另类精品久久| freevideosex欧美| 久久久久国产精品人妻一区二区| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 99re6热这里在线精品视频| av国产精品久久久久影院| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 日韩电影二区| 国产男人的电影天堂91| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 亚洲国产欧美日韩在线播放| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产av码专区亚洲av| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 国产高清三级在线| 成人国产麻豆网| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 欧美国产精品一级二级三级| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 国产xxxxx性猛交| 日韩制服骚丝袜av| 久久久久久人人人人人| 最黄视频免费看| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人 | av黄色大香蕉| 国产成人91sexporn| 晚上一个人看的免费电影| 在线观看免费日韩欧美大片| 日韩一区二区三区影片| 视频在线观看一区二区三区| 久久人人爽人人片av| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 免费观看在线日韩| 美国免费a级毛片| 精品酒店卫生间| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 日韩三级伦理在线观看| 久久国产精品男人的天堂亚洲 | 国产精品不卡视频一区二区| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 免费少妇av软件| 日日撸夜夜添| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 九九爱精品视频在线观看| av福利片在线| 九九爱精品视频在线观看| 日韩伦理黄色片| 欧美亚洲日本最大视频资源| 欧美日韩精品成人综合77777| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 天天操日日干夜夜撸| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 纯流量卡能插随身wifi吗| 日本-黄色视频高清免费观看| 伦理电影免费视频| av在线app专区| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 精品人妻一区二区三区麻豆| 超色免费av| 一区二区三区乱码不卡18| 熟女av电影| 精品久久蜜臀av无| 999精品在线视频| 国产成人精品无人区| 国产免费视频播放在线视频| 成人午夜精彩视频在线观看| 国产极品粉嫩免费观看在线| a 毛片基地| 在线天堂中文资源库| 国产片内射在线| 欧美成人午夜免费资源| 桃花免费在线播放| tube8黄色片| 国产精品国产三级国产av玫瑰| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 亚洲人成网站在线观看播放| 黄片播放在线免费| 日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 伦精品一区二区三区| 午夜免费鲁丝| 90打野战视频偷拍视频| 中文字幕精品免费在线观看视频 | 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 亚洲精品第二区| 视频在线观看一区二区三区| 另类精品久久| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃 | 赤兔流量卡办理| 激情五月婷婷亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 校园人妻丝袜中文字幕| 久久精品人人爽人人爽视色| 春色校园在线视频观看| 满18在线观看网站| 黄色视频在线播放观看不卡| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 欧美日韩精品成人综合77777| 免费黄网站久久成人精品| 亚洲综合色惰| 国产淫语在线视频| 亚洲国产精品一区三区| www.av在线官网国产| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃| 久久久久网色| av在线观看视频网站免费| 蜜桃国产av成人99| 精品一区二区免费观看| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 大香蕉久久成人网| 成年av动漫网址| 少妇人妻久久综合中文| 国产淫语在线视频| 久久人人爽av亚洲精品天堂| 亚洲经典国产精华液单| 老司机亚洲免费影院| 亚洲激情五月婷婷啪啪| 飞空精品影院首页| 亚洲av.av天堂| tube8黄色片| √禁漫天堂资源中文www| 中国美白少妇内射xxxbb| 久久97久久精品| 99精国产麻豆久久婷婷| 9热在线视频观看99| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 亚洲综合色惰| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放| 午夜老司机福利剧场| 天天操日日干夜夜撸| 黄网站色视频无遮挡免费观看| 99香蕉大伊视频| 精品亚洲成a人片在线观看| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 一区二区三区四区激情视频| 免费观看av网站的网址| 韩国av在线不卡| 国产一区二区在线观看日韩| 一级爰片在线观看| 91久久精品国产一区二区三区| 捣出白浆h1v1| 国产精品久久久久成人av| 男的添女的下面高潮视频| 热re99久久精品国产66热6| 亚洲美女视频黄频| 日韩精品免费视频一区二区三区 | 日韩一区二区视频免费看| 精品第一国产精品| 夫妻性生交免费视频一级片| 下体分泌物呈黄色| 波多野结衣一区麻豆| 久热久热在线精品观看| 一本—道久久a久久精品蜜桃钙片| 秋霞伦理黄片| 亚洲欧美日韩卡通动漫| 日本黄大片高清| 国产日韩欧美视频二区| 国产麻豆69| 国产淫语在线视频| 亚洲精品久久午夜乱码| 亚洲第一区二区三区不卡| 亚洲欧美中文字幕日韩二区| 国产熟女午夜一区二区三区| 久久久久久久亚洲中文字幕| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 国产老妇伦熟女老妇高清| 18在线观看网站| 免费黄网站久久成人精品| 午夜激情久久久久久久| 精品人妻熟女毛片av久久网站| videossex国产| 母亲3免费完整高清在线观看 | 亚洲图色成人| 97在线视频观看| 岛国毛片在线播放| 亚洲国产精品成人久久小说| 免费高清在线观看视频在线观看| 久久精品国产a三级三级三级| 亚洲内射少妇av| 亚洲久久久国产精品| 一级毛片我不卡| 亚洲精品视频女| 九九爱精品视频在线观看| 一边亲一边摸免费视频| 黄色配什么色好看| 亚洲av免费高清在线观看| 成人手机av| 精品99又大又爽又粗少妇毛片| 啦啦啦在线观看免费高清www| 欧美激情国产日韩精品一区| 99久久精品国产国产毛片| 久久99蜜桃精品久久| 国产亚洲精品第一综合不卡 | 国产精品一区二区在线观看99| 国产精品嫩草影院av在线观看| 国产黄频视频在线观看| 丁香六月天网| 9色porny在线观看| 久久久久久久久久久免费av| 狂野欧美激情性bbbbbb| 一区二区av电影网| 成年女人在线观看亚洲视频| 久久 成人 亚洲| 中文天堂在线官网| 内地一区二区视频在线| 欧美少妇被猛烈插入视频| www.av在线官网国产| 精品一区二区三区视频在线| 国产一区二区在线观看日韩| 久久婷婷青草| 国产精品久久久久久av不卡| 日韩人妻精品一区2区三区| 国产欧美日韩一区二区三区在线| 2018国产大陆天天弄谢| av有码第一页| 亚洲人与动物交配视频| 日韩制服骚丝袜av| 97超碰精品成人国产| 日韩欧美精品免费久久| av播播在线观看一区| 国产精品麻豆人妻色哟哟久久| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| 欧美成人午夜精品| 中国三级夫妇交换| 国产伦理片在线播放av一区| 一本大道久久a久久精品| 日本av免费视频播放| 午夜影院在线不卡| 午夜免费鲁丝| 亚洲精品aⅴ在线观看| 18禁观看日本| 亚洲精品国产色婷婷电影| 最近中文字幕2019免费版| 丰满饥渴人妻一区二区三| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 美女内射精品一级片tv| 一区二区三区精品91| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 熟女电影av网| 亚洲精品456在线播放app| videos熟女内射| 18在线观看网站| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 亚洲一码二码三码区别大吗| 久久久久久人妻| 夫妻午夜视频| 精品国产一区二区三区久久久樱花| 久久精品久久久久久久性| 成人国产av品久久久| av国产久精品久网站免费入址| 超色免费av| 国产xxxxx性猛交| 91精品伊人久久大香线蕉| 国产黄色免费在线视频| 熟妇人妻不卡中文字幕| 色哟哟·www| 美女脱内裤让男人舔精品视频| 成人二区视频| √禁漫天堂资源中文www| 人体艺术视频欧美日本| 国产精品久久久久久精品古装| 日韩大片免费观看网站| 久久鲁丝午夜福利片| 久久久久国产精品人妻一区二区| 一本—道久久a久久精品蜜桃钙片| 日韩,欧美,国产一区二区三区| 最近2019中文字幕mv第一页| 十分钟在线观看高清视频www| 亚洲国产日韩一区二区| 亚洲五月色婷婷综合| 黑人高潮一二区| 看十八女毛片水多多多| 国产亚洲一区二区精品| 亚洲内射少妇av| 美女脱内裤让男人舔精品视频| 国产精品久久久久久久久免| 欧美另类一区| 亚洲第一区二区三区不卡| 久久人人97超碰香蕉20202| 欧美精品av麻豆av| 亚洲欧美一区二区三区黑人 | 人体艺术视频欧美日本| 飞空精品影院首页| 91久久精品国产一区二区三区| 日韩熟女老妇一区二区性免费视频| a级毛片黄视频| 欧美日韩视频精品一区|