• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HYBRID AIRFOIL DESIGN FOR FULL-SCALE ICE ACCRETION TEST

    2013-12-02 01:39:26GuoTao郭濤ZhuChengxiang朱程香ZhuChunling朱春玲
    關(guān)鍵詞:郭濤

    Guo Tao(郭濤),Zhu Chengxiang(朱程香),Zhu Chunling(朱春玲)

    (1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.Key Laboratory of Fundamental Science for National Defense Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China)

    INTRODUCTION

    It has been long known that ice formation on aircraft airfoils has adverse effects on aerodynamics and poses a major threat to aircraft safety[1-3].Ice accretion makes gross change in the geometry.But ice accretion of full-scale airfoils cannot be tested in existing icing tunnels due to its blocking.One way is to design a smaller hybrid airfoil with simulated character of icing.The hybrid airfoil[4-7]retains the leading edge of full-scale airfoil with shortened aft-section,and thereby has a shorter overall chord.After using suitably computational techniques,the hybrid airfoil can be tested under same conditions to produce simulated ice accretion with full-scale airfoil.Therefore,it makes the existing icing-tunnel useful,and it can also achieve the simulated droplet impingement area and ice accretion with full-scale airfoils.This methodology is primarily valid for incompressible and inviscid flow.

    In this paper,a method is presented to design the hybrid airfoil with the reverse design method to match the ice accretion of the full-scale airfoil.It is an extension of the design method developed by Saeed,et al for hybrid airfoil.

    1 DESIGN PROCEDURE OF HYBRID AIRFOIL

    The following tools are extensively used in the design and analysis of the full-scale and hybrid airfoils in this study.

    FENSAP-ICE[8-9]is a fully three-dimensional(3D)icing simulation system,and has five modules that form a complete,versatile,flexible in-flight icing system.Three of them are used in the study:

    FENSAP is a 3Dfinite element-based Navier-Stokes solver.

    DROP3Dis a 3Dfinite element-based Eulerian droplets impingement solver.

    ICE3Dis a 3Dfinite volume ice accretion and water runback solver.

    Fig.1outlines the design method for hybrid airfoil.Firstly mesh the flow field of the full-scale airfoil with the software ICEM.Flow field and droplet impingement calculation can be performed on the full-scale airfoil at different attack angles.Then obtain the pressure distribution and the collection efficiency.Finally,compare the limit of the impingement and the slat,and choose the maximum of them as the limit of the nose.

    Fig.1 Hybrid airfoil design procedure

    The extent of the common nose section for the present tests is illustrated in Fig.1as an example.The original hybrid airfoil can be designed by lining the end of nose and the chord point of hybrid airfoil.After that grid around the hybrid airfoil can be created,and flow field and droplet impingement calculation can be performed.Then the pressure distribution and collection efficiency can be obtained,and those of the nose section between the full-scale and hybrid airfoils are compared.

    In the hybrid design method,an iterative process is used to update the contour of the after body until the droplet impingement characteristics and pressure distribution of the nose section match those of the full-size airfoil.An inverse method[10]for shape generation and genetic algorithm for optimization is used in airfoil shape optimization.A Newton iteration scheme is built into the inverse method to impose geometry con-straints that aid in reducing the design space and thereby improve the efficiency of the optimization method.The airfoil geometries are generated by an inverse method from pressure distribution parameters.Suppose a surface pressure coefficient distribution of a target airfoil as the initial one to reach the target.The objective function used for this type of problem is as follows

    where Cpλand Cptare the current and the target pressure coefficient distributions along the airfoil.The fitness function of a generated airfoil is proportional to the inverse of the objective function,i.e.

    Therefore,the problem becomes a typical maximization problem and as the fitness value goes to infinity,the two Cpdistributions become identical.An important issue in implementing ge-netic algorithm is the representation of the airfoil geometry.Herein,the mth order Bezier curve representation with m+1control points is used

    Coordinates(0,0)and(X,0)are the leading and trailing end points.The real parameter t variesCoordinates(xi,yi)are the control points which define the profile,where xiare considered as fixed,and only the yiordinates of the control points are processed in the genetic algorithm.Chromosomes representing the airfoil surface are split into the top and bottom sections.Airfoil design is achieved by dividing the airfoil into a number of segments.Fig.2shows Bezier curve representation of the airfoil.For the Bezier representations of airfoil surfaces,13control points are used.

    Fig.2 Bezier curve representation of airfoil

    In implementing the distribution strategies,top and bottom surfaces of the airfoil are considered separately.That leads to two chromosomes representing the airfoil,i.e.

    Consequently,objective function and fitness values for the chromosomes representing the top and bottom halves are calculated separately.Namely,the objective functions for top half and bottom half surfaces are

    Corresponding fitness values for the top half and the bottom half surfaces are

    The chromosome(including top half and bottom half surfaces)with the greatest fitness value is carried into the next generation as a result of elitism,similarly the best group of chromosomes of the both top half and bottom half surfaces,too.A viscous-flow analysis is used to determine proper fitness values for candidate airfoils based on preset performance criteria. A selection process based on fitness values(100 000,10 000 and 1 000)is carried out for the chromosome groups.The principal performance criteria employed in design process is that the maximum pressure coefficient difference that between the target and the designed one is smaller than 0.05.The local pressure distributions over the nose section and the stagnation point location on both the hybrid and full-scale airfoils are then compared.If the desired pressure distribution over the nose section is not achieved,the aft-section of the hybrid airfoil is redesigned and again merged with nose section to form a new hybrid airfoil.The flow over the new hybrid is then analyzed and compared with that over the full-scale airfoil.The process is repeated until the desired pressure distribution and the droplet impingement characteristics over the nose section are achieved.The attack angle at which the hybrid airfoil is designed to have the same droplet impingement distribution as the full-scale airfoil is the designed attack angle α.At this designed angleα,the hybrid airfoil and the full-scale airfoil have nearly the same pressure distribution and hence similar droplet impingement.The hybrid airfoil is iterated again,if necessary,until a good agreement in theβ-curve of the full-scale and hybrid airfoils is achieved.A flap system is used to indicate off-design attack angles.The use of a flap for full-scale simulation is restricted to low and moderate attack angles since at high absolute attack angles together with high flap deflections,the hybrid become susceptible to flow separation.

    2 VALIDATIONS

    One-dimensional chord of 1.8mfor the fullscale airfoil and 1.1mfor the hybrid airfoil is assumed.The full-scale airfoil of a modern aircraft is studied in this case.Hybrid airfoil is designed with the inverse method as discussed earlier.The two airfoils are illustrated in Fig.3.An angle 4°is chosen as the designed attack angle,and the other two angles 2°and 6°are also computed for comparison.A single icing condition is chosen to typify the icing condition on a commercial transport airplane.The icing condition for the analyses presented in this study is:Airspeed of 75m/s,static temperature of 263.75K,pressure of 101 325Pa,icing time of 300s,liquid water content of 0.5g/m3,and median volume diameter of 20 μm.The ice accretion calculations on the three configurations of airfoils at angles of 2°,4°and 6°are performed using the computational procedure described in the previous sections.

    Fig.3 Comparison of full-scale with hybrid airfoils

    The airfoil is discretized using a C-type grid as shown in Fig.4.The boundary conditions are defined as follows:A far-field boundary condition is imposed on the outer surfaces of the grid,and a no-slip boundary condition is imposed on the airfoil.Since the flow is viscous and turbulent,grid points are clustered on the airfoil to better capture the boundary layer and wake.For turbulence,select the Spalart-Allmaras model with low free stream turbulence(using a very low eddy/laminar viscosity ratio of 1×10-5).Turbulence is then only generated by the airfoil.Any roughness is not imposed for this calculation,thus corresponding to a clean airfoil.

    Fig.4 Grids of full-scale and hybrid airfoils and detail

    Fig.5 Pressure coefficient comparison at 2°

    Fig.6 Pressure coefficient comparison at 4°

    Fig.7 Pressure coefficient comparison at 6°

    It is shown in Figs.5-7that the pressure coefficient curves for the full-scale and hybrid air-foils agree closely in the nose region at the designed angle of 4°.There is a difference in the region of the aft-section.Since ice accretion depends,most importantly,on the airfoil leadingedge geometry where the ice first accretes,the target is the nose section pressure distribution of the hybrid airfoil to match that of the full-scale airfoil.The difference of pressure distribution on after section has less influence on local collection efficiency and ice accretion.

    Fig.8 Collection efficiency comparison at 2°

    It is illustrated in Figs.8-10that the local collection efficiency curves for the full-scale and hybrid airfoils also agree closely at attack angles of 2°,4°and 6°.There is a little difference of collection efficiency in upper region of the airfoil due to the difference of pressure distribution of the upper region at the angle 2°.Also,there is a little difference of collection efficiency in lower region of the airfoil due to the difference of pressure distribution of the lower region at the angle 6°.The results show that the local collection efficiency depends on the pressure distribution.The key to obtain the matched collection efficiency is optimizing the hybrid airfoil to minimize the pressure coefficient difference of nose section between the hybrid and full-scale airfoils.

    Fig.9 Collection efficiency comparison at 4°

    Fig.10 Collection efficiency comparison at 6°

    Fig.11 Ice accretions at 2°

    Fig.12 Ice accretions at 4°

    Fig.13 Ice accretions at 6°

    It can be seen from Figs.11-13that the ice shape curves for the full-scale and hybrid airfoils agree closely at attack angles of 2°,4°and 6°.The limit of ice shapes is extended in the impingement region of the airfoil.There is only a little difference in upper and lower ice shape limits owing to the difference of collection efficiency of the impingement region.

    3 CONCLUSION

    A systematic study on hybrid airfoil design and ice accretions of full-scale and hybrid airfoils is conducted.It is found that there is a fairly good agreement in ice shapes for the full-scale and hybrid airfoils at all attack angles considered for all of the configurations studied.The results show the local collection efficiency most importantly depends on the pressure distribution of the nose of the two airfoils.It also shows that good agreement in flow field and droplet impingement can achieve a close agreement in ice shapes for the full-scale and hybrid airfoils.Results indicate that using the designed variables defining the pressure distribution in the inverse method has great potential for increasing the efficiency of airfoil shape optimization using genetic algorithms.

    [1] Perkins P,Rieke W.Aircraft icing problems—After 50years[C]//31st Aerospace Sciences Meeting and Exhibit.Reno,NV:AIAA,1993,AIAA-1993-0392:1-2.

    [2] Zhu Chengxiang,Sun Zhiguo,F(xiàn)u Bin,et al.Effects of multi-dispersed droplet distribution on droplet impingement and ice accretion[J].Journal of Nanjing U-niversity of Aeronautics & Astronautics,2010,42(5):620-624.(in Chinese)

    [3] Zhu Chengxiang,F(xiàn)u Bin,Sun Zhiguo,et al.Calculation of wind turbine anti-icing heat lead[J].Journal of Nanjing University of Aeronautics & Astronautics,2011,43(5):701-706.(in Chinese)

    [4] Saeed F,Selig M,Bragg M.Design of subscale airfoils with full-scale leading-edges for ice accretion testing[J].Journal of Aircraft,1997,34(1):94-100.

    [5] Saeed F,Selig M,Bragg M.Hybrid airfoil design method to simulate full-scale ice accretion throughout agiven a-range[J].Journal of Aircraft,1998,35(2):233-239.

    [6] Saeed F,Selig M,Bragg M.Hybrid airfoil design procedure validation for full-scale ice accretion simulation[J].Journal of Aircraft,1999,36(5):769-776.

    [7] Saeed F.Hybrid airfoil design methods for full-scale ice accretion simulation[D].Urbana,IL:University of Illinois at Urbana-Champaign,1999.

    [8] Héloise B,F(xiàn)rancois M,Wagdi H G.FENSAP-ICE′s three-dimensional in-flight ice accretion module:ICE3D[J].Journal of Aircraft,2003,40(2):239-247.

    [9] Nakakita K,Nadarajah S,Habashi W.Toward realtime aero-icing simulation of complete aircraft via FENSAP-ICE[J].Journal of Aircraft,2010,47(1):96-109.

    [10]Gardner B A,Selig M.Airfoil design using agenetic algorithm and an inverse method [C]//41st Aerospace Sciences Meeting and Exhibit.Reno,Nevada:AIAA,2003,AIAA-2003-0043:2-4.

    猜你喜歡
    郭濤
    一瓶水
    陌生人的一瓶水
    做人與處世(2018年7期)2018-06-05 08:20:26
    火柴拼拼樂
    動物園里真熱鬧
    傳“電報”
    幽默臺歷
    喜劇世界(2017年1期)2017-02-15 08:14:10
    Novel attribute-based framework for halftone watermarking
    “搞笑嚴父”郭濤的育兒經(jīng)
    郭濤新書《父親的力量》 分享真實父子情
    郭濤,讓孩子感受父親的力量
    精品久久久久久成人av| 亚洲精品成人久久久久久| 国语自产精品视频在线第100页| 真人做人爱边吃奶动态| 99久久成人亚洲精品观看| 国产单亲对白刺激| 国内精品久久久久久久电影| 在线观看午夜福利视频| 中文字幕熟女人妻在线| 99久久中文字幕三级久久日本| 色在线成人网| 亚洲精品亚洲一区二区| 人妻夜夜爽99麻豆av| 不卡视频在线观看欧美| 国产伦精品一区二区三区四那| 成人美女网站在线观看视频| 亚洲国产精品久久男人天堂| 久久精品国产99精品国产亚洲性色| 很黄的视频免费| 可以在线观看的亚洲视频| 99精品久久久久人妻精品| a在线观看视频网站| 嫩草影院入口| 深爱激情五月婷婷| 国产一区二区在线av高清观看| 十八禁网站免费在线| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| www.色视频.com| 亚洲精品成人久久久久久| 人人妻人人澡欧美一区二区| 一进一出抽搐gif免费好疼| 亚洲精品一卡2卡三卡4卡5卡| 伊人久久精品亚洲午夜| 国产黄片美女视频| 欧美一级a爱片免费观看看| 国产又黄又爽又无遮挡在线| 免费黄网站久久成人精品| 97超级碰碰碰精品色视频在线观看| 久久久色成人| 在线观看午夜福利视频| 色精品久久人妻99蜜桃| 色播亚洲综合网| 一个人观看的视频www高清免费观看| 欧美性猛交╳xxx乱大交人| 亚洲av成人av| 国产免费av片在线观看野外av| 热99在线观看视频| 热99在线观看视频| 亚洲精品日韩av片在线观看| 成人国产麻豆网| 免费不卡的大黄色大毛片视频在线观看 | 国产大屁股一区二区在线视频| 蜜桃亚洲精品一区二区三区| 乱系列少妇在线播放| 嫁个100分男人电影在线观看| 在线观看午夜福利视频| 最后的刺客免费高清国语| 97热精品久久久久久| 国产精品久久视频播放| 久久久精品欧美日韩精品| 五月玫瑰六月丁香| 亚洲av免费在线观看| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 美女cb高潮喷水在线观看| 国产欧美日韩一区二区精品| 人妻少妇偷人精品九色| 国产成人aa在线观看| 国产精品一区www在线观看 | netflix在线观看网站| 国产亚洲精品av在线| 天天一区二区日本电影三级| 伦理电影大哥的女人| 三级男女做爰猛烈吃奶摸视频| 免费av不卡在线播放| 夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 欧美+亚洲+日韩+国产| 日日啪夜夜撸| 亚洲乱码一区二区免费版| 久久国产乱子免费精品| 亚洲国产精品sss在线观看| avwww免费| 一区福利在线观看| 精品一区二区免费观看| 他把我摸到了高潮在线观看| 男女下面进入的视频免费午夜| 久久精品国产清高在天天线| 一进一出好大好爽视频| 亚洲美女视频黄频| 精品一区二区免费观看| 亚洲熟妇中文字幕五十中出| 床上黄色一级片| 国产精品自产拍在线观看55亚洲| 超碰av人人做人人爽久久| 岛国在线免费视频观看| 91久久精品国产一区二区成人| 男女视频在线观看网站免费| 成人无遮挡网站| 亚洲最大成人手机在线| 给我免费播放毛片高清在线观看| 乱系列少妇在线播放| 国产人妻一区二区三区在| 国内精品久久久久久久电影| 老司机午夜福利在线观看视频| 蜜桃久久精品国产亚洲av| 尤物成人国产欧美一区二区三区| 国产高清三级在线| 久久精品国产亚洲av天美| 久久久精品大字幕| 国产精品野战在线观看| 在线播放无遮挡| 国内精品一区二区在线观看| 熟女电影av网| 悠悠久久av| 日本五十路高清| 久久亚洲精品不卡| 国产欧美日韩精品亚洲av| 欧美性猛交╳xxx乱大交人| 男女之事视频高清在线观看| 在线观看午夜福利视频| 午夜亚洲福利在线播放| 国产精品久久久久久av不卡| 简卡轻食公司| 99久国产av精品| 久久精品国产鲁丝片午夜精品 | 久久热精品热| 国产男靠女视频免费网站| 草草在线视频免费看| 哪里可以看免费的av片| 最近中文字幕高清免费大全6 | 免费在线观看成人毛片| 精品日产1卡2卡| 国产高清三级在线| 亚洲性久久影院| 国产精品久久久久久久电影| 97碰自拍视频| 九九久久精品国产亚洲av麻豆| 五月玫瑰六月丁香| 两个人视频免费观看高清| 亚洲四区av| 美女高潮的动态| 又黄又爽又刺激的免费视频.| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 色在线成人网| 国产一区二区在线av高清观看| 久久久久久国产a免费观看| 免费看美女性在线毛片视频| 国模一区二区三区四区视频| 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 国产综合懂色| netflix在线观看网站| 精品福利观看| 老熟妇仑乱视频hdxx| 又粗又爽又猛毛片免费看| 久久这里只有精品中国| 亚洲精品色激情综合| 制服丝袜大香蕉在线| 啪啪无遮挡十八禁网站| 亚洲精品久久国产高清桃花| 给我免费播放毛片高清在线观看| 啦啦啦啦在线视频资源| 在线播放国产精品三级| 国产欧美日韩精品一区二区| 免费看光身美女| 国产视频一区二区在线看| 亚洲成人久久性| 欧美日韩精品成人综合77777| 在线免费观看的www视频| 国内毛片毛片毛片毛片毛片| 69av精品久久久久久| 99久久精品国产国产毛片| 美女高潮的动态| 国产色爽女视频免费观看| 国产精品99久久久久久久久| 不卡一级毛片| 少妇丰满av| 精品久久久久久久久av| 亚洲七黄色美女视频| 久9热在线精品视频| 免费看日本二区| 十八禁国产超污无遮挡网站| 久久久久免费精品人妻一区二区| 国产精品久久久久久久电影| 搡老岳熟女国产| 99热只有精品国产| 欧美日韩乱码在线| 在现免费观看毛片| 久久精品国产99精品国产亚洲性色| 欧美一级a爱片免费观看看| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 少妇被粗大猛烈的视频| 哪里可以看免费的av片| 一个人观看的视频www高清免费观看| 乱系列少妇在线播放| 亚洲精品乱码久久久v下载方式| 久久久久久久久中文| 婷婷精品国产亚洲av| 神马国产精品三级电影在线观看| 91麻豆精品激情在线观看国产| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 欧美3d第一页| 久久久精品大字幕| 麻豆成人av在线观看| 欧美日韩精品成人综合77777| 免费观看人在逋| 国产单亲对白刺激| 成人国产综合亚洲| 久久久成人免费电影| 日本爱情动作片www.在线观看 | 91久久精品国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | 色尼玛亚洲综合影院| 国产午夜精品论理片| 一区二区三区高清视频在线| 丰满的人妻完整版| 国产精品女同一区二区软件 | 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| av在线天堂中文字幕| 性色avwww在线观看| 成人无遮挡网站| 在线看三级毛片| 日日摸夜夜添夜夜添小说| 少妇高潮的动态图| 久久久午夜欧美精品| 精品乱码久久久久久99久播| 天天躁日日操中文字幕| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 夜夜爽天天搞| 久久精品国产亚洲网站| 免费观看精品视频网站| 在线观看66精品国产| 美女免费视频网站| 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 精品久久久噜噜| 又紧又爽又黄一区二区| 久久精品国产自在天天线| 日本免费a在线| 很黄的视频免费| 少妇的逼水好多| 嫩草影视91久久| 综合色av麻豆| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 久久热精品热| 亚洲国产欧美人成| 99在线视频只有这里精品首页| 老女人水多毛片| 亚洲色图av天堂| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 亚洲图色成人| 亚洲欧美日韩东京热| av中文乱码字幕在线| 成人特级av手机在线观看| aaaaa片日本免费| 成人亚洲精品av一区二区| 亚洲性久久影院| 最好的美女福利视频网| 国产精品日韩av在线免费观看| 能在线免费观看的黄片| 黄色欧美视频在线观看| 日韩中文字幕欧美一区二区| 国产主播在线观看一区二区| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 国产精品99久久久久久久久| 久久久午夜欧美精品| 欧美性感艳星| 国产视频内射| 欧美绝顶高潮抽搐喷水| 精品人妻视频免费看| 亚洲性夜色夜夜综合| 国产中年淑女户外野战色| 欧美+日韩+精品| 日韩中字成人| 亚洲七黄色美女视频| 老司机福利观看| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 久久天躁狠狠躁夜夜2o2o| 又爽又黄a免费视频| 国产精品亚洲一级av第二区| 亚洲自偷自拍三级| 午夜精品在线福利| av专区在线播放| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 少妇猛男粗大的猛烈进出视频 | 欧美中文日本在线观看视频| 一个人看视频在线观看www免费| 91av网一区二区| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| 欧美精品啪啪一区二区三区| 热99在线观看视频| 嫩草影院入口| 国产精品一区二区免费欧美| 永久网站在线| 噜噜噜噜噜久久久久久91| 成人二区视频| 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 少妇猛男粗大的猛烈进出视频 | 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 校园人妻丝袜中文字幕| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 国产在视频线在精品| 亚洲,欧美,日韩| 精品不卡国产一区二区三区| 波野结衣二区三区在线| 欧美精品啪啪一区二区三区| 又黄又爽又刺激的免费视频.| 国产中年淑女户外野战色| 午夜福利在线观看吧| 可以在线观看的亚洲视频| 18+在线观看网站| 亚洲成人精品中文字幕电影| 免费人成视频x8x8入口观看| 欧美成人免费av一区二区三区| 女同久久另类99精品国产91| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品av在线| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 99热精品在线国产| 最好的美女福利视频网| 岛国在线免费视频观看| 亚洲天堂国产精品一区在线| 一区二区三区高清视频在线| a级毛片免费高清观看在线播放| 很黄的视频免费| 看免费成人av毛片| 免费av毛片视频| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| 美女免费视频网站| 亚洲精品影视一区二区三区av| 观看免费一级毛片| 亚洲专区中文字幕在线| 最近中文字幕高清免费大全6 | 日韩精品中文字幕看吧| 99久久精品一区二区三区| 国产三级中文精品| 天美传媒精品一区二区| 久久人妻av系列| 日韩一本色道免费dvd| 91在线精品国自产拍蜜月| 久久久久精品国产欧美久久久| 国产女主播在线喷水免费视频网站 | 一本一本综合久久| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 欧美高清性xxxxhd video| 欧美日韩黄片免| 嫩草影院精品99| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 欧美日韩乱码在线| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 亚洲av日韩精品久久久久久密| 色av中文字幕| 永久网站在线| 欧美成人性av电影在线观看| 日本一本二区三区精品| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看| 啦啦啦韩国在线观看视频| eeuss影院久久| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 亚洲精品成人久久久久久| 午夜精品在线福利| 亚洲va日本ⅴa欧美va伊人久久| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 亚洲精华国产精华液的使用体验 | 亚洲图色成人| 中文字幕av成人在线电影| 久久97久久精品| 国产免费又黄又爽又色| 亚洲真实伦在线观看| 六月丁香七月| 午夜免费观看性视频| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频 | 日韩,欧美,国产一区二区三区| 亚洲怡红院男人天堂| 乱系列少妇在线播放| 久久久久久久久久久免费av| 欧美精品国产亚洲| 免费看日本二区| 两个人的视频大全免费| 国产高清有码在线观看视频| 国产色婷婷99| 亚洲精品日韩av片在线观看| 中文字幕精品免费在线观看视频 | 亚洲成色77777| 丰满乱子伦码专区| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 欧美xxxx黑人xx丫x性爽| 97超碰精品成人国产| 亚洲国产精品专区欧美| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 国产亚洲最大av| 国产 一区 欧美 日韩| 国产亚洲5aaaaa淫片| 亚洲综合精品二区| 亚洲无线观看免费| 中国三级夫妇交换| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 日本黄大片高清| 久久 成人 亚洲| 91狼人影院| 在线观看三级黄色| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| videossex国产| 欧美老熟妇乱子伦牲交| 美女国产视频在线观看| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 国产av国产精品国产| 亚洲丝袜综合中文字幕| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 秋霞伦理黄片| 中国三级夫妇交换| 亚洲av不卡在线观看| 在线观看免费日韩欧美大片 | 永久免费av网站大全| 丰满少妇做爰视频| 免费看光身美女| 伦理电影免费视频| 99热这里只有是精品50| 少妇丰满av| a级毛色黄片| 成人毛片60女人毛片免费| 免费观看无遮挡的男女| 色综合色国产| 欧美区成人在线视频| 视频中文字幕在线观看| 99久久精品一区二区三区| 日日撸夜夜添| 如何舔出高潮| 国产精品国产三级专区第一集| 亚洲精品日本国产第一区| 免费av不卡在线播放| 黄色怎么调成土黄色| 国产午夜精品一二区理论片| 色吧在线观看| 国产91av在线免费观看| 身体一侧抽搐| 国语对白做爰xxxⅹ性视频网站| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 在线观看一区二区三区激情| 夫妻性生交免费视频一级片| 综合色丁香网| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃| 亚洲,一卡二卡三卡| 国产精品人妻久久久久久| 一边亲一边摸免费视频| 精品亚洲成国产av| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 色5月婷婷丁香| 一级毛片电影观看| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 男女啪啪激烈高潮av片| 在线 av 中文字幕| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 欧美97在线视频| 大码成人一级视频| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| 老师上课跳d突然被开到最大视频| 国内揄拍国产精品人妻在线| 蜜桃亚洲精品一区二区三区| 久久精品人妻少妇| 精品人妻熟女av久视频| 91久久精品电影网| 日韩 亚洲 欧美在线| 国产女主播在线喷水免费视频网站| 日本一二三区视频观看| 高清午夜精品一区二区三区| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看 | 国产无遮挡羞羞视频在线观看| 日日啪夜夜撸| 久久久久性生活片| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 免费少妇av软件| 日韩伦理黄色片| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品| 国产成人精品福利久久| 久久99热这里只频精品6学生| 欧美+日韩+精品| 青青草视频在线视频观看| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 国产伦理片在线播放av一区| 舔av片在线| 久久精品国产亚洲av涩爱| 观看美女的网站| 内射极品少妇av片p| 人人妻人人添人人爽欧美一区卜 | 日本与韩国留学比较| 成年免费大片在线观看| 街头女战士在线观看网站| 亚洲成人一二三区av| av国产免费在线观看| 亚洲国产成人一精品久久久| 男女下面进入的视频免费午夜| 熟妇人妻不卡中文字幕| 日韩制服骚丝袜av| 精品亚洲成国产av| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 日韩强制内射视频| 尾随美女入室| 深爱激情五月婷婷| 欧美+日韩+精品| av国产精品久久久久影院| 伦理电影大哥的女人| 欧美日韩国产mv在线观看视频 | 91精品国产国语对白视频| 国产成人精品福利久久| 午夜福利视频精品| 色网站视频免费| 热99国产精品久久久久久7| 22中文网久久字幕| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 色吧在线观看| 精品一区二区三卡| 亚洲精品国产成人久久av| kizo精华| 91在线精品国自产拍蜜月| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 身体一侧抽搐| 97精品久久久久久久久久精品| 街头女战士在线观看网站| 国产爽快片一区二区三区| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 十分钟在线观看高清视频www | 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线 | 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 看免费成人av毛片| 97热精品久久久久久| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| 久久精品国产a三级三级三级| xxx大片免费视频| 久久久欧美国产精品| 天堂8中文在线网|