• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadcasting with Controlled Redundancy and Improved Localization in Wireless Sensor Networks

    2013-11-26 10:48:16TarunDubeyandOmPrakashSahu

    Tarun Dubey and Om Prakash Sahu

    1.Introduction

    Wireless sensor networks (WSNs) are a bridge between the real and virtual world, which are a collection of sensor nodes with the ability of sensing many phenomena of interest over large chronological scales[1].Each sensor node in the network is equipped with the memory, radio frequency transceiver, and power source to broadcast wirelessly over a specified protocol[2].Broadcasting is a common means for sensor nodes to efficiently share their data with each other.Broadcasting can be utilized to initialize the network arrangement for route discovery between a given pair of senor nodes and could serve as an efficient method to localize sensor nodes.The simplest way of broadcasting is flooding[3], under which each sensor node rebroadcasts when it receives a message for the first time.It is attractive for its simplicity but causes high redundancy, packets collision, and bandwidth wastage[4],therefore an efficient broadcast strategy is required to reduce the message broadcast redundancy in sensor networks[5].As modification to flooding, various probabilistic broadcast protocols have been proposed[5]-[7].These proposed protocols avoid the above cited problems and provide alternative solutions to flooding.In addition,sensor network applications also require broadcast protocols to support different degrees of reliability, hence probabilistic protocols are more suitable.One of the basic extensions to flooding is gossiping[8], where each node forwards a message in a probabilistic manner.As the extensions to gossiping protocols, [9]and [10]are predominantly static in nature and cannot adapt to the changing topology as well as changing application requirements.Therefore, static protocols require the network designer to conservatively pre-configure the parameters on a case-by-case basis, in order to allow for changes in the network topology (the node density and number of duplicate broadcasts).In this paper, we propose a broadcasting algorithm to control redundancy and improve localization (BACRIL) in WSNs.The proposed algorithm uses the gossip protocol and automatically adapts to the changing network topology with the increasing node density.BACRIL is light weight in view of the limited resources available with sensor nodes and supports localization of sensor nodes in a specified area with less overhead.

    The rest of the paper is organized as follows: Section 2 provides a review of the gossip protocol and describes a few of its preliminaries.Section 3 presents the proposed BACRIL followed by its performance analysis in Section 4.Section 5 highlights the simulation results.Finally, Section 6 concludes the paper.

    2.Review of Gossip Protocol

    Gossip is a probability based protocol and its definition was stated in [11]that whenever a sensor node wishes to send a message, it randomly selects a neighboring sensor node; upon receiving the message for the first time the neighboring sensor node repeats this process; if the same message is received twice, it is discarded.In order to achieve this, each sensor node has to keep the track of messages it has already received.Besides the favorable for message broadcasting, the gossip protocol also performs tasks to help the inter process interaction for information exchange between networks where the sensor node failure is quite frequent.This section summarizes some general preliminaries for the gossip protocol in WSNs[12].

    2.1 Number of Nodes/Node Density

    The number of sensor nodes, N, determines the level of confidence for the gossip protocol.The gossip protocol relies on the aspect that each sensor node can make its communication based on negotiations with neighboring sensor nodes.For a dense area A, sensor nodes are likely to receive more messages hence it might be proved to be beneficial to listen to messages with a very low probability.In some cases the area A might be very sparse, hence it might be beneficial to listen to the messages with a probability, such as P=1, therefore the probability with which a sensor node listens to the messages directly depends on the node density D of the sensor nodes deployed in the network.The sensor node density can be calculated using

    where R denotes the transmission range of the sensor node.

    2.2 Node Degree

    The node degree ? depends on the values of A, N, and R, which can be calculated as

    It is to be noted ? is often variable since A, N, and R cannot be always uniform.

    2.3 Frequency of Received Messages

    Sensor nodes are adjacent if the distance between them is less than the defined transmission range.If the sensor nodes are set to a very low probability of listening, they will transmit only when there is a change, however, they may send very few messages in some cases.Further, such a sensor node may or may not choose to listen depending upon the initial value of P.Thus a sensor node gossips only if it receives a new message, or else it continues being in a passive state.

    2.4 Optimized and Robust Network Topology

    The network topology can change adversely due to node failures and energy depletion even if localized deployment is made.Therefore, robust network topology is essential to maintain correct system operations.The performance, functionality, and reliability of the gossip protocol do not drop rapidly with node failures and the robustness is exhibited in the face of largely varying node capabilities in terms of memory, bandwidth, and connectivity.

    2.5 Fan Out (n)

    It is defined as a configuration parameter to count the number of sensor nodes selected as gossip targets.Upon receiving a message for the first time, the sensor node selects gossip targets to forward the message.The tradeoff associated with this parameter (n) lies between the desired fault tolerance level and observed redundancy.High value of n guarantees fault tolerance but also leads to an increase in the network redundancy.

    2.6 Relative Message Redundancy (RMR)

    RMR measures the message overhead for a protocol.It is obtained by

    Table 1: Algorithm description

    where m denotes the number of messages broadcasted during a procedure.This metric is applicable if at least two sensor nodes receive the message.Zero value of RMR denotes that there is exactly one message exchange per sensor node and it is the optimal value.High value of RMR indicates a poor network usage, and for gossip based message exchange, RMR tends to n–1.

    3.BACRIL

    The broadcasting algorithm to control redundancy and improve localization (BACRIL) is designed with the goal to obtain satisfactory broadcast performance in high density WSNs.Scalability is a critical issue in sensor networks composed of several densely deployed sensor nodes.The localization of sensor nodes increases with the increase in the sensor node density, for each sensor node makes the decision to broadcast according to the local information obtained from its neighboring sensor nodes.We assume that BACRIL does not require any topology information thus the overhead remains small; all the sensor nodes have the same characteristics (the same communication and sensing ranges).The position of every sensor node is not known in any arbitrary coordinate system, therefore, we assume that the neighbors of a particular sensor node are determined based on the message broadcast.In this way,the sensor nodes decide locally to broadcast messages (as an active node) or to disregard the previously received messages.In WSNs, a message broadcast is said to be redundant if each sensor node in the network has already received the same message at an earlier time point.The technical challenge associated with this problem lies in accurate estimation of the redundant message count for the varying number of sensor nodes within the network confined to the number of broadcasts.BACRIL is based on the assumption that the sensor nodes N are deployed within a specified area A, and are allowed to broadcast a message m, intuitively with the increase of the number of sensor nodes corresponding to a high density wireless sensor network.Table 1 presents the steps of the proposed algorithm.

    We remark that BACRIL incorporates the benefits of the gossip protocol to control redundant message rebroadcast and guarantee sensor node localization with the advantage that a sensor node has to be active only for the message broadcast and no node has to localize itself with respect to a global coordinate system.This scheme ensures that sensor nodes with the smallest distance from their neighboring sensor nodes will satisfy the minimum rebroadcast in order to control the redundancy.

    4.Performance Analysis of BACRIL

    4.1 Definitions

    · A is the area of the entire wireless sensor network.

    · D is the sensor node density of the network (the average number of sensor nodes per area).

    · r is the coverage radius of each node.

    · N is the total number of sensor nodes deployed.

    · m is the number of broadcasted messages.

    · h is the number of sensor nodes that have rebroadcasted the message after its reception.

    · RBis the rebroadcast ratio, i.e., the ratio of the number of sensor nodes that have rebroadcasted the message to the number of sensor nodes in the entire network.

    · P is the probability that a sensor node can listen to a message.

    · R is the transmission range of a sensor node.

    · n is the number of sensor nodes selected as gossip targets.

    Based on the above definitions, (4) and (5) are obtained.

    The rebroadcast ratio RBmanifests the efficiency of the gossip protocol since RBis inversely proportional to the broadcast efficiency.A large value of RBresults in high redundant rebroadcast with low broadcast efficiency.Therefore, the efficiency of BACRIL is determined by the minimum value of RB, calculated by

    If the values of A, D, and r are determinate, in order to obtain the minimum value of RB, the value of h should be minimized because if D increases the value of RBdecreases.BACRIL is evaluated for different values of N.The sensor node density with different values of N is shown in Fig.1.

    5.Simulation Results

    To study the influence of BACRIL on WSNs, we simulated a wireless sensor network consists of different number of sensor nodes.The simulations were performed on SNetSim[13].The simulator has a complete stack for the gossip protocol and also provides a central management with the functionality of setting the deployment area and other parameters before creating the network topology.The sensor nodes are randomly placed in an area of 500 m×500 m, where each sensor node can communicate with another sensor node.It was observed that BACRIL completes the message broadcast with a satisfying coverage ratio; the message broadcast maintains a controlled level of redundancy with the increasing number of sensor nodes and guarantees the stability of the proposed algorithm in high density sensor networks.The network was simulated individually for different values of N = (50, 100, 200, 300,400, and 500), the received message counts and received redundant message counts for different values of N are shown in Table 2.

    The simulation results show that the redundancy is controlled within the network with the increase of the number of sensor nodes over the same deployment area.Fig.2 provides graphical data between the number of sensor nodes and the percentage of observed redundancy in the message counts.The controlled redundant message counts is promising for networks with large number of sensor nodes, as in case of the sensor node failure, the network can retain its message broadcast in a fault tolerant manner besides improving sensor node localization.

    Table 2: Message counts

    Fig.2.Number of sensor nodes vs.percentage redundancy.

    6.Conclusions

    In this paper, we propose BACRIL for controlling the redundancy in WSNs where the sensor node density is a dominant factor.The proposed algorithm utilizes the benefits of gossip towards controlling the redundancy and accurately estimates the received redundant message counts without the location knowledge of the neighboring sensor nodes.Although the estimation of the least redundancy during broadcast has been done in some current studies[14],[15], compared to them, the proposed BACRIL is scalable to the sensor node density and works well for a small network topology with 50 sensor nodes ranging to a large network topology with 500 sensor nodes over the same deployment area.The simulation results show that the redundancy maintains a controlled level for increased values of sensor node densities, and this approach can be used to improve self localization of irregularly arranged sensor nodes in dense networks, as the neighborhood knowledge of sensor nodes does not cast much effect on the proposed algorithm.Our results will also benefit the future research on self localization of high density WSNs by cutting down the total energy consumption due to controlled redundancy for maximizing the network life time.

    [1]H.J.Pandya and V.S.Vaishnav, “Detection and classification of volatile organic compounds using indium tin oxide sensor array and artificial neural network,” Ⅰnt.Journal of Ⅰntelligent Systems Technologies and Applications, vol.7, no.1, pp.72-79, 2009.

    [2]I.F.Akyildiz, W.Su, Y.Sankarasubramaniam, and E.Cayirci, “A survey on sensor networks,” ⅠEEE Communications Magazine, vol.40, no.8, pp.102-114,2004.

    [3]J.N.Al-Karaki and A.E.Kamal, “Routing techniques in wireless sensor networks: a survey,” ⅠEEE Journal of Wireless Communications, vol.11, no.6, pp.6-28, 2004.

    [4]K.Sohraby, D.Minoli, and T.Znati, Wireless Sensor Networks: Technology, Protocols, and Applications,Chichester: John Wiley and Sons, 2007, pp.203-209.

    [5]B.Carbunar, A.Grama, and J.Vitek, “Redundancy and coverage detection in sensor networks,” ACM Trans.on Sensor Networks, vol.2, no.1, pp.94-128, 2006.

    [6]J.-H.Luo, X.Liu, and D.-X.Ye, “Research on multicast routing protocols for mobile ad-hoc networks,” Computer Networks, vol.52, no.5, pp.988-997, 2008.

    [7]W.R.Heinzelman, J.Kulik, and H.Balakrishnan, “Adaptive protocols for information dissemination in wireless sensor networks,” in Proc.of the 5th Annual ACM/ⅠEEE Ⅰnt.Conf.on Mobile Computing and Networking, Seattle, 1999, pp.174-185.

    [8]Z.J.Haas, J.Y.Halpern, and L.-E.Li, “Gossip-based ad hoc routing,” ⅠEEE/ACM Trans.on Networking, vol.14, no.3,pp.479-491, 2006.

    [9]J.Kulik, W.R.Heinzelman, and H.Balakrishnan,“Negotiation base protocols for disseminating information in wireless sensor networks,” Wireless Networks, vol.8, no.2-3, pp.169-185, 2002.

    [10]R.Chandra, V.Ramasubramanian, and K.P.Birman,“Anonymous gossip: improving multicast reliability in mobile ad-hoc networks,” in Proc.of the 21st Ⅰnt.Conf.on Distributed Computing Systems, Phoenix (Mesa), 2001, pp.275-283.

    [11]A.M.Kermarrec and M.V.Steen, “Gossiping in distributed systems,” Operating Systems Review, vol.41, no.5, pp.2-7,2007.

    [12]C.L.Barrett, S.J.Eidenbenz, L.Kroc, M.Marathe, and J.P.Smith, “Parametric probabilistic sensor network routing,” in Proc.of the 2nd ACM Ⅰnt.Conf.on Wireless Sensor Networks and Applications, San Diego, 2003, pp.122-131.

    [13]W.Heinzelman, J.Kulik, and H.Balakrishnan, “Adaptive protocols for information dissemination in wireless sensor networks,” in Proc.of the 5th Annual ACM/ⅠEEE Ⅰnt.Conf.on Mobile Computing and Networking, Seattle, 1999, pp.174–185.

    [14]R.Zhao, X.Shen, Z.Jiang, and H.Wang.(2012).Broadcasting with least redundancy in wireless sensor networks.Ⅰnt.Journal of Distributed Sensor Networks.[Online].Available: http://www.hindawi.com/journals/ijdsn/2012/957606/

    [15]J.Pu, Y.Gu, Y.Zhang, J.Chen, and Z.Xiong.(2012).A hole-tolerant redundancy scheme for wireless sensor networks.Ⅰnt.Journal of Distributed Sensor Networks.[Online].Available: http://www.hindawi.com/journals/ijdsn/2012/320108/

    国产精品久久久久久久电影| 午夜影院在线不卡| 在线观看免费高清a一片| 日韩制服骚丝袜av| 五月开心婷婷网| 高清不卡的av网站| 精品久久久久久电影网| 欧美精品一区二区大全| 男女无遮挡免费网站观看| 老司机亚洲免费影院| 久久影院123| 少妇的丰满在线观看| 男女边摸边吃奶| 久久毛片免费看一区二区三区| 高清毛片免费看| 久久人人爽人人片av| av电影中文网址| 校园人妻丝袜中文字幕| 国产视频首页在线观看| 日韩三级伦理在线观看| 一级,二级,三级黄色视频| 国产精品久久久久久久电影| 99国产精品免费福利视频| 国产69精品久久久久777片| 国产精品嫩草影院av在线观看| 欧美国产精品一级二级三级| 久久这里只有精品19| 亚洲国产精品一区二区三区在线| 妹子高潮喷水视频| 亚洲欧美一区二区三区国产| 成人国语在线视频| 中文字幕人妻丝袜制服| 99re6热这里在线精品视频| 国产午夜精品一二区理论片| 亚洲国产成人一精品久久久| 中文乱码字字幕精品一区二区三区| 免费观看无遮挡的男女| 又粗又硬又长又爽又黄的视频| 一本色道久久久久久精品综合| 香蕉国产在线看| 国产永久视频网站| 精品国产露脸久久av麻豆| 久久久欧美国产精品| 乱码一卡2卡4卡精品| 国产一级毛片在线| 黄网站色视频无遮挡免费观看| 人人妻人人添人人爽欧美一区卜| 两个人看的免费小视频| 国产视频首页在线观看| 国产片内射在线| 免费在线观看黄色视频的| 只有这里有精品99| 国产精品久久久久久久电影| 在线看a的网站| 精品国产露脸久久av麻豆| 欧美激情极品国产一区二区三区 | 精品少妇黑人巨大在线播放| 欧美国产精品va在线观看不卡| 国产精品久久久久久av不卡| 搡老乐熟女国产| 国产一区二区在线观看日韩| 亚洲欧美一区二区三区黑人 | 色吧在线观看| 在线观看国产h片| 哪个播放器可以免费观看大片| 天堂中文最新版在线下载| 午夜免费男女啪啪视频观看| 美女视频免费永久观看网站| 日日爽夜夜爽网站| 国产免费一级a男人的天堂| 人妻 亚洲 视频| 国产乱人偷精品视频| 一级黄片播放器| videossex国产| 久久97久久精品| 最近最新中文字幕免费大全7| 香蕉国产在线看| 国产探花极品一区二区| 青春草视频在线免费观看| 高清毛片免费看| 人妻系列 视频| 91久久精品国产一区二区三区| 9191精品国产免费久久| 亚洲综合色惰| 久久99精品国语久久久| 波野结衣二区三区在线| 亚洲,欧美,日韩| 人妻 亚洲 视频| 精品视频人人做人人爽| 晚上一个人看的免费电影| 黄网站色视频无遮挡免费观看| 色婷婷久久久亚洲欧美| 夜夜骑夜夜射夜夜干| 国产av国产精品国产| 久久ye,这里只有精品| 女人精品久久久久毛片| 五月伊人婷婷丁香| 久久人妻熟女aⅴ| 国产av精品麻豆| 久久久国产精品麻豆| 国产熟女欧美一区二区| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 亚洲国产欧美在线一区| 成人黄色视频免费在线看| 高清黄色对白视频在线免费看| 精品国产一区二区三区久久久樱花| 国产一区二区激情短视频 | 精品熟女少妇av免费看| 国产探花极品一区二区| 尾随美女入室| 日本91视频免费播放| 中文字幕制服av| 免费看av在线观看网站| 久久久久久久国产电影| 国产熟女欧美一区二区| 狠狠精品人妻久久久久久综合| 五月天丁香电影| 一二三四中文在线观看免费高清| 黑人猛操日本美女一级片| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 欧美bdsm另类| 这个男人来自地球电影免费观看 | 免费大片18禁| 91在线精品国自产拍蜜月| 两个人看的免费小视频| 视频中文字幕在线观看| xxx大片免费视频| 亚洲成国产人片在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲欧美色中文字幕在线| 亚洲国产精品国产精品| 亚洲图色成人| 男人舔女人的私密视频| 国内精品宾馆在线| 女性被躁到高潮视频| 久久久久精品性色| 9热在线视频观看99| 新久久久久国产一级毛片| 九色亚洲精品在线播放| 熟女人妻精品中文字幕| 水蜜桃什么品种好| 韩国av在线不卡| 久久精品久久久久久久性| 成年人午夜在线观看视频| 五月天丁香电影| 久久久久精品性色| 国产精品一二三区在线看| 黄网站色视频无遮挡免费观看| 少妇猛男粗大的猛烈进出视频| 夜夜骑夜夜射夜夜干| 老司机亚洲免费影院| 人妻系列 视频| 最近手机中文字幕大全| 国产精品国产三级国产专区5o| 女人被躁到高潮嗷嗷叫费观| 午夜精品国产一区二区电影| 在线观看人妻少妇| 国产高清三级在线| 久久精品熟女亚洲av麻豆精品| 国产xxxxx性猛交| a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| 九草在线视频观看| 亚洲国产精品一区二区三区在线| 亚洲一码二码三码区别大吗| 一区二区三区精品91| 菩萨蛮人人尽说江南好唐韦庄| 男女边吃奶边做爰视频| 欧美少妇被猛烈插入视频| 男女高潮啪啪啪动态图| 亚洲 欧美一区二区三区| 国产成人免费无遮挡视频| 国产成人免费无遮挡视频| 在线 av 中文字幕| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 精品亚洲成国产av| 久久毛片免费看一区二区三区| 黄色一级大片看看| 女人久久www免费人成看片| 亚洲成色77777| 亚洲精品,欧美精品| 搡女人真爽免费视频火全软件| 我的女老师完整版在线观看| 一级毛片电影观看| 亚洲国产精品一区三区| 亚洲精品国产色婷婷电影| 久久青草综合色| 人妻少妇偷人精品九色| 国产爽快片一区二区三区| 亚洲精品一二三| h视频一区二区三区| a级片在线免费高清观看视频| 黑丝袜美女国产一区| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久久久按摩| 女性生殖器流出的白浆| 国产免费一级a男人的天堂| 91国产中文字幕| 色吧在线观看| 久久久久人妻精品一区果冻| 国产成人免费无遮挡视频| 丝袜美足系列| 女性被躁到高潮视频| 亚洲精品国产av蜜桃| 日韩视频在线欧美| 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 91aial.com中文字幕在线观看| 极品人妻少妇av视频| 九色成人免费人妻av| 男男h啪啪无遮挡| 亚洲精品日本国产第一区| 国产亚洲一区二区精品| av黄色大香蕉| 日本欧美视频一区| 在线精品无人区一区二区三| 欧美97在线视频| 日韩精品免费视频一区二区三区 | 国产免费一区二区三区四区乱码| av女优亚洲男人天堂| 久久久久久久国产电影| 久久精品aⅴ一区二区三区四区 | 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 亚洲一区二区三区欧美精品| 亚洲精品,欧美精品| 亚洲美女视频黄频| 国产精品久久久久成人av| 美国免费a级毛片| 各种免费的搞黄视频| 精品一区在线观看国产| 黑人欧美特级aaaaaa片| av电影中文网址| 一边摸一边做爽爽视频免费| 老熟女久久久| 两个人免费观看高清视频| 中国美白少妇内射xxxbb| 在线天堂中文资源库| 男的添女的下面高潮视频| 欧美日韩精品成人综合77777| 精品久久久久久电影网| 男女边吃奶边做爰视频| av卡一久久| 国产日韩欧美视频二区| xxx大片免费视频| 精品一区二区三区四区五区乱码 | 丝袜喷水一区| 日韩成人伦理影院| 成人亚洲精品一区在线观看| 最近最新中文字幕大全免费视频 | 久热久热在线精品观看| 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧洲国产日韩| 亚洲精品乱久久久久久| 亚洲情色 制服丝袜| av国产久精品久网站免费入址| 国产精品熟女久久久久浪| 免费黄网站久久成人精品| 久久av网站| 亚洲国产精品一区二区三区在线| 欧美97在线视频| 成人亚洲精品一区在线观看| 中文欧美无线码| 香蕉国产在线看| 又粗又硬又长又爽又黄的视频| 久久97久久精品| www日本在线高清视频| 另类精品久久| 国产精品不卡视频一区二区| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 成年人午夜在线观看视频| 极品少妇高潮喷水抽搐| 国产探花极品一区二区| 岛国毛片在线播放| 亚洲精品自拍成人| 最近最新中文字幕免费大全7| 精品卡一卡二卡四卡免费| 男人舔女人的私密视频| 午夜福利,免费看| 午夜av观看不卡| 2018国产大陆天天弄谢| 一级毛片我不卡| 成年av动漫网址| 深夜精品福利| 亚洲精品乱码久久久久久按摩| 大片电影免费在线观看免费| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| 熟女av电影| 22中文网久久字幕| 亚洲综合色网址| 国产永久视频网站| 亚洲美女视频黄频| 久久久欧美国产精品| 最近中文字幕2019免费版| 亚洲成人av在线免费| 免费高清在线观看日韩| 日本午夜av视频| 亚洲精品乱久久久久久| 一区二区三区乱码不卡18| 女人被躁到高潮嗷嗷叫费观| 国产不卡av网站在线观看| 在线看a的网站| 精品久久蜜臀av无| 久久精品国产a三级三级三级| 久久影院123| 国产精品久久久久久久久免| 日韩精品免费视频一区二区三区 | 女性生殖器流出的白浆| 亚洲精品自拍成人| √禁漫天堂资源中文www| 欧美日韩国产mv在线观看视频| 18禁动态无遮挡网站| 黄色配什么色好看| xxx大片免费视频| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 久久久久精品久久久久真实原创| 十分钟在线观看高清视频www| 国产视频首页在线观看| 成人二区视频| 中国美白少妇内射xxxbb| 国产av码专区亚洲av| 26uuu在线亚洲综合色| 亚洲一级一片aⅴ在线观看| 色婷婷久久久亚洲欧美| 日本欧美视频一区| 狠狠婷婷综合久久久久久88av| 最新中文字幕久久久久| 9色porny在线观看| 秋霞在线观看毛片| 最近手机中文字幕大全| av黄色大香蕉| 十八禁网站网址无遮挡| 精品人妻偷拍中文字幕| 爱豆传媒免费全集在线观看| 午夜91福利影院| 亚洲美女搞黄在线观看| 狠狠婷婷综合久久久久久88av| 国产一区二区在线观看av| 久久97久久精品| 欧美 日韩 精品 国产| 日韩在线高清观看一区二区三区| 一级片免费观看大全| 国产精品国产三级国产av玫瑰| 在线观看免费高清a一片| 晚上一个人看的免费电影| 亚洲性久久影院| 国产精品 国内视频| 一级毛片电影观看| 99久国产av精品国产电影| 日日啪夜夜爽| 亚洲经典国产精华液单| 免费观看a级毛片全部| 亚洲色图综合在线观看| 中文字幕亚洲精品专区| 成年人免费黄色播放视频| 美女主播在线视频| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 免费大片黄手机在线观看| 制服诱惑二区| 亚洲 欧美一区二区三区| 如何舔出高潮| 一区二区日韩欧美中文字幕 | 国产一区二区激情短视频 | 人人妻人人爽人人添夜夜欢视频| 黄色一级大片看看| 国产麻豆69| av国产精品久久久久影院| 欧美亚洲日本最大视频资源| 亚洲精华国产精华液的使用体验| av播播在线观看一区| 国产高清国产精品国产三级| 欧美xxxx性猛交bbbb| 久久久a久久爽久久v久久| 肉色欧美久久久久久久蜜桃| 亚洲综合色网址| 国产片特级美女逼逼视频| 免费看不卡的av| 国产精品国产三级专区第一集| 9色porny在线观看| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 国产在线免费精品| 亚洲美女视频黄频| 春色校园在线视频观看| av线在线观看网站| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看| 国产片特级美女逼逼视频| 两个人免费观看高清视频| 亚洲色图 男人天堂 中文字幕 | 亚洲精品,欧美精品| www.熟女人妻精品国产 | 成年人免费黄色播放视频| 91aial.com中文字幕在线观看| 久久 成人 亚洲| 国产精品99久久99久久久不卡 | 国产精品久久久久成人av| 一个人免费看片子| 国产成人精品久久久久久| 亚洲精品一区蜜桃| 免费大片黄手机在线观看| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 久久狼人影院| 亚洲av国产av综合av卡| 久久青草综合色| 午夜福利视频在线观看免费| 精品熟女少妇av免费看| 啦啦啦在线观看免费高清www| 久久精品夜色国产| 久久久久国产网址| 国产欧美日韩综合在线一区二区| 丰满少妇做爰视频| 男人添女人高潮全过程视频| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 欧美+日韩+精品| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 久久国产精品男人的天堂亚洲 | 午夜久久久在线观看| 亚洲精品第二区| 性高湖久久久久久久久免费观看| 日韩av免费高清视频| 亚洲综合色网址| 狂野欧美激情性xxxx在线观看| 美女福利国产在线| 亚洲av在线观看美女高潮| 亚洲av日韩在线播放| 国产精品三级大全| 国内精品宾馆在线| 熟女av电影| 最新中文字幕久久久久| 2021少妇久久久久久久久久久| 热99久久久久精品小说推荐| 久久精品国产自在天天线| 乱人伦中国视频| 精品国产乱码久久久久久小说| 国产成人欧美| av福利片在线| 一级爰片在线观看| 啦啦啦在线观看免费高清www| 欧美精品高潮呻吟av久久| 亚洲国产av影院在线观看| 如何舔出高潮| 中文字幕人妻熟女乱码| 亚洲av综合色区一区| 国产黄频视频在线观看| 麻豆乱淫一区二区| 国产黄色免费在线视频| 51国产日韩欧美| 欧美精品一区二区大全| 国产 精品1| 午夜福利网站1000一区二区三区| 成年人午夜在线观看视频| 国产免费一级a男人的天堂| 亚洲精品日本国产第一区| 国产av精品麻豆| 欧美人与性动交α欧美软件 | 卡戴珊不雅视频在线播放| 成人免费观看视频高清| 久久韩国三级中文字幕| 男女免费视频国产| 国产精品一区www在线观看| 亚洲av欧美aⅴ国产| 国产无遮挡羞羞视频在线观看| 在线观看免费日韩欧美大片| 婷婷色av中文字幕| 免费观看a级毛片全部| 飞空精品影院首页| 又大又黄又爽视频免费| 97人妻天天添夜夜摸| 中文天堂在线官网| 亚洲精品第二区| 最新的欧美精品一区二区| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 少妇人妻 视频| 女的被弄到高潮叫床怎么办| 日日撸夜夜添| 久久久a久久爽久久v久久| 欧美bdsm另类| videos熟女内射| 亚洲成国产人片在线观看| 少妇的逼水好多| 国产精品女同一区二区软件| 国产一区二区三区综合在线观看 | 在线观看www视频免费| 午夜日本视频在线| 人妻系列 视频| 在线观看免费日韩欧美大片| 另类精品久久| 美女主播在线视频| 成年av动漫网址| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 国产在线一区二区三区精| 人人妻人人澡人人看| 国产在线一区二区三区精| 桃花免费在线播放| 国产又爽黄色视频| 免费av中文字幕在线| 国产午夜精品一二区理论片| 91精品国产国语对白视频| 国产男女超爽视频在线观看| 人妻人人澡人人爽人人| 久久久久久伊人网av| 涩涩av久久男人的天堂| 制服人妻中文乱码| 久久久久久久久久成人| 欧美少妇被猛烈插入视频| 国产探花极品一区二区| 男男h啪啪无遮挡| 色94色欧美一区二区| 一本久久精品| 日本黄大片高清| 国产 精品1| 亚洲一区二区三区欧美精品| 久久精品久久久久久久性| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 桃花免费在线播放| 又黄又爽又刺激的免费视频.| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 99九九在线精品视频| 国产成人精品久久久久久| 午夜福利视频精品| 久久99一区二区三区| av不卡在线播放| 一区在线观看完整版| 男人舔女人的私密视频| 桃花免费在线播放| 国产毛片在线视频| 久久国产亚洲av麻豆专区| 国产男女超爽视频在线观看| 高清欧美精品videossex| 午夜福利在线观看免费完整高清在| 国产 精品1| 街头女战士在线观看网站| 晚上一个人看的免费电影| 亚洲国产精品专区欧美| 欧美97在线视频| 成人影院久久| tube8黄色片| 高清av免费在线| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 国产成人精品福利久久| 丰满少妇做爰视频| 国产精品无大码| 久久人人97超碰香蕉20202| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 日韩中字成人| 国产日韩欧美在线精品| 夫妻午夜视频| 国产精品一区二区在线观看99| 老司机亚洲免费影院| 在线看a的网站| 热re99久久精品国产66热6| 亚洲精品自拍成人| 久久久a久久爽久久v久久| 一级毛片电影观看| 91精品三级在线观看| 国产精品熟女久久久久浪| 亚洲精品久久久久久婷婷小说| 中文字幕亚洲精品专区| 国产精品国产三级国产av玫瑰| av视频免费观看在线观看| 午夜免费鲁丝| 色网站视频免费| a 毛片基地| av在线观看视频网站免费| 18禁观看日本| 精品久久蜜臀av无| 国产精品人妻久久久久久| 中文字幕av电影在线播放| 国产精品久久久久久久电影| 午夜激情av网站| 欧美精品一区二区免费开放| 精品一区二区三卡| 国产综合精华液| 亚洲在久久综合| av电影中文网址| 午夜日本视频在线| 午夜影院在线不卡| 精品第一国产精品| 老司机影院毛片| 国产69精品久久久久777片| www.色视频.com| 国产精品麻豆人妻色哟哟久久| 国产1区2区3区精品| 免费观看在线日韩| av女优亚洲男人天堂| 久久久久久伊人网av| 赤兔流量卡办理| 亚洲,一卡二卡三卡|