• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metamaterial Absorbers in Terahertz Band

    2013-11-26 10:48:46QiYeWenHuaiWuZhangQingHuiYangandManManMo

    Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, and Man-Man Mo

    1.Introduction

    Metamaterials (MM) are artificially constructed electromagnetic (EM) materials which have the extraordinary physical properties that the natural materials do not have.They consequently have many applications,such as negative refractive index[1], superlenses[2],cloaking[3]and thermal emitters[4].A recent example for application of metamaterial is the creation of a resonant absorber at terahertz (THz) frequencies.The MM absorbers are generally composed of a MM layer and a metal plate layer separated by a dielectric spacer.With this kind of novel structure, unity absorptivity can be realized by matching the impedance of MM absorbers to free space.Such an absorber would be of particular importance at THz frequencies where it is difficult to find naturally occurring materials with strong absorption coefficients that are also compatible with standard microfabrication techniques.MM absorbers are very attractive in real applications due to its high absorption, low density, thin thickness, and integration flexibility[1]-[6].Besides that, wide-angle, polarization insensitive and even multi-bands/broadband absorption can be achieved through properly device designing[7]-[11].All these features make MM absorbers very useful in areas such as EM detector/imager, anti-electromagnetic interference, stealth technology, phase imaging,spectroscopy, and thermal emission.

    In this paper, basic concepts and some recent progresses we made on THz MM absorbers are introduced and discussed.In Section 2 we give a simple introduction to the basic structure and the working principle of MM absorbers.A transmission line model was proposed to describe the devices and the asymmetry absorption phenomenon was explained.A dual-band MM absorber was designed and realized in Section 3, following by a demonstration of broadband THz absorbers realized in Section 4.The article closes with a final conclusion and outlook in Section 5.

    2.Basic Structure and Working Principle of Metamaterial Absorbers

    The first metamaterial based absorber was proposed by Landy et al.in the microwave band[1].It is called “a perfect metamaterials absorber” because nearly 100% absorption can be achieved theoretically.A single unit cell of the absorber consists of three layers as shown in Fig.1[1].The top layer is the electric split-ring resonator (eSRR), the middle layer is isolation layer (such as polyimide), and the bottom layer is rectangular metal strip.Due to the lithography alignment and multi-step lithography process,the preparation process of the first MM absorber is complex.Experimentally, the maximum absorptivity only reaches to 70% at 1.3 THz due to the fabrication tolerance.An improved MM absorber was proposed by H.Tao et al., with the bottom metal strips replaced by a continuous metal film[2].This improved absorber operates quite well for both TE and TM radiation over a large range of incident angles(0-50°), and the measured absorbance was further improved to 97%.Therefore, the MM absorber with a continuous metal ground plane becomes the most commonly structure in the researches.

    Fig.1.Basic structure of three layers metamaterial absorber: (a)the layer of metamaterial (eSRR), (b) the bottom metallic layer and (c) the unit structure include the dielectric layer.Figure adapted from Landy et al.[1].

    The absorption mechanism of the MM absorber is as follows.First, by changing the geometry of the SRR and the thickness of the spacer, the impedance Z(ω) of the absorber can be designed to match the impedance of free space at a specific frequency (center frequency) resulting in zero reflection.Second, electromagnetic waves can not pass through the metallic ground plane, giving rise to zero transmission too.Thus, electromagnetic waves will be completely restricted in the device and finally be consumed.In principal, the MM absorber can absorb 100% of the narrow-band electromagnetic waves.It can be used in microwave, THz, and even light wave bands by adjusting the feature size of the unit cell.

    Though more and more attention has been paid to the MM absorber, the mechanism of the near-unity absorption is still under studying.It is not clear that why the absorption is extensively enhanced after the MM structure and the wires structure being integrated into an absorber, and it is also unknown why the absorptions of MA is highly sensitive to the thickness of separated layer.More importantly, metamaterials can be usually treated as effective media.However, the effective medium theory has some problems in describing MA because the three-layer structured device does not exactly satisfy the homogeneous-effective limit, according to Caloz[12].A typical case is that the strong asymmetric absorption phenomenon cannot be fully explained by the effective medium model[13].The simulation results show dramatically different behaviors when the electromagnetic waves incident from the two opposite directions.For example, when light is incident from the front to the resonators the device acts as a perfect absorber, while when light is incident from the back to the ground plane the device behaves like a perfect mirror.Furthermore, the MA consists of only two metallic layers, thus are strongly inhomogeneous in the wave propagating direction, which is obvious in contrast to the effective medium model.

    Here we introduce a transmission line (TL) mode to analyze the mechanism of the MM absorber[14].In the TL model as shown in Fig.2, it is assumed that the transverse electromagnetic (TEM) wave propagates through free space and the substrate with intrinsic impedances Ziand Zo,respectively.There are two assumptions for constructing the TL model.One is that coupling capacitor or coupling inductor between the eSRR layer and wires layer should be ignorable, so that these two layers can be individually modeled, as demonstrated in Fig.1.Another is that the THz wave normally incidents on the absorber plane with the electrical field parallel to the split gap of the eSRR.The TL model of eSRR proposed by Azad[15]is used to describe the eSRR layer, in which the LC resonance and dipole resonance each is represented by one group of L, C, and R,respectively, and the coupling between these two resonances is specified by the parameter M.The wires layer part is mimicked by the TL model developed by Fu et al.[16],with the only resonance expressed by one group of L, C,and R.The function of isolation layer is modeled by a transmission line which contains all EM related properties of the isolation layer such as ε, μ, and thickness.It connects the eSRR part and wire part.All the parameters are needed to be optimized until the S-parameters calculated by the TL model fit the simulation results.

    Once all of the parameters in Fig.1 are determined, the S-parameters of the MA can be derived as follows.

    The ABCD matrix of eSRR structure layer, isolation layer (iso) and wires structure (wires) are

    Fig.2.Transmission line model of metamaterial absorber.

    and k is the wave vector of the TEM wave, l and Zcare the thickness and characteristic impedance of the isolation layer,respectively.

    So the ABCD matrix of the MA is

    Then the S matrix thus can be calculated as

    In the TL model of the absorber, the R1, R2, and R3represent the components for energy consumption.The energy consumed by R1, R2, R3in two exciting conditions were calculated by our TL model, as shown in Fig.3.When the EM wave is emitted from eSRR to wires structure (the positive case), nearly 90% of the incident energy is consumed by R1, and about 10% consumed by R3.These results mean that the LC resonance of eSRR is predominant in the energy absorption to the EM wave, while the contribution from dipole resonance is very small and ignorable.In the negative case (from wires structure to eSRR), the total energy consumption of the absorber is very small.It is the wire structure which provides about only 6%energy loss to the incidence wave, and R1and R2contribute very little.These results unambiguously demonstrate and explain the asymmetric phenomenon of THz absorption.It also confirm that, for the absorber discussed here, it is mainly the LC resonance of the eSRR structure contributes to the strong absorption when EM wave propagate along the positive direction.

    Abovementioned results give an insight into the basic function of each components of MM absorbers: 1) As hints by the TL model, the LC resonance of eSRR strongly affects the absorption characteristics of the absorber.It is also known that for eSRR, the inductance L is provided by its metallic loops and the capacitance C is induced by the splits of the ring[12].Thus the absorption curve of the absorber mainly depends on the framework of the eSRR.Of course, the effects of other components such as interlayer coupling and other resonance from Liand Ci(i=2, 3) are also not negligible.2) More importantly, the function of the isolation layer is to adjust the impedance of the metamaterials and enable the EM wave to enter into the device as much as possible.Therefore, the absorption is highly sensitive to the properties of the isolation layer, such as its thickness, permeability and permittivity.3) The role of wires structure is to enhance the reflection of EM wave thus benefits the trapping and absorbing of wave in the space between the two metallic layers.All these features revealed by TL model set the basic principles for the design of THz MM absorbers.

    By this TL model, the asymmetric phenomenon of THz absorption is unambiguously demonstrated and explained.The strong absorption is found to be mainly related to the LC resonance of the eSRR structure.The isolation layer in the absorber, however, is actually an impedance transformer and plays key role in producing the perfect absorption.The studies by the TL model also show that the electromagnetic wave is concentrated on some specific location in the absorber.It indicates that the trapped electromagnetic wave in the absorber can be converted into thermal energy,electric energy or any kinds of other energy depending on the functions of the spacer materials.This feature as electromagnetic wave trapper has many potential applications such as radiation detecting bolometers and thermal emitter.

    Fig.3.Spectrum of energy consumption of Ri (i=1, 2, 3) in TL model for the positive (P) and negative (N) incidence of the THz wave.

    3.Dual-Band THz MM Absorbers

    Most of the existed designs for perfect THz absorbers only have single-band response.Actually, design and fabrication of multi-absorptive metamaterials are potentially useful and attractive[9].It is also a possible step towards broadband THz absorber for microbolometers.Since our TL model suggest that the strong absorption is found to be mainly related to the LC resonance of the eSRR structure, an eSRR with dual band LC resonance are possible to construct a dual band absorber.

    The designed single unit of the absorber consists of two metallic elements: an electric-field-coupled split resonance ring structure (eSRR), and a metal plate bottom layer.The eSRR unit cell is composed of two symmetrical single-resonant metamaterials with one invaginated in another, as shown in Fig.4 (a).The two single-resonant parts have different split gaps and different inductive loops,which will induce two different LC resonances.In order to maximize the absorption of the device, both the transmission and reflection should be minimized.The resonance of the eSRR would be tuned to approximately match the impedance z(w) to free space in order to minimize the reflectance at specific frequencies.At the same time, there is no transmission through the absorber across the entire frequency range under studied due to the shielding of the bottom metal plate.The total structure is constructed on a 500 μm SI-GaAs substrate as shown in Fig.4 (b).The complex dielectric constants ε of GaAs and polymide are 12.9+0.077i and 2.5+0.2i, respectively[3].Both the metal plate and the eSRR are made of Gold with conductance of 4.09×107S/m.Utilizing the CST Microwave Studio, the structure of the absorber was optimized (simulating radiation at normal incidence with the electric field perpendicular to the split gaps) with the size parameters are listed in the caption of Fig.4 (a).The device was fabricated by sputtering of Ti(40 nm)/Au(800 nm) followed by spin coating with 10 μm polyimide.Another 200 nm Au film was sputtering deposited on the top of the polyimide film, and which was then patterned into the designed eSRR shape by reactive ion etching.The photograph of a unit cell and a portion of the fabricated absorber are shown in Fig.4 (c) and (d).The dimension of the fabricated eSRR structure is very close to the theoretically optimized value, and the size parameters are measured and listed in the caption of Fig.4 (c).

    The reflection of the absorber was measured by a THz-TDS system with an incident direction of 30 degree off the normal direction.The measured reflection as a function of frequency is displayed in Fig.5.Two reflectivity minimums around 0.45 THz and 0.92 THz are clearly observed, confirming that the dual-band absorption is realized in our as-fabricated MA.Both reflective peaks are strong with the low-frequency minimum of 0.192 and the high-frequency minimum approaching 0.366, giving rise to strong absorption of 80.8% and 63.4%, respectively.The slight red-shift of the absorption frequency from the simulation is reasonably ascribed to the broadening of metal wires or split gaps of the eSRR structure, as indicated in Fig.4.

    Fig.4.Dual-band terahertz metamaterial absorbers.(a) designed electric split ring resonator with a=60, b=120, d=4, h=55, l=28.6,t1=6, t2=4, t3=14, and t4=13, (b) perspective view of the designed absorbers, (c) a unit cell of the experimentally realized absorbers with eSRR size of a=61.8, b=119.6, d=4.4, h=54.6, l=28.2, t1=6.4,t2=4.2, t3=15.4, and t4≈13, all number denotes the size in unit of micrometers, and (d) photograph of a portion of the fabricated absorber.The period for the absorber unit is 140 μm×124 μm.

    Fig.5.Measured reflection curve of the absorber (line+symbol)and the simulated transmission curve of the eSRR (smooth line).

    4.Broadband THz MM Absorbers

    The development of dual-band THz MM absorber paves the way to a broadband THz absorber since the absorption band can be expanded by merging several closely positioned resonant peaks in the absorption spectrum.In this section, we experimentally demonstrated a THz broadband absorber using a SiO2dielectric spacer.SiO2has excellent thermal, mechanical, and dielectric properties[17].Based on an SiO2layer, a narrow-band THz absorber has been previously studied[18].But a SiO2based broadband THz absorber has never been reported.As to the broadband MM absorber derived from combining multiple absorption peaks, the thickness of the dielectric layer is essentially important to the bandwidth.It is well know that the fabrication of SiO2films is a typical CMOS process.The film thickness can be precisely controlled and the large-area uniformity can also be warranted.All these features make SiO2very suitable for a broadband THz MM absorber.

    The MM absorber is a three-layered device with the structure depicted in Fig.6.A Pt ground layer was separated from the top Al squares by a SiO2spacer.Specially, a structural unit of the absorber is composed of two mixed-size squares, as schematically illustrated in Fig.6 (c).The refractive index of SiO2is 2.0+0.025i at THz frequencies[19],[20].The conductivity of the Al and Pt is 1×107S/m and 9.43×106S/m, respectively.The periodic boundary conditions are set along the x and y axes directions, as indicated in Fig.6 (a).A plane wave vertically impacts on the front face of the structure, and as the excitation source, the electric field is polarized parallels to the x direction.Utilizing the CST Microwave Studio, the structure of the broadband absorber was optimized(simulating radiation at normal incidence) and the obtained size parameters were listed in the caption of Fig.6 (b)and (c).

    Fig.6.Schematic diagram of the broadband THz metamaterial absorber: (a) top viewm, (b) the section view of a portion of the designed absorber with h1=100 nm, h2=2 μm, h3=100 nm, (c) a simulated unit cell of the mixed-size square resonators with a=36.9 μm, b=34.2 μm, p=80 μm, (d) micrograph of a portion of the fabricated absorber, and (e) a cell structure of the fabricated absorber with a=36.6 μm, b=34 μm and p=81.1 μm.

    Such a three-layered integrated structure was fabricated using microfabrication techniques.Firstly, a 200-nm-thick Pt/Ti film was E-beam evaporated on Si to form the bottom layer.The SiO2dielectric spacer with a thickness of 2 μm was deposited on Pt using plasma enhanced chemical vapor deposition (PECVD).Then a 200-nm-thick Al film was deposited on top of the SiO2film by e-beam deposition.Ultimately, mixed-size Al square arrays were patterned by wet etching with the size parameters defined in Fig.6 (a).A micrograph of a unit cell and a portion of the fabricated absorber are shown in Fig.6 (d) and (e).The size parameters are measured and listed in the caption of Fig.6(e).However, there are still some deviations due to the fabrication tolerances.For example, both squares are slightly smaller while the period is a little larger as compared to the designed structure.

    The absorption characteristic of the sample was tested using a Fourier transform infrared spectrometer (FTIR) in a reflection geometry.The reflection coefficient measurement was taken with THz beam in reflection mode at 30°incidence angle from the normal direction, using a blank Pt coated substrate as the reference.A detailed description of this system can be found in [21].The total sample area for measurement was 1.5×1.5 cm2to prevent beam clipping.Measurements were conducted in a dry-air environment to mitigate the effects of water vapor absorption.The absorptivity was calculated byThe measured absorption as a function of the frequency is displa yed in Fig.7.Two absorption maximums around 2.58THzand2.65THz are clearly observed with absorption of 99.8% and 98.7%, respectively,between which the minimum absorptivity in the dip is still high to 91.8%.The width of the absorption top is 210 GHz if a strict criterion of 90% of the maximum absorption is defined, confirming that broadband absorption was realized in our fabricated absorber.

    Fig.7.Measured (solid curve) and simulated (dash curve)absorption spectra curves of the MM absorber.

    5.Future Development Trends of Metamaterial Absorbers

    It is a few years time since the metamaterial absorber was first proposed until now, but the research has made great progress.The future development of metamaterial absorbers will move along the following direction.

    Broadband absorber: narrowband absorber has important applications in the THz detection, but for absorbing, invisible, thermal emission and energy conversion, broadband absorbers have more useful values.Currently, the coverage of broadband absorbers based metamaterials is still relatively less, so the research of the broadband metamaterial absorbers will become a hot issue in the future.

    Frequency tunable absorber: the frequency tunable absorber can absorb different frequencies of electromagnetic waves flexibility to achieve broadband absorption.In addition, the frequency tunable absorber can control the absorption level of specific frequency flexibility,and plays a similar role as a switch or invisible window.The frequency tunable absorber will be the important development trend of metamaterial absorbers in the future.

    Absorber combined with functional materials: absorbers combined with functional materials will be another development trend of metamaterial absorbers, so a variety of different functions can be achieved.After electromagnetic wave is absorbed, it is usually transformed into heat in the middle dielectric layer.If the middle dielectric layer is replaced by other functional materials, it is possible to achieve a number of special performances.For example, the use of thermoelectric materials can transform the electromagnetic waves into electric energy in the specific area, which is an important application in the detection of electromagnetic waves.In addition, it will display many new features to combine with nonlinear materials, optical materials, piezoelectric materials, and phase change materials, etc.

    [1]N.I.Landy, S.Sajuyigbe, J.J.Mock, D.R.Smith, and W.J.Padilla, “Perfect metamaterial absorber,” Phys.Rev.Lett.,2008, doi: 10.1103/PhysRevLett.100.207402.

    [2]H.Tao, C.M.Bingham, A.C.Strikwerda, D.Pilon, D.Shrekenhamer, N.I.Landy, K.Fan, X.Zhang, W.J.Padilla,and R.D.Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys.Rev.B, 2008, doi:10.1103/PhysRevB.78.241103.

    [3]H.Tao, N.I.Landy, C.M.Bingham, X.Zhang, R.D.Averitt,and W.J.Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt.Express, 2008, doi: 10.1364/OE.16.007181.

    [4]Y.Avitzour, Y.A.Urzhumov, and G.Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys.Rev.B, 2009, doi:10.1103/PhysRevB.79.045131.

    [5]N.I.Landy, C.-M.Bingham, T.Tyler, N.Jokerst, D.R.Smith, and W.J.Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,”Phys.Rev.B, 2009, doi: 10.1103/PhysRevB.79.125104.

    [6]R.Huang, Z.-W.Li, L.B.Kong, L.Liu, and S.Matitsine,“Analysis and design of an ultra-thin metamaterial absorber,”Progress in Electromagnetic Research B, 2009, doi:10.2528/PIERB09040902.

    [7]B.Wang, T.Koschny, and C.M.Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,”Phys.Rev.B, 2009, doi: 10.1103/PhysRevB.80.033108.

    [8]Y.-Q.Ye, Y.Jin, and S.-L.He, “Omnidirectional,polarization-insensitive and broadband thin absorber in the terahertz regime,” J.Opt.Soc.Am.B, vol.27, no.3, pp.498-504, 2010.

    [9]Q.-Y.Wen, H.-W.Zhang, Y.-S.Xie, Q.-H.Yang, and Y.-L.Liu, “Dual band terahertz metamaterial absorber: design,fabrication, and characterization,” Appl.Phys.Lett., vol.95,no.24, pp.241111-241111-3, 2009.

    [10]H.Tao, C.M.Bingham, D.Pilon, K.Fan, A.C.Strikwerda,D.Shrekenhamer, W.J.Padilla, X.Zhang, and R.D.Averitt,“A dual band terahertz metamaterial absorber,” J.Phys.D:Appl.Phys., 2010, doi:10.1088/0022-3727/43/22/225102.

    [11]X.-P.Shen, T.-J.Cui, J.-M.Zhao, H.-F.Ma, W.-X.Jiang,and H.Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt.Express, vol.19, no.10, pp.9401-9407, 2011.

    [12]A.C.Caloz and T.Itoh, Electromagnetic Metamaterial:Transmission Line Theory and Microwave Applications, New York: John wiley & Sons, 2005.

    [13]Y.-X.Li, Y.-S.Xie, H.-W.Zhang, Y.-L.Liu, Q.-Y.Wen, and W.-W.Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling,” J.Phys.D: Appl.Phys., 2009, doi:10.1088/0022-3727/42/9/095408.

    [14]Q.-Y.Wen, Y.-S.Xie, H.-W.Zhang, Q.-H.Yang, Y.-X.Li,and Y.-L.Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt.Express,vol.17, no.22, pp.20256-20265, 2009.

    [15]A.K.Azad, A.J.Taylor, E.Smirnova, and J.F.O'Hara,“Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl.Phys.Lett.,vol.92, no.1, pp.011119-011119-3, 2008.

    [16]L.Fu, H.Schweizer, H.Guo, N.Liu, and H.Giessen,“ Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys.Rev.B, 2008, doi:10.1103/PhysRevB.78.115110.

    [17]D.Grbovic, N.V.Lavrik, S.Rajic, and P.G.Datskos,“Arrays of SiO2substrate-free micromechanical uncooled infrared and terahertz detectors,” J.Appl.Phys., vol.104, no.5, pp.054508-054508-7, 2008.

    [18]F.Alves, B.Kearney, D.Grbovic, N.V.Lavrik, and G.Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl.Phys.Lett., vol.100, no.11,pp.111104-111104-3, 2012.

    [19]M.K.Gunde and M.Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys.Status Solidi A, vol.183, no.2, pp.439-449,2001.

    [20]D.Y.Smith, E.Shiles, and M.Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E.D.Palik, Ed.San Diego: Academic Press, 1998.

    [21]C.Bolakis, D.Grbovic, N.V.Lavrik, and G.Karunasiri,“Design and characterization of terahertz-absorbing nano-Iaminates of dielectric and metal thin films,” Opt.Express, vol.18, no.14, pp.14488-14495, 2010.

    国产伦在线观看视频一区| 亚洲av成人精品一二三区| 超碰av人人做人人爽久久| 精品国产露脸久久av麻豆 | 欧美日韩综合久久久久久| 国产免费又黄又爽又色| 成人二区视频| 秋霞在线观看毛片| 晚上一个人看的免费电影| 亚洲人成网站在线播| 精品人妻一区二区三区麻豆| 伊人久久国产一区二区| 十八禁国产超污无遮挡网站| videos熟女内射| 欧美潮喷喷水| 不卡视频在线观看欧美| 高清午夜精品一区二区三区| 全区人妻精品视频| 日韩大片免费观看网站| 午夜亚洲福利在线播放| 久久草成人影院| 国产又色又爽无遮挡免| 亚洲精品亚洲一区二区| 亚洲av电影在线观看一区二区三区 | 国产精品一区二区性色av| 热99在线观看视频| 成人无遮挡网站| 成人鲁丝片一二三区免费| 欧美变态另类bdsm刘玥| 亚洲精品亚洲一区二区| 在线观看美女被高潮喷水网站| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 色网站视频免费| 97人妻精品一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲自偷自拍三级| 最近中文字幕高清免费大全6| 亚洲人与动物交配视频| 亚洲精品一二三| 久久久久久九九精品二区国产| 国产男人的电影天堂91| 成人无遮挡网站| 99热这里只有精品一区| 在线a可以看的网站| 亚洲熟女精品中文字幕| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 中文字幕av成人在线电影| 人人妻人人澡欧美一区二区| 国产男人的电影天堂91| 一级黄片播放器| 中文字幕久久专区| 男的添女的下面高潮视频| 国产精品一区二区三区四区久久| 简卡轻食公司| 在线播放无遮挡| 亚洲精品亚洲一区二区| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区国产| 天堂av国产一区二区熟女人妻| 亚洲电影在线观看av| 免费av毛片视频| 欧美zozozo另类| 亚洲成人一二三区av| 91精品一卡2卡3卡4卡| 国产乱人视频| 天堂√8在线中文| 五月天丁香电影| 日韩欧美国产在线观看| 免费av不卡在线播放| 亚洲精品日韩在线中文字幕| 一级毛片久久久久久久久女| 日本黄色片子视频| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 日韩强制内射视频| 美女高潮的动态| 免费观看精品视频网站| 我的老师免费观看完整版| 国产精品一区二区三区四区久久| 久久精品国产亚洲网站| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| 一夜夜www| 亚洲精品中文字幕在线视频 | 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 亚洲精品色激情综合| 亚洲国产av新网站| 精品一区二区免费观看| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 国产精品人妻久久久影院| 国产精品女同一区二区软件| 国产在视频线精品| 好男人视频免费观看在线| 一本久久精品| 韩国高清视频一区二区三区| 一级黄片播放器| 女人被狂操c到高潮| 亚洲久久久久久中文字幕| 日韩电影二区| 国产成人午夜福利电影在线观看| 黄色日韩在线| 99视频精品全部免费 在线| 亚洲精品乱码久久久久久按摩| 色综合亚洲欧美另类图片| 2018国产大陆天天弄谢| 亚洲av免费在线观看| 丰满乱子伦码专区| 国产精品爽爽va在线观看网站| 国产成人a∨麻豆精品| 婷婷六月久久综合丁香| 亚洲精品色激情综合| 国产综合精华液| 久久韩国三级中文字幕| 国产黄色小视频在线观看| 亚洲综合精品二区| 亚洲不卡免费看| 又黄又爽又刺激的免费视频.| 国产亚洲av片在线观看秒播厂 | 美女被艹到高潮喷水动态| 亚洲性久久影院| 国产一级毛片七仙女欲春2| 精品熟女少妇av免费看| 欧美日韩一区二区视频在线观看视频在线 | 男人和女人高潮做爰伦理| 亚洲av免费高清在线观看| 成人性生交大片免费视频hd| 91精品伊人久久大香线蕉| 大香蕉97超碰在线| 久久99热6这里只有精品| 免费黄网站久久成人精品| 日韩欧美一区视频在线观看 | 久久鲁丝午夜福利片| 国产高潮美女av| 春色校园在线视频观看| 国产色爽女视频免费观看| 看十八女毛片水多多多| 成人高潮视频无遮挡免费网站| 国产成人午夜福利电影在线观看| 日韩国内少妇激情av| 天堂中文最新版在线下载 | 韩国av在线不卡| 国产综合懂色| 久久亚洲国产成人精品v| 在线天堂最新版资源| 日韩伦理黄色片| 亚洲欧美成人综合另类久久久| 搡女人真爽免费视频火全软件| 国产国拍精品亚洲av在线观看| 亚州av有码| 777米奇影视久久| 夫妻午夜视频| 日产精品乱码卡一卡2卡三| 国产精品无大码| 汤姆久久久久久久影院中文字幕 | 一级二级三级毛片免费看| 亚洲综合精品二区| 久久99热6这里只有精品| 午夜激情欧美在线| 又爽又黄a免费视频| 日韩欧美国产在线观看| 小蜜桃在线观看免费完整版高清| 三级毛片av免费| 欧美人与善性xxx| 丝袜喷水一区| 日本三级黄在线观看| 色播亚洲综合网| 听说在线观看完整版免费高清| 男女视频在线观看网站免费| 国精品久久久久久国模美| 亚洲av免费高清在线观看| 特大巨黑吊av在线直播| 国产色爽女视频免费观看| 日韩国内少妇激情av| 亚洲精品日韩在线中文字幕| av又黄又爽大尺度在线免费看| 有码 亚洲区| 精品久久久久久久末码| 人妻系列 视频| 99热这里只有是精品50| 国产伦在线观看视频一区| 色综合色国产| 国产三级在线视频| 亚洲av成人av| 日韩av在线大香蕉| 麻豆av噜噜一区二区三区| 午夜精品一区二区三区免费看| 天天一区二区日本电影三级| 日日啪夜夜撸| 亚洲内射少妇av| 国产精品久久视频播放| 国产色爽女视频免费观看| 亚洲精品,欧美精品| 成人无遮挡网站| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合| 国产单亲对白刺激| 午夜福利在线观看免费完整高清在| 淫秽高清视频在线观看| 亚洲在线自拍视频| 婷婷色综合大香蕉| 韩国av在线不卡| 亚洲av二区三区四区| 777米奇影视久久| 一级av片app| 夜夜看夜夜爽夜夜摸| av在线天堂中文字幕| 极品少妇高潮喷水抽搐| 亚洲欧美日韩无卡精品| 简卡轻食公司| 全区人妻精品视频| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 97人妻精品一区二区三区麻豆| 观看美女的网站| 亚洲成人一二三区av| 国产伦理片在线播放av一区| 2021天堂中文幕一二区在线观| av卡一久久| 国产精品久久久久久久久免| 国产成人精品久久久久久| 久久久久久久午夜电影| 又爽又黄无遮挡网站| 久久久久国产网址| 日韩制服骚丝袜av| 51国产日韩欧美| 不卡视频在线观看欧美| 少妇的逼好多水| 五月天丁香电影| 伦精品一区二区三区| 久久精品国产自在天天线| 高清欧美精品videossex| 久久久精品免费免费高清| 久久99精品国语久久久| 精品久久久久久久末码| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 精品欧美国产一区二区三| 色5月婷婷丁香| 久久久久久久久久黄片| 97精品久久久久久久久久精品| 欧美人与善性xxx| 2021天堂中文幕一二区在线观| 久久午夜福利片| 草草在线视频免费看| 亚洲最大成人av| 国产一级毛片在线| 免费观看在线日韩| 国产综合精华液| 成人亚洲精品av一区二区| 日本黄大片高清| 成人特级av手机在线观看| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 国国产精品蜜臀av免费| 天堂影院成人在线观看| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 日韩成人伦理影院| 亚洲内射少妇av| 伊人久久国产一区二区| 久久精品人妻少妇| 久久6这里有精品| 亚洲天堂国产精品一区在线| 永久网站在线| 一区二区三区四区激情视频| 少妇的逼水好多| 亚洲av成人精品一二三区| 乱系列少妇在线播放| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 久久精品夜色国产| av天堂中文字幕网| 日本免费a在线| 国产日韩欧美在线精品| 91av网一区二区| 国产高清不卡午夜福利| 亚洲精品自拍成人| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 哪个播放器可以免费观看大片| 两个人视频免费观看高清| 夜夜爽夜夜爽视频| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 日韩欧美精品v在线| 成年人午夜在线观看视频 | or卡值多少钱| 国产精品女同一区二区软件| 国产69精品久久久久777片| 嘟嘟电影网在线观看| 欧美潮喷喷水| 免费大片黄手机在线观看| 国产精品福利在线免费观看| 成人国产麻豆网| 亚洲av一区综合| 性色avwww在线观看| av线在线观看网站| 国产探花极品一区二区| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 国产精品.久久久| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 免费看日本二区| 色5月婷婷丁香| 亚洲精品成人久久久久久| 免费观看性生交大片5| 又爽又黄无遮挡网站| 天天一区二区日本电影三级| 日本wwww免费看| 大香蕉97超碰在线| 亚洲在线自拍视频| 色综合色国产| 日韩欧美三级三区| 最近2019中文字幕mv第一页| 少妇高潮的动态图| 2018国产大陆天天弄谢| 久久久色成人| 激情五月婷婷亚洲| 美女国产视频在线观看| 久久久色成人| 不卡视频在线观看欧美| 91av网一区二区| 欧美激情在线99| 中文字幕免费在线视频6| 免费观看在线日韩| 99九九线精品视频在线观看视频| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 在现免费观看毛片| 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 99热6这里只有精品| av在线蜜桃| 99久国产av精品国产电影| 色综合色国产| videossex国产| 一个人看的www免费观看视频| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 色哟哟·www| 夜夜爽夜夜爽视频| 少妇的逼水好多| 亚洲欧洲日产国产| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美在线一区| 亚洲在线观看片| 国产精品一及| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 伊人久久国产一区二区| 亚洲av免费在线观看| 国产色爽女视频免费观看| av免费在线看不卡| 国产成人a区在线观看| 亚洲怡红院男人天堂| 亚洲精品乱码久久久v下载方式| 国内揄拍国产精品人妻在线| 亚洲精品一区蜜桃| 亚州av有码| 国产亚洲av片在线观看秒播厂 | av在线播放精品| 欧美激情国产日韩精品一区| 久久99热这里只频精品6学生| 免费看光身美女| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 日本免费a在线| 少妇熟女aⅴ在线视频| 亚洲欧美日韩卡通动漫| 三级男女做爰猛烈吃奶摸视频| 大片免费播放器 马上看| 老司机影院毛片| 插阴视频在线观看视频| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 国产精品无大码| 欧美日韩亚洲高清精品| 免费播放大片免费观看视频在线观看| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 亚洲av成人av| 国产精品人妻久久久久久| 日韩强制内射视频| 欧美日本视频| 日韩成人av中文字幕在线观看| 亚洲最大成人中文| av国产久精品久网站免费入址| 全区人妻精品视频| 精品人妻熟女av久视频| 国产黄频视频在线观看| 国产91av在线免费观看| 国产成人91sexporn| 高清在线视频一区二区三区| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 国产综合精华液| 免费大片黄手机在线观看| 嫩草影院入口| 精品一区二区三区人妻视频| 秋霞在线观看毛片| 精华霜和精华液先用哪个| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 日日啪夜夜爽| av又黄又爽大尺度在线免费看| av专区在线播放| 激情 狠狠 欧美| 亚洲在久久综合| 国产成人a∨麻豆精品| 国产熟女欧美一区二区| 国产淫片久久久久久久久| ponron亚洲| 韩国av在线不卡| 日本午夜av视频| 亚洲久久久久久中文字幕| 成人国产麻豆网| 最近最新中文字幕大全电影3| 午夜激情久久久久久久| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 欧美三级亚洲精品| 一级黄片播放器| 美女大奶头视频| 99久久人妻综合| 丰满人妻一区二区三区视频av| 日韩电影二区| 免费看美女性在线毛片视频| 色综合色国产| 日本一二三区视频观看| 在线观看av片永久免费下载| 欧美丝袜亚洲另类| 亚洲欧美日韩无卡精品| 尤物成人国产欧美一区二区三区| 久久人人爽人人爽人人片va| 91狼人影院| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 99热6这里只有精品| 深夜a级毛片| 精品亚洲乱码少妇综合久久| 国产成年人精品一区二区| 免费人成在线观看视频色| av一本久久久久| 久久久久久久久久成人| 能在线免费看毛片的网站| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 精品久久久久久成人av| 日韩三级伦理在线观看| 看黄色毛片网站| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 老司机影院成人| 亚洲av国产av综合av卡| 国产精品久久久久久久久免| 久久久久久久久大av| 久久久精品94久久精品| 99热这里只有是精品50| 一级二级三级毛片免费看| 国内精品一区二区在线观看| 亚洲最大成人手机在线| 日日啪夜夜撸| 色尼玛亚洲综合影院| 精品午夜福利在线看| 午夜免费男女啪啪视频观看| 午夜福利视频精品| 两个人的视频大全免费| 亚洲精品中文字幕在线视频 | 亚洲人与动物交配视频| 看非洲黑人一级黄片| 日本一本二区三区精品| or卡值多少钱| av福利片在线观看| 最近的中文字幕免费完整| 婷婷色综合大香蕉| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 插逼视频在线观看| 免费在线观看成人毛片| 国产精品久久久久久精品电影| 国产伦精品一区二区三区四那| 淫秽高清视频在线观看| .国产精品久久| 日韩 亚洲 欧美在线| eeuss影院久久| 天堂网av新在线| 噜噜噜噜噜久久久久久91| 精品酒店卫生间| 国产精品熟女久久久久浪| 国产三级在线视频| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 欧美激情国产日韩精品一区| 国产亚洲av嫩草精品影院| 亚洲精品,欧美精品| av黄色大香蕉| 国产视频首页在线观看| 黄色日韩在线| 亚洲精品第二区| 在线观看一区二区三区| 秋霞伦理黄片| 在线观看免费高清a一片| 午夜福利在线观看免费完整高清在| 国产亚洲一区二区精品| 亚洲综合色惰| 中文资源天堂在线| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 国产在视频线在精品| 国产高清国产精品国产三级 | 日本熟妇午夜| 好男人在线观看高清免费视频| 亚洲熟女精品中文字幕| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 天堂中文最新版在线下载 | 直男gayav资源| 麻豆国产97在线/欧美| 亚洲最大成人中文| 在线免费十八禁| 黄片wwwwww| 午夜精品一区二区三区免费看| 日本av手机在线免费观看| 寂寞人妻少妇视频99o| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 内地一区二区视频在线| 国产精品三级大全| 女人久久www免费人成看片| 水蜜桃什么品种好| 久久久成人免费电影| 97超碰精品成人国产| 国产精品久久视频播放| 久久99精品国语久久久| 又黄又爽又刺激的免费视频.| 观看美女的网站| 三级国产精品欧美在线观看| 中文字幕亚洲精品专区| 97在线视频观看| 三级男女做爰猛烈吃奶摸视频| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人美女网站在线观看视频| 日本免费a在线| 1000部很黄的大片| 国产91av在线免费观看| 亚洲精品国产成人久久av| 精品国产露脸久久av麻豆 | 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 麻豆国产97在线/欧美| 色综合色国产| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看 | 免费高清在线观看视频在线观看| 久久久a久久爽久久v久久| 嫩草影院新地址| 麻豆久久精品国产亚洲av| 能在线免费观看的黄片| 免费av毛片视频| 亚洲,欧美,日韩| 久久午夜福利片| 午夜福利在线在线| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 男的添女的下面高潮视频| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 婷婷六月久久综合丁香| 色5月婷婷丁香| 成年人午夜在线观看视频 | 亚洲精品第二区| 国产精品国产三级国产av玫瑰| 日韩,欧美,国产一区二区三区| 亚洲成人久久爱视频| 精品久久久久久电影网| 久久久久久久久久成人| 乱系列少妇在线播放| 日本wwww免费看| 亚洲,欧美,日韩| av女优亚洲男人天堂| 久久久成人免费电影| 99re6热这里在线精品视频| 午夜精品在线福利| 美女主播在线视频| 一级毛片aaaaaa免费看小| 亚洲国产最新在线播放| 日本色播在线视频| 中文字幕av在线有码专区| 亚洲va在线va天堂va国产| 人人妻人人澡欧美一区二区| 啦啦啦韩国在线观看视频| 日韩欧美精品免费久久| 国产精品无大码| 午夜视频国产福利|