• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CLE Peptides in Vascular Development

    2013-11-22 03:38:26YiQiangJinbinWuHuibinHanandGuodongWang
    Journal of Integrative Plant Biology 2013年4期

    Yi Qiang,Jinbin Wu,Huibin Han and Guodong Wang

    Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry,Ministry of Education,National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China,College of Life Sciences,Shaanxi Normal University,Xi’an 710062,China

    Introduction

    Cell-cell communication via peptides is essential for plant growth,development and responses to environmental cues.To date,only a few secreted peptides have been characterized as extracellular ligands that functionally interact with cell surface receptors to trigger signaling cascades leading to proper cellular functions(Murphy et al.2012).A number of Arabidopsis CLAVATA3/Embryo Surrounding Region-related(CLE)peptides,normally derived from the conserved C-terminal CLE motif of their precursors,coordinate stem cell fate in different types of plant meristems(Fiers et al.2007;Hirakawa et al.2010a,2011;Betsuyaku et al.2011).The mature CLV3 peptides are 12-AA hydroxylated peptides or 13-AA arabinosylated peptides(Gao and Guo 2012;Matsubayashi 2012).It has been recognized that leucine-rich repeat receptor-like kinases(LRR-RLK)are commonly receptors for CLE peptides,and WUSCHEL-related HOMEOBOX(WOX)transcription factors are downstream targets in CLE signaling pathways(Betsuyaku et al.2012;Murphy et al.2012).Accumulating evidence suggests that the CLE-RLK-WOX module appears to be conserved in different types of meristems including the shoot apical meristem(SAM),the root apical meristem(RAM),and the vascular meristem(Betsuyaku et al.2012;Murphy et al.2012).

    The CLV3 peptide,a key player in stem cell homoeostasis at the SAM,is perceived by three parallel receptor complexes:CLV1,CLV2-CORYNE(CRN)/SUPPRESSOR OF LLP1–2(SOL2),and RECEPTOR-LIKE PROTEIN KINASE 2(RPK2)(Bleckmann et al.2010;Guo et al.2010;Kinoshita et al.2010;Zhu et al.2010).A negative feedback loop maintains a balanced stem cell population where CLV3 restricts expression of the stem cell-promoting transcription factor WUSCHEL(WUS),and WUS activates CLV3 expression(Brand et al.2000;Schoof et al.2000).

    Overexpression of many CLE genes including CLV3,CLE19 and CLE40,or exogenously applied chemically synthesized peptides leads to an arrest of root growth,while clv2,crn/sol2,and rpk2 mutations can suppress the arrested short-root phenotype(Fiers et al.2005;Strabala et al.2006;Miwa et al.2008;Müller et al.2008;Kinoshita et al.2007,2010).The cle40 mutant exhibits abnormal cell patterning and a short-root phenotype with an enlarged WOX5 expression domain(Stahl et al.2009).The CLE40 peptide acts through the receptor-like kinase ACR4 to repress the expression of WOX5(Stahl et al.2009).Similar to the CLV3-CLV-WUS signaling pathway in the SAM,a CLE40-ACR4-WOX5 pathway exists to regulate stem cell homeostasis in the RAM(Stahl et al.2009).

    Recently,CLE8 has been shown to play crucial roles in embryo and endosperm development in Arabidopsis(Fiume and Fletcher 2012).CLE8 is specifically expressed in the endosperm and in the apical portion of young embryos.The cle8 mutant produces smaller and defective seeds/embryos,while transgenic lines overexpressing CLE8 produce slightly larger seeds/embryos.CLE8 promotes the expression of WOX8,which suggests that CLE8-WOX8 could form a signaling module to regulate seed growth and seed size(Fiume and Fletcher 2012).Currently,little is known about the potential receptor(s)for CLE8 regarding its role in embryogenesis.Specific RLKs have been identified as key regulators for normal embryo and seed development(Nodine et al.2011).Thus,it is likely that CLE8 signaling is perceived by one or more RLKs.This hypothesis is further supported by the fact that there is a strong similarity of binding affinities among different CLE peptides(Matsubayashi 2012;Shinohara et al.2012).

    The plant vascular system,which connects different plant organs,typically consists of two conductive tissues named phloem and xylem,and a meristematic tissue named the(pro-)cambium.The(pro-)cambium is located between phloem and xylem,and is able to differentiate into phloem and xylem(Lucas 2010;Hirakawa et al.2011).A picture of the complex regulatory network that controls vascular development is emerging(Fukuda 2012).The progress is highlighted by the identification of many CLE genes that are involved in vascular development(Fiers et al.2004;Ito et al.2006;Hirakawa et al.2008;Whitford et al.2008;Kondo et al.2011).In particular,the characterization of the Tracheary Element Differentiation Inhibitory Factor(TDIF)/CLE41/CLE44-TDR/PXY-WOX4 signaling module has greatly advanced our understanding of vascular regulation(Hirakawa et al.2008;Hirakawa et al.2010a,2010b).Here,we review the recent advances in cell-cell communication via CLE peptides and their receptors in aspects of vascular development.

    TDIF/CLE41/CLE44 Regulates Vascular Stem Cell Maintenance

    Tracheary Element Differentiation Inhibitory Factor(TDIF),a CLE-like peptide,was originally isolated as a suppressor of tracheary element differentiation from Zinnia elegans mesophyll cell culture medium(Ito et al.2006).The functional TDIF is a 12-AA peptide with two hydroxyproline residues.TDIF is identical to the CLE domains of CLE41 and CLE44,and is highly homologous to those of CLE42 and CLE46(Ito et al.2006).The CLE family can be classified into two groups of A-type and B-type CLE peptides.The majority of CLE peptides,grouped as A-type CLE peptides,affect SAM and RAM development but show no TDIF-like activity(Kinoshita et al.2007;Whitford et al.2008).B-type CLE peptides such as TDIF,CLE41,CLE42,and CLE44 were able to inhibit xylem vessel differentiation,but had no effect on SAM and RAM.Consistently,transgenic plants overexpressing CLE41 and CLE44 exhibit a xylem vessel strand-discontinuous phenotype,which has also been observed in peptide-treated plants(Hirakawa et al.2008;Whitford et al.2008).In addition,both overexpression and exogenous treatments with TDIF-like peptides promote procambial cell proliferation,suggesting a dual role of TDIF-like peptides in vascular development(Hirakawa et al.2008;Whitford et al.2008).

    TDR/PXY has been identified as the receptor for TDIF/CLE41/CLE44 by screening T-DNA insertion mutants for LRR-RLK genes(Fisher and Turner 2007;Hirakawa et al.2008).T-DNA insertion lines of the TDR/PXY gene were insensitive to TDIF/CLE41/CLE44(Hirakawa et al.2008).Biochemical analysis further confirmed that TDIF/CLE41/CLE44 bind specifically to TDR/PXY in vitro.However,the A-type peptides CLV3,CLE2,CLE9,and CLE19 do not bind to TDR/PXY(Hirakawa et al.2008).In addition,the tdr/pxy mutant exhibited formation of xylem vessels adjacent to phloem cells and reduced procambial cell proliferation,while no defects were observed in the SAM and the RAM(Fisher and Turner 2007;Hirakawa et al.2008;Etchells and Turner 2010).Collectively,these results confirm that TDR/PXY functions specifically as a receptor for TDIF.TDR/PXY is expressed primarily in the(pro-)cambium and CLE41 is expressed preferentially in phloem cells.Thus,CLE41,which is produced in the phloem,is perceived by TDR/PXY to fine-tune proliferation and xylem differentiation of procambial cells(Figure 1;Hirakawa et al.2008;Etchells and Turner 2010).

    WUSCHEL-related HOMEOBOX4(WOX4),a gene controlling maintenance of the vascular cambium,was recently found to be a key target for proliferation but not for the differentiation of procambial cells into xylem in the TDIF/CLE41/CLE44 pathway(Hirakawa et al.2010b;Suer et al.2011).WOX4 expression is detected preferentially in procambium and cambium cells,which is similar to the expression pattern of TDR/PXY(Figure 1).Additionally,WOX4 expression is positively controlled by the TDIF/CLE41/CLE44 peptide in a TDR/PXY-dependent manner(Hirakawa et al.2010b).Overexpression of WOX4 does not affect expression levels of CLE41/44 or alter the phenotype mediated by CLE41/44(Hirakawa et al.2010b).Loss-of-function studies of WOX4 revealed that it is required for procambial/cambial cell proliferation,but not for inhibition of cambial cell differentiation into xylem cells.Thus,there are at least two TDIF/CLE41/CLE44-dependent pathways in the regulation of(pro-)cambial development.One of which,the TDIF/CLE41/CLE44-TDR/PXY-WOX4 pathway,promotes(pro-)cambial cell proliferation(Figure 1).Another pathway may target a yet unidentified component(s)to inhibit the differentiation of(pro-)cambial cells into xylem cells(Hirakawa et al.2010b).

    Figure 1.The TDIF/CLE41/CLE44-TDR/PXY-WOX4 signaling pathway in vascular tissues.The TDIF/CLE41/CLE44 peptide secreted from phloem cells(lime),is perceived by TDR/PXY on(pro-)cambial cells(grey)to upregulate WOX4 expression.The signal then promotes(pro-)cambial cell proliferation and inhibits the differentiation of(pro-)cambial cells into xylem cells(green).The involvement of a xylem-derived signal(?)and its putative receptor(??)in controlling phloem development is an open question.The proposed TDIF/CLE41/CLE44-TDR/PXYWOX4 signaling module is shown on the right.There is no evidence for WOX4 controlling CLE41 expression(???).

    Other CLE Peptides Control Vascular Development

    The Brassica napus CLE19(BnCLE19)gene is expressed in organ primordia and in pericycle cells facing the protoxylem poles of the root hair region(Fiers et al.2004).Misexpression of BnCLE19 in Arabidopsis leads to the formation of disconnected xylem elements as well as vascular islands in flower buds,suggesting that CLE19 functions in early xylem development(Fiers et al.2004).Additionally,exogenously applied A-type CLE peptide CLE19,as well as CLE6 and CLV3,enhance the effects of B-type peptides TDIF/CLE41/CLE44 on vascular development(Whitford et al.2008).Consistently,transgenic plants simultaneously overexpressing CLE41 and CLE6 genes exhibit a massive proliferation of vascular cells(Whitford et al.2008).Exogenous application of an A-type CLE peptide alone normally results in suppression of stem cell proliferation in the SAM and RAM,while having no effect on vascular development(Kinoshita et al.2007;Whitford et al.2008).Thus,rather than an antagonistic relationship,A-type CLE peptides cooperate with TDIF/CLE41/CLE44 to enhance(pro-)cambium proliferation,suggesting a complex crosstalk of different CLE peptides in vascular development.

    A number of A-type CLE peptides inhibit protoxylem element formation in Arabidopsis root when applied exogenously(Kondo et al.2011).One of these,CLE10,is preferentially expressed in root vascular tissues.In vitro application of CLE10 peptide or overexpression of CLE10 significantly represses protoxylem vessel formation in roots as well as root growth,which appears to be accomplished by repression of two Arabidopsis Response Regulator(ARR)genes,ARR5 and ARR6(Kondo et al.2011).Furthermore,it is thought that CLE10 acts through the CLV2 receptor,as the clv2 mutant exhibited insensitivity to CLE10 in the suppression of protoxylem vessel formation(Kondo et al.2011).

    It has been shown that a number of CLE genes are preferentially expressed in vascular tissues by analysis of CLE promoter-driven reporters,suggesting that additional CLEs other than the aforementioned CLE peptides may play roles in vascular development(Jun et al.2010).It was reported previously that transcripts for a few CLE genes increase during xylogenesis,making them very good candidates for future investigation(Kubo et al.2005).Thus,the sophisticated synergistic and/or antagonistic interactions of various CLE peptides may orchestrate the well-organized formation of vascular tissues.Further studies to determine the functions of additional CLE genes that are expressed in vascular tissues will be crucial for our understanding of the roles of CLEs in vascular development.

    Crosstalk Between CLE Peptides and Phytohormones in Vascular Development

    Phytohormones(e.g.,auxin,cytokinins,and brassinosteroids)are important in mediating intercellular communications that control the differentiation and proliferation of vascular cells(Fukuda 2004;Dettmer et al.2009).With the recent advances in our understanding of CLE peptide function,a picture is emerging that vascular development is regulated through the crosstalk between CLE peptide-mediated pathways and phytohormone-mediated pathways.

    As discussed previously,A-type CLEs strengthen the effect of B-type CLEs on procambium proliferation.In addition,the synergistic effect on procambium cell proliferation depends on auxin because it is enhanced in the presence of NAA,and is suppressed by the auxin transport inhibitor NPA(Whitford et al.2008).This indicates that auxin is necessary for enhancement of procambium proliferation mediated by CLE peptides.Taken together,it is apparent that there is not only crosstalk among different types of CLE peptides,but also crosstalk between CLE peptides and auxin.A plausible explanation for these observations is that procambial cells are specified by overlapping expression domains of A-type and B-type CLE peptides that are regulated by auxin.

    The majority of A-type CLE peptides,including CLE10,can inhibit protoxylem vessel formation in Arabidopsis roots by specifically repressing the expression of ARR5 and ARR6 which are two negative regulators of cytokinin signaling(Kondo et al.2011).Indeed,the protoxylem vessel formation of lateral roots was strongly inhibited in arr5 arr6 double mutants.However,the double mutant arr10 arr12 is resistant to the CLE10 peptide in terms of protoxylem vessel formation(Kondo et al.2011).ARR10 and ARR12 are members of the type-B ARR family,which are positive regulators of cytokinin signaling(Yokoyama et al.2007).Additionally,mutants of cytokininrelated genes and cytokinin receptors exhibit increased protoxylem cell files and loss of other cell types(M?h?nen et al.2000;M?h?nen et al.2006).CLE10 overexpression and exogenously applied cytokinin and CLE10 strongly inhibit the formation of protoxylem vessels(Kondo et al.2011).Collectively,these data suggest that CLE10 regulates protoxylem vessel formation by activating cytokinin signaling through the repression of type-A ARRs.

    In addition to auxin and cytokinin,brassinosteroids positively regulate xylem differentiation,as BR-signaling mutants exhibit a reduced number of vascular bundles and xylem vessels(Ca?o-Delgado et al.2004;Fukuda 2004).Furthermore,it was recently shown that auxin transport coupled with brassinosteroid signaling is required to establish a proper pattern of vascular bundles,strengthening the crucial role of brassinosteroids in vascular development(Iba?es et al.2009).However,little is currently known about the crosstalk between brassinosteroidmediated and CLE peptide-mediated signaling pathways in vascular development.

    Conclusions and Future Perspectives

    Over the past couple of years,our understanding of the functions of CLE ligands in vascular development has made significant progress.The finding of the TDIF/CLE41/CLE44-TDR/PXY-WOX4 module provides valuable insights into the regulatory mechanism and intercellular communication in vascular tissues.The TDIF/CLE41/CLE44 peptide,secreted from phloem,is perceived by TDR/PXY located in the plasma membrane of(pro-)cambial cells to regulate WOX4 expression.This signal then suppresses xylem cell differentiation of procambial cells,and promotes their proliferation(Figure 1;Hirakawa et al.2008;Hirakawa et al.2010b).However,this proposed regulatory model is likely missing xylem-derived intercellular signals for phloem-fate commitment.The involvement of a xylem-derived signal and its putative receptor in controlling phloem development remain unknown(Figure 1).Thus,further investigation is essential to identify such signal molecules.In addition,two LRRRLKs,MORE LATERAL GROWTH(MOL1)and REDUCED IN LATERAL GROWTH(RUL1),were lately revealed to antagonistically control cambium activity,in which MOL1 is a repressor and RUL1 is an activator(Agusti et al.2011).MOL1 negatively regulates the expression of RUL1,PXY and WOX4,indicating the existence of unidentified and possibly parallel RLK-mediated signaling pathways that regulate vascular development.It is plausible that CLE genes,which are preferentially expressed in vasculature,may be perceived by MOL1 or RUL1,as they are close homologues of TDR/PXY.

    A few CLE genes other than TDIF/CLE41/CLE44,for instance CLE10,have been found to regulate various aspects of vascular development,which suggests a complicated intercellular communication network is involved in forming well-organized vascular tissues.Futhermore,the finding that many CLE genes are preferentially expressed in vasculature implies that additional CLE genes may be involved in regulating vascular development.However,the exact function of these CLE genes in vascular development remains to be elucidated.It is very challenging to study the function of CLE genes because of functional redundancies and difficulties in obtaining loss-of-function mutants.An antagonistic peptide technology is currently being established for the functional dissection of CLE genes(Song et al.2013).It is expected that this technology will potentially be applied to elucidate the role(s)of CLE genes during various developmental processes.

    Based on limited findings,a picture of crosstalk between CLE peptides and phytohormones is emerging.For instance,CLE peptide-mediated procambial proliferation is enhanced in the presence of auxin.Additionally,CLE10 inhibits protoxylem vessel formation through the activation of cytokinin signaling.Despite these new insights,the interactions between CLE peptides and phytohormones remain largely unknown.The challenge in the future lies in understanding how CLE signals integrate with phytohormone signals to build the regulatory network that controls vascular development.

    Acknowledgements

    We thank Dr.Susan Urbanus(Ludwig-Maximilians University)for her critical reading of the manuscript.Research in our lab was supported by the National Natural Science Foundation of China(31271575;31200902),by the Fundamental Research Funds for the Central Universities(GK201103005),and by the Specialized Research Fund for the Doctoral Program of Higher Education from the Ministry of Education of China(20120202120009).

    Agusti J,Lichtenberger R,Schwarz M,Nehlin L,Greb T(2011)Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth.PLoS Genet.7,e1001312.

    Betsuyaku S,Sawa S,Yamada M(2011)The function of the CLE peptides in plant development and plant-microbe interactions.The Arabidopsis Book 9,e0149.doi:10.1199:tab.0149.

    Bleckmann A,Weidtkamp-Peters S,Seidel CA,Simon R(2010)Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane.Plant Physiol.152,166–176.

    Brand U,Fletcher JC,Hobe M,Meyerowitz EM,Simon R(2000)Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.Science 289,617–619.

    Ca?o-Delgado A,Yin Y,Yu K,Vafeados D,Mora-García S,Cheng JC,Nam KH,Li J,Chory J(2004)BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.Development 131,5341–5351.

    Dettmer J,Elo A,Helariutta Y(2009)Hormone interactions during vascular development.Plant Mol.Biol.69,347–360.

    Etchells JP,Turner SR(2010)The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.Development 137,767–774.

    Fiers M,Hause G,Boutilier K,Casamitjana-Martinez E,Weijers D,Offringa R,van der Geest L,van Lookeren Campagne M,Liu CM(2004)Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem.Gene 327,37–49.

    Fiers M,Golemiec E,Xu J,van der Geest L,Heidstra R,Stiekema W,Liu CM(2005)The 14-Amino Acid CLV3,CLE19,and CLE40 Peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway.Plant Cell 17,2542–2553.

    Fiers M,Ku KL,Liu CM(2007)CLE peptide ligands and their roles in establishing meristems.Curr.Opin.Plant Biol.10,39–43.

    Fisher K,Turner S(2007)PXY,a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development.Curr.Biol.17,1061–1066.

    Fiume E,Fletcher JC(2012)Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8.Plant Cell 24,1000–1012.

    Fukuda H(2004)Signals that control plant vascular cell differentiation.Nat.Rev.Mol.Cell Biol.5,379–391.

    Fukuda H(2012)Peptides regulating plant vascular development.In:Irving HR,Gehring C,eds.Plant Signaling Peptides,Signaling and Communication in Plants.Springer-Verlag,Berlin.pp.59–76.

    Gao X,Guo Y(2012)CLE peptides in plants:Proteolytic processing,structure-activity relationship,and ligand-receptor interaction.J.Integr.Plant Biol.54,738–745.

    Guo Y,Han L,Hymes M,Denver R,Clark SE(2010)CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification.Plant J.63,889–900.

    Hirakawa Y,Shinohara H,Kondo Y,Inoue A,Nakanomyo I,Ogawa M,Sakagami Y(2008)Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.Proc.Natl.Acad.Sci.USA 105,15208–15213.

    Hirakawa Y,Kondo Y,Fukuda H(2010a)Regulation of vascular development by CLE peptide-receptor systems.J.Integr.Plant Biol.52,8–16.

    Hirakawa Y,Kondo Y,Fukuda H(2010b)TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis.Plant Cell Physiol.22,2618–2629.

    Hirakawa Y,Kondo Y,Fukuda H(2011)Establishment and maintenance of vascular cell communities through local signaling.Curr.Opin.Plant Biol.14,17–23.

    Iba?es M,F`abregas N,Chory J,Ca?o-Delgado AI(2009)Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles.Proc.Natl.Acad.Sci.USA 106,13630–13635.

    Ito Y,Nakanomyo I,Motose H,Iwamoto K,Sawa S,Dohmae N,Mimura T,Fukuda H,Demura T(2006)Dodeca-CLE peptides as suppressors of plant stem cell differentiation.Science 313,842–845.

    Jun J,Fiume E,Roeder AHK,Meng L,Sharma VK,Osmont KS,Baker C,Ha CM,Meyerowitz EM,Feldman LJ,Fletcher JC(2010)Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis.Plant Physiol.154,1721–1736.

    Kinoshita A,Nakamura Y,Sasaki E,Kyozuka J,Fukuda H,Sawa S(2007)Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related(CLE)peptides in Arabidopsis thaliana and Oryza sativa.Plant Cell Physiol.48,1821–1825.

    Kinoshita A,Betsuyaku S,Osakabe Y,Mizuno S,Nagawa S,Stahl Y,Simon R,Yamaguchi-Shinozaki K,Fukuda H,Sawa S(2010)RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.Development 137,3911–3920.

    Kondo Y,Hirakawa Y,Kieber JJ,Fukuda H(2011)CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling.Plant Cell Physiol.52,37–48.

    Kubo M,Udagawa M,Nishikubo N,Horiguchi G,Yamaguchi M,Ito J,Mimura T,Fukuda H,Demura T(2005)Transcription switches for protoxylem and metaxylem vessel formation.Genes Dev.19,1855–1860.

    Lucas WJ(2010)Plant vascular biology and agriculture.J.Integr.Plant Biol.52,4–7.

    M?h?nen AP,Bonke M,Kauppinen L,Riikonen M,Benfey PN,Helariutta Y(2000)A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root.Gene.Dev.14,2938–2943.

    M?h?nen AP,Bishopp A,Higuchi M,Nieminen KM,Kinoshita K,T?orm?kangas K,Ikeda Y,Oka A,Kakimoto T,Helariutta Y(2006)Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development.Science 311,94–98.

    Matsubayashi Y(2011)Small post-translationally modified peptide signals in Arabidopsis.The Arabidopsis Book 9,e0150.doi:10.1199:tab.0150.

    Miwa H,Betsuyaku S,Iwamoto K,Kinoshita A,Fukuda H,Sawa S(2008)The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis.Plant Cell Physiol.49,1752–1757.

    Müller R,Bleckmann A,Simon R(2008)The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1.Plant Cell 20,934–946.

    Murphy E,Smith S,De Smet I(2012)Small signaling peptides in Arabidopsis development:How cells communicate over a short distance.Plant Cell 24,3198–3217.

    Nodine MD,Bryan AC,Racolta A,Jerosky KV,Tax FE(2011)A few standing for many:Embryo receptor-like kinases.Trends Plant Sci.16,211–217.

    Shinohara H,Moriyama Y,Ohyama K,Matsubayashi Y(2012)Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs.Plant J.70,845–854.

    Schoof H,Lenhard M,Haecker A,Mayer KF,Jürgens G,Laux T(2000)The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.Cell 100,635–644.

    Song XF,Guo P,Ren SC,Xu TT,Liu CM(2013)Antagonistic peptide technology for functional dissection of CLE genes in Arabidopsis.Plant Physiol.doi:dx.doi.org/10.1104/pp.112.211029

    Stahl Y,Wink RH,Ingram GC,Simon R(2009)A signaling module controlling the stem cell niche in Arabidopsis root meristems.Curr.Biol.19,909–914.

    Strabala TJ,O’donnell PJ,Smit AM,Ampomah-Dwamena C,Martin EJ,Netzler N,Nieuwenhuizen NJ,Quinn BD,Foote HCC,Hudson KR(2006)Gain-of-function phenotypes of many CLAVATA3/ESR genes,including four new family members,correlate with tandem variations in the conserved CLAVATA3/ESR domain.Plant Physiol.140,1331–1344.

    Suer S,Agusti J,Sanchez P,Schwarz M,Greb T(2011)WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis.Plant Cell 23,3247–3259.

    Whitford R,Fernandez A,De Groodt R,Ortega E,Hilson P(2008)Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells.Proc.Natl.Acad.Sci.USA 105,18625–18630.

    Yokoyama A,Yamashino T,Amano Y,Tajima Y,Imamura A,Sakakibara H,Mizuno T(2007)Type-B ARR transcription factors,ARR10 and ARR12,are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.Plant Cell Physiol.48,84–96.

    Zhu Y,Wang Y,Li R,Song X,Wang Q,Huang S,Jin JB,Liu CM,Lin J(2010)Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis.Plant J.61,223–233.

    亚洲av成人一区二区三| 一本久久中文字幕| 在线看三级毛片| 亚洲人成网站高清观看| 欧美日韩黄片免| 日韩精品免费视频一区二区三区| 色播亚洲综合网| 99久久精品国产亚洲精品| 免费在线观看日本一区| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 欧美zozozo另类| 亚洲色图 男人天堂 中文字幕| 亚洲第一电影网av| 国产亚洲av高清不卡| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av高清一级| 97超级碰碰碰精品色视频在线观看| 久久久久久久久免费视频了| 12—13女人毛片做爰片一| 亚洲成人国产一区在线观看| av超薄肉色丝袜交足视频| 国产亚洲欧美98| 又爽又黄无遮挡网站| 一进一出抽搐动态| 可以在线观看的亚洲视频| 国产真实乱freesex| 美女扒开内裤让男人捅视频| 亚洲最大成人中文| 一区福利在线观看| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 免费观看精品视频网站| 97碰自拍视频| 制服丝袜大香蕉在线| 国产97色在线日韩免费| 国内精品一区二区在线观看| 一进一出好大好爽视频| 最近在线观看免费完整版| 黄色a级毛片大全视频| 精品国产亚洲在线| 欧美黑人欧美精品刺激| 禁无遮挡网站| 丁香六月欧美| av中文乱码字幕在线| 一个人免费在线观看的高清视频| 女人被狂操c到高潮| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| 久久精品国产亚洲av高清一级| 久久草成人影院| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 精品国产乱码久久久久久男人| xxxwww97欧美| 白带黄色成豆腐渣| 欧美在线黄色| 国模一区二区三区四区视频 | 久久久久国产一级毛片高清牌| 女人爽到高潮嗷嗷叫在线视频| 日本五十路高清| 一个人免费在线观看的高清视频| 99热6这里只有精品| 午夜日韩欧美国产| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久久国产精品麻豆| 日本一区二区免费在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 一级黄色大片毛片| 长腿黑丝高跟| 国产视频内射| 亚洲色图av天堂| 亚洲美女视频黄频| 欧美乱妇无乱码| 看免费av毛片| 男女午夜视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩中文字幕国产精品一区二区三区| 女人被狂操c到高潮| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 精品免费久久久久久久清纯| 在线播放国产精品三级| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美 | 午夜福利在线在线| 国产精品av久久久久免费| 成人国语在线视频| 在线观看66精品国产| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 精品久久久久久久人妻蜜臀av| 神马国产精品三级电影在线观看 | 三级男女做爰猛烈吃奶摸视频| 国产精品久久久人人做人人爽| 丝袜人妻中文字幕| 精品高清国产在线一区| 国产一区在线观看成人免费| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 97碰自拍视频| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频 | 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 床上黄色一级片| 久久久久性生活片| 欧美精品亚洲一区二区| 哪里可以看免费的av片| www国产在线视频色| 成人国产综合亚洲| 99在线人妻在线中文字幕| 久9热在线精品视频| 亚洲国产欧美网| 丁香欧美五月| 久久午夜亚洲精品久久| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 黄片大片在线免费观看| 国产亚洲精品av在线| www日本黄色视频网| 国产精品久久视频播放| 日韩欧美在线乱码| 香蕉av资源在线| tocl精华| 欧美 亚洲 国产 日韩一| av欧美777| 精品欧美国产一区二区三| 亚洲中文日韩欧美视频| 久久这里只有精品中国| 免费在线观看黄色视频的| 日韩欧美在线乱码| 亚洲激情在线av| 成人av在线播放网站| 久久精品影院6| 三级毛片av免费| 亚洲最大成人中文| 亚洲av成人av| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 制服丝袜大香蕉在线| www.熟女人妻精品国产| 一区二区三区高清视频在线| 亚洲一码二码三码区别大吗| 免费观看精品视频网站| 国内揄拍国产精品人妻在线| 真人一进一出gif抽搐免费| 在线观看舔阴道视频| 国产不卡一卡二| 午夜免费激情av| 99国产精品99久久久久| 国产av一区二区精品久久| 最近在线观看免费完整版| 国产午夜精品论理片| 国产高清激情床上av| 久久午夜亚洲精品久久| 成人国产综合亚洲| АⅤ资源中文在线天堂| 国产激情久久老熟女| 999久久久精品免费观看国产| 久久精品综合一区二区三区| 国产精品永久免费网站| 亚洲乱码一区二区免费版| 欧美黑人巨大hd| 日日爽夜夜爽网站| 两个人免费观看高清视频| 欧美色视频一区免费| 国产伦在线观看视频一区| 99久久精品热视频| 欧美黄色淫秽网站| 999精品在线视频| 一个人免费在线观看电影 | 欧美三级亚洲精品| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| av欧美777| 亚洲人成电影免费在线| 黄色成人免费大全| 叶爱在线成人免费视频播放| 欧美一级a爱片免费观看看 | 成人欧美大片| 少妇被粗大的猛进出69影院| 国产69精品久久久久777片 | 视频区欧美日本亚洲| 老司机福利观看| 身体一侧抽搐| 一个人观看的视频www高清免费观看 | 制服人妻中文乱码| 午夜免费成人在线视频| 国产av又大| 亚洲专区字幕在线| 19禁男女啪啪无遮挡网站| 亚洲avbb在线观看| 国产av在哪里看| 日本 欧美在线| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 成人国产综合亚洲| 欧美日韩亚洲综合一区二区三区_| 成人18禁高潮啪啪吃奶动态图| 久久久久亚洲av毛片大全| 欧美黑人巨大hd| 成人精品一区二区免费| 深夜精品福利| 精品久久久久久成人av| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 欧美久久黑人一区二区| 国产不卡一卡二| 国产成人aa在线观看| 亚洲一区中文字幕在线| 99国产综合亚洲精品| 久久人妻av系列| 国产成人系列免费观看| 国产真实乱freesex| 欧美不卡视频在线免费观看 | 超碰成人久久| 亚洲国产欧美人成| 国产在线精品亚洲第一网站| 一a级毛片在线观看| bbb黄色大片| 女同久久另类99精品国产91| 大型av网站在线播放| 精品国内亚洲2022精品成人| 美女黄网站色视频| 成年免费大片在线观看| 男人舔女人的私密视频| 制服诱惑二区| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 韩国av一区二区三区四区| 久久久久久久久久黄片| 午夜成年电影在线免费观看| 波多野结衣高清无吗| 欧美成人性av电影在线观看| 狂野欧美激情性xxxx| 波多野结衣高清作品| 精品免费久久久久久久清纯| 久久久水蜜桃国产精品网| 五月伊人婷婷丁香| АⅤ资源中文在线天堂| 又大又爽又粗| 少妇的丰满在线观看| 中文在线观看免费www的网站 | 国产激情久久老熟女| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 午夜福利欧美成人| 亚洲av电影在线进入| 18禁裸乳无遮挡免费网站照片| 色av中文字幕| www日本在线高清视频| 日韩成人在线观看一区二区三区| 天堂√8在线中文| 成人午夜高清在线视频| 国产69精品久久久久777片 | 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 亚洲五月婷婷丁香| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 日韩 欧美 亚洲 中文字幕| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 日韩精品免费视频一区二区三区| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 熟妇人妻久久中文字幕3abv| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 亚洲,欧美精品.| 精品午夜福利视频在线观看一区| 欧美不卡视频在线免费观看 | 欧美乱妇无乱码| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 国产黄色小视频在线观看| 窝窝影院91人妻| 免费电影在线观看免费观看| 国产片内射在线| 久久国产乱子伦精品免费另类| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| a在线观看视频网站| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 日韩欧美国产在线观看| 国产精品久久久人人做人人爽| 欧美丝袜亚洲另类 | 88av欧美| 日韩欧美国产在线观看| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3| 美女午夜性视频免费| 免费在线观看成人毛片| 久久精品人妻少妇| 热99re8久久精品国产| 黄色 视频免费看| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| 日韩欧美在线乱码| 国产高清视频在线观看网站| 国产aⅴ精品一区二区三区波| 精华霜和精华液先用哪个| 在线看三级毛片| 国产精品综合久久久久久久免费| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 夜夜爽天天搞| 国产乱人伦免费视频| 午夜亚洲福利在线播放| 特级一级黄色大片| 日本a在线网址| 91在线观看av| 99国产综合亚洲精品| 国产精品野战在线观看| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 变态另类丝袜制服| 成人一区二区视频在线观看| 长腿黑丝高跟| 国产探花在线观看一区二区| 国产精品,欧美在线| 色尼玛亚洲综合影院| 丁香欧美五月| 色综合欧美亚洲国产小说| 国产av在哪里看| 日本一区二区免费在线视频| 男人舔奶头视频| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 国产99白浆流出| a在线观看视频网站| 在线a可以看的网站| 国产精品久久久久久人妻精品电影| 老司机深夜福利视频在线观看| 免费看美女性在线毛片视频| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 夜夜爽天天搞| 欧美成人午夜精品| 黄片大片在线免费观看| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 波多野结衣高清无吗| 免费在线观看黄色视频的| 日本免费一区二区三区高清不卡| 国产精品美女特级片免费视频播放器 | 日日爽夜夜爽网站| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| www.999成人在线观看| 黑人欧美特级aaaaaa片| 天堂动漫精品| av片东京热男人的天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 曰老女人黄片| av中文乱码字幕在线| 亚洲九九香蕉| 色av中文字幕| 我的老师免费观看完整版| 叶爱在线成人免费视频播放| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 丰满人妻一区二区三区视频av | 亚洲色图av天堂| 亚洲男人天堂网一区| 老司机午夜十八禁免费视频| av福利片在线观看| 美女黄网站色视频| 黑人欧美特级aaaaaa片| 国产精品九九99| 国产激情欧美一区二区| 最近视频中文字幕2019在线8| 亚洲国产欧美网| av在线天堂中文字幕| 一本综合久久免费| 久久久久久久精品吃奶| av福利片在线观看| 国产av又大| 制服诱惑二区| 精品少妇一区二区三区视频日本电影| 久久久久九九精品影院| 久久婷婷成人综合色麻豆| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站 | 久久精品亚洲精品国产色婷小说| 亚洲国产精品成人综合色| 亚洲av五月六月丁香网| 久久久久国内视频| 少妇粗大呻吟视频| 成年免费大片在线观看| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 国产探花在线观看一区二区| 天天添夜夜摸| 国产精品乱码一区二三区的特点| 中亚洲国语对白在线视频| 一边摸一边做爽爽视频免费| 欧美日韩一级在线毛片| 波多野结衣高清无吗| 女人被狂操c到高潮| 国产一区在线观看成人免费| 亚洲第一电影网av| 亚洲精品美女久久av网站| 国产成人精品久久二区二区免费| 免费观看人在逋| 国产精品国产高清国产av| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频| 国产精品免费视频内射| 香蕉国产在线看| 亚洲国产高清在线一区二区三| cao死你这个sao货| 婷婷亚洲欧美| a在线观看视频网站| 国产精品亚洲一级av第二区| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费激情av| 99久久久亚洲精品蜜臀av| 久久这里只有精品19| av国产免费在线观看| www.熟女人妻精品国产| 女生性感内裤真人,穿戴方法视频| 欧美乱码精品一区二区三区| 最近最新免费中文字幕在线| 两个人的视频大全免费| 桃色一区二区三区在线观看| 少妇被粗大的猛进出69影院| 丁香六月欧美| 搡老妇女老女人老熟妇| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 国产真人三级小视频在线观看| 国产人伦9x9x在线观看| 19禁男女啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品av一区二区| 亚洲男人天堂网一区| 亚洲av成人一区二区三| 男女视频在线观看网站免费 | 国产区一区二久久| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清在线视频| 免费看美女性在线毛片视频| 黑人巨大精品欧美一区二区mp4| 免费在线观看黄色视频的| 国产精品久久久av美女十八| 观看免费一级毛片| 久久久精品欧美日韩精品| 亚洲午夜精品一区,二区,三区| 成年人黄色毛片网站| 人人妻,人人澡人人爽秒播| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 久久久久免费精品人妻一区二区| 精品久久久久久久末码| 久久精品人妻少妇| 亚洲国产精品久久男人天堂| 国产黄a三级三级三级人| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 成人av一区二区三区在线看| 狂野欧美激情性xxxx| 精品乱码久久久久久99久播| 香蕉久久夜色| 国模一区二区三区四区视频 | 国产欧美日韩一区二区三| 午夜久久久久精精品| 1024香蕉在线观看| 国产精品野战在线观看| 欧美在线一区亚洲| 免费在线观看影片大全网站| 精品午夜福利视频在线观看一区| 亚洲精品美女久久久久99蜜臀| 一本大道久久a久久精品| 国产成人影院久久av| 欧美+亚洲+日韩+国产| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品 | 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 99re在线观看精品视频| 夜夜躁狠狠躁天天躁| 91av网站免费观看| 精品国产亚洲在线| 成人国语在线视频| 亚洲国产欧洲综合997久久,| 搞女人的毛片| 1024手机看黄色片| 国产一区在线观看成人免费| 国产探花在线观看一区二区| 久久久久久久精品吃奶| 天天躁夜夜躁狠狠躁躁| 丰满人妻熟妇乱又伦精品不卡| 九九热线精品视视频播放| av福利片在线观看| 99久久精品国产亚洲精品| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 久久亚洲真实| 此物有八面人人有两片| 国产av一区在线观看免费| 久久久国产精品麻豆| 久热爱精品视频在线9| 国产精品美女特级片免费视频播放器 | 97人妻精品一区二区三区麻豆| 亚洲av成人精品一区久久| 制服丝袜大香蕉在线| 亚洲电影在线观看av| www国产在线视频色| АⅤ资源中文在线天堂| 国产乱人伦免费视频| 国产麻豆成人av免费视频| 国产精品久久久人人做人人爽| 在线国产一区二区在线| 欧美成人一区二区免费高清观看 | 丝袜美腿诱惑在线| 动漫黄色视频在线观看| 国产单亲对白刺激| 波多野结衣高清作品| 亚洲一区中文字幕在线| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月| 精品久久久久久久人妻蜜臀av| 最近最新免费中文字幕在线| 人人妻人人澡欧美一区二区| 精品第一国产精品| av视频在线观看入口| 亚洲全国av大片| 亚洲欧洲精品一区二区精品久久久| 亚洲人成77777在线视频| 日本成人三级电影网站| 国产视频内射| 亚洲18禁久久av| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 亚洲精品色激情综合| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩精品中文字幕看吧| 日韩大码丰满熟妇| 色哟哟哟哟哟哟| bbb黄色大片| 最好的美女福利视频网| 99热这里只有精品一区 | 免费在线观看影片大全网站| aaaaa片日本免费| 国内揄拍国产精品人妻在线| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出| 久久久久久久久中文| 一夜夜www| 国产精品一区二区精品视频观看| 91国产中文字幕| 亚洲全国av大片| 99久久综合精品五月天人人| 免费电影在线观看免费观看| 天堂av国产一区二区熟女人妻 | 欧美日韩亚洲国产一区二区在线观看| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 两个人视频免费观看高清| 亚洲电影在线观看av| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 久久精品91无色码中文字幕| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| 亚洲美女视频黄频| 欧美一级a爱片免费观看看 |