龍愛芳, 胡軍浩
(中南民族大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院, 湖北武漢 430074)
文獻(xiàn)[1]-文獻(xiàn)[10]給出了求解常微分方程的各種計(jì)算方法,筆者給出了另一個(gè)求解常微分方程的顯式的單步法,它是二階的,而且是無(wú)條件穩(wěn)定的。
設(shè)初值問(wèn)題:
(1)
的理論解為y(x),將方程(1)兩邊在區(qū)間[xn,xn+1]上積分得:
(2)
(3)
成立,而yn+1=P(xn+1),由式(3)得確定A,B,C各值的方程組:
(4)
(5)
由式(4)與式(5)化簡(jiǎn)得
(6)
把式(6)代入式(2)化簡(jiǎn)得
(7)
把式(7)代入式(6)化簡(jiǎn)得
(8)
由式(7)和式(8)可得
(9)
(10)
把式(9)和式(10)代入上式并化簡(jiǎn)得
(11)
式(11)即為筆者提出的求解初值問(wèn)題的常微分方程(1)的顯式單步法。
定理1式(11)是求解初值問(wèn)題的常微分方程(1)的一個(gè)二階顯式單步法。
證明由式(11)得
故式(11)是求解初值問(wèn)題的常微分方程(1)的一個(gè)二階顯式單步法。
定理2式(11)是求解初值問(wèn)題的常微分方程(1)的一個(gè)無(wú)條件穩(wěn)定方法。
(12)
表1 例1的二階顯式單步法(11)數(shù)值試驗(yàn)
表2 例2的二階顯式單步法(11)數(shù)值試驗(yàn)
參考文獻(xiàn)/References:
[1] LAMBERT J D.Nonlinear methods for stiff system of ordinary differential equation[A].Conference on the Numerical Solution of Differential Equation[C].[S.l.]: Springer-Verlag,1974.75-88.
[2] 文立平. 一族多步二階導(dǎo)數(shù)方法的收縮性[J].計(jì)算數(shù)學(xué),2001,23(3):265-270.
WEN Liping. The countractivity of a class of second derivative multistep methods[J]. Methematica Numerica Sinica,2001,23(3):265-270.
[3] LINIGER W, NEVALINNA O.Contractive methods for stiff differential equations Part Ⅰ [J]. BIT,1978,16:457-474.
[4] LINIGER W,NEVALINNA O.Contractive methods for stiff differential equations Part Ⅱ[J]. BIT,1979,19:53-72.
[5] ENRIGHT E H.Second dervative multistep methods for stiff ordinary differential equations[J]. SIAM J Numer Anal,1974,11(2):321-331.
[6] 楊小遠(yuǎn). 基于拋物線逼近法方法的常微分方程數(shù)值解法研究[J]. 河南科學(xué),2011,29(2):127-132.
YANG Xiaoyuan. Improved Euler’s method-parabolic approximation[J]. Henan Science,2011,29(2):127-132.
[7] 張宇平,姜 晗,朱愛玲. 常微分方程的梯形外推法[J]. 山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,27(1):29-31.
ZHANG Yuping,JIANG Han, ZHU Ailing. The extrapolation trapezoidal method of ordinary differential equation[J]. Journal of Shandong Normal University(Natural Science), 2012,27(1):29-31.
[8] AZIZ A K,MONK D.Continuous finite elements in space and time for the heat equation[J].Math Comp,1969,52:255-274.
[9] DAVID C L.Linear Algebra and Its Applications[M].[S.l.]:Publishing House of Electronics Industry,2004.
[10] WILLD D R. Experiments in stepsize control for adams linear multistep methods[J]. Advancs in Computatkraal Mathematics.1998,8:335-344.