• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics

    2013-11-12 07:38:34MethaWanapatSungchhangKangandSineenartPolyorach

    Metha Wanapat,Sungchhang Kangand Sineenart Polyorach

    Introduction

    Animals have been an important component in integrated crop-livestock farming systems in developing countries.In a diversified role,they produce animal protein food,draft power and farm manure as well as ensuring social status and enriching people’s livelihoods[1].As the world population is expected to increase from 6 billion to about 8.3 billion in the year 2030 at an average growth rate of 1.1%per yr,it is essential to be prepared to produce sufficient food for the increased population based on locally available resources especially in the developing countries.The consumption of animal food was 10 kg/yr in the 1960s increasing to 26 kg/yr in 2000 and is expected to be 37 kg/yr by 2030[2,3].Livestock production,in particularly buffalo,cattle and small ruminants,is an integral part of food production systems,making important contributions to the quality and diversity of the human food supply as well as providing other valuable services such as work and nutrient recycling.Large increases in per capita and total demand for meat,milk and eggs are forecast for most developing countries for the next few decades[4].In developed countries,per capita intakes are forecast to change slightly,but the increases in developing countries,with their larger populations and more rapid population growth rates,will generate a very large increase in global demand.Most importantly,the conversion of materials inedible for humans,such as roughage,tree fodder,crop residues and by-products,into human food by ruminant animals will continue to serve as an important function of animal agriculture.However,since much of the projected increase is expected to come from pork,poultry and aquaculture production,and especially from species consuming diets high in forage carbohydrate,meeting future demand will depend substantially on achievable increases in cereal yields.Therefore,there are opportunities and challenges for researchers to increase animal productivity through the application of appropriate technologies,particularly in production systems,nutrition and feeding.Wanapat[5]and Devendra and Leng[6]have emphasized the utmost importance of using local feed resources as the key driving force to increase the productivity of animals in Asia.

    Global warming is a highly important issue which affects the environment and livestock production.Total emissions of greenhouse gases(GHG)from agriculture,including livestock,are estimated to be between 25% and 32%,depending on the source[7,8]and on the proportion of land conversion that is ascribed to livestock activities.Interestingly,Goodland and Anhang[9]reported that livestock production and its by-products are responsible for at least 51 percent of global warming gases,accounting for at least 32.6 billion tons of carbon dioxide per yr.Carbon dioxide provides most GHG(55-60%)followed by methane(15-20%).Therefore,livestock is one source of methane production through fermentation in the rumen.Gas emissions from the livestock sector are estimated at between 4.1 and 7.1 billion tons of CO2equivalents per yr,equating to 15-24%of total global anthropogenic GHG emissions[10].

    Tropical plants normally contain a high to medium content of secondary compounds such assaponins and condensed tannins,which have been shown to exert a specific effect against rumen protozoa while leaving the rest of the rumen biomass unaltered[11].Numerous studies have determined the effects of feeding ruminants with saponin-rich plants such as Enterelobium cyclocarpum,Spinadus saponaria,Sapindus rarak,Sesbania sesban,Quillajasaponaria,Acaciaauriculoformis and Yucca schidi gera[11,12].Results have indicated that saponins have a strong anti-protozoal activity and could thus serve as an effective defaunating agent for ruminants due to their detergent action[13].Numerous studies[14-16]have recently reported the impact of livestock on global warming and suggested approaches to mitigate rumen methane.

    Development of pelleted feeds

    Pelleted feeds have been used successfully for fish and animals including non-ruminant and ruminant animals,fish and shrimp.The advantages of pelleted feeds include:(1)preventing selective feeding on those ingredients in the formulation which are more palatable and thus more desirable to the animal;(2)preventing the separation of constituents in animal feeds due to varying size and density;(3)providing higher bulk density,which has advantages both for shipping and handling,resulting in maximum load efficiency and reduced storage requirements;and(4)improving nutrient utilization and so increasing the feed conversion rate.Pelleting also improves the acceptability,density and keeping quality of feedstuffs[17].Generally,pelleted feeds are produced in an extrusiontype thermoplastic melding operation in which finely divided particles of a feed ration are formed into compact,easily-handled pellets.Binder additives may be used to improve the strength and shelf-life of pellets and to reduce the release of fines during the pelleting process.Preferably,nutritive binder additives are used which also provide essential recognized nutrients such as magnesium,calcium,potassium and/or sulfur to the feed.

    Recently,scientists have been interested in pelleting local feed resources and agricultural cropresidues,such as mangosteen(Garcinia mangostana)peel,mulberry(Morus alba),Leucaena(Leucaena leucocephala),sweet potato(Ipomoea batatas)vine,to improve the nutritive value and its utilization.Pellet products such as Mago-pel(mangosteen peel pellet),Maga-lic(mangosteen peel with garlic powder pellet),Maga-ulic(mangosteen peel pellet with urea and garlic powder),LLP(leucaena leaf pellet),MUP(mulberry leaf pellets)and SWEPP(sweet potato vine pellet with 10%urea)have been prepared following the steps shown in Table 1 and Figure 1.

    Huyen et al.[18]and Tan et al.[19]have reported that supplementation with mulberry leaf pellets(MUP)improved nutrient digestibility and rumen fermentation.MUP could be used as a protein source to improve rumen efficiency and production especially supplementation at 600 g/d for beef cattle when fed on low-quality roughage such as rice straw.Norrapoke et al.[20]showed that the combined use of concentrates containing 16%CP with Mago-pel at 300 g/hd/d resulted in changes in rumen fermentation and microbial population and an improvement in milk production in lactating dairy crossbreds.Manasri et al.[21]reported that supplementation with Maga-lic at 200 g/hd/d improved ruminal fermentation,especially increasing the proportion of propionate and reducing methane gas production in beef cattle steers.Furthermore,Trinh et al.[22]compared non-supplemented and pelletsupplemented groups of beef cattle(Mago-pel,Maga-lic and Mago-ulic at 200 g/hd/d)It was found that total dry matter intake(DMI)and digestibility of DM and CP were not significantly affected by pellet supplementation when compared with the control group(P>0.05).In addition,the acetate content,the acetate:propionate ratio,the protozoa population and methane production were all reduced,whereas the propionate production and bacterial population increased in the pellet-supplemented group and were highest in the Maga-ulic-supplemented treatment.The Maga-ulic supplemented treatment also provided the highest level of microbial protein synthesis when compared with the other treatments.Hung et al.[23]reported that LLP supplementation significantly increased rice straw intake and total intake.There was also an increase in the population of fungal zoospores,amylolytic bacteria,proteolytic bacteria and cellulolytic bacteria with an increasing level of LLP supplementation while the

    population of rumen protozoa decreased.The population of total bacteria and the three predominant cellulolytic bacteria increased when the level of LLP supplementation increased;meanwhile,the population of methanogenic bacteria decreased.Supplementation with LLP resulted in an improvement in nitrogen balance and microbial nitrogen supply.Recently,Phesatcha and Wanapat[24]revealed that SWEPP was a good source of protein supplement improving apparent digestibility,rumen fermentation,and milk yield in lactating dairy cows.A summary of the experimental data above is presented in Table 2.

    Table 1 Feed ingredients and chemical composition of Mago-pel,Maga-lic,Maga-ulic,LLP,MUP and SWEPP

    Figure 1 Processing chart for pelleting the products(Mago-pel,Maga-lic,Maga-ulic,LLP,MUP and SWEPP).

    Yeast fermented cassava chip protein(YEFECAP)

    Cassava chip and other forms of cassava root can be successfully fermented with yeast(Saccharomyces cereviceae)to obtain a final product with high CP and a relatively high profile of amino acids[25,26].The amino acid profile of YEFECAP is presented in Figure 2,showing a high level of lysine,glutamic acid,leucine and phenylalanine.Supplementation with YEFECAP to replace soybean meal in concentrates for lactating dairy cows resulted in a good performance in milk yield(15.7 kg/d)[27].

    Dietary yeast can be used as a ruminant feed especially Saccharomyces cerevisiae because the yeast cell contains useful nutrients for ruminant feed,especially a high lysine content(7.6±0.7 g/16 g N)[26,28,29].Moreover,the addition of yeast to the ruminant diet can not only improve the rumen environment but also enhance microbial activities(especially cellulolytic activities so that they increase fiber digestion,reduce lactate accumulation and the concentration of oxygen in rumen fluid and improve the utilization of starch[30,31].In addition,S.cerevisiae could also stimulate DM intake and productivity in growing and lactating cattle[32]and improve microbial protein synthesis and milk production in dairy cows[33,34].However,Desnoyers et al.[35]reported that the highly variable effects of live S.cerevisiae cultures could be associated with the ratio of forage to concentrate used.Cassava chip is an energy source with low crude protein,but when fermented with yeast can increase crude protein from 1-3%CP to 30.4%CP[36].Recently,Polyorach et al.[26,29]reported that YEFECAP could be prepared with aCP level up to 47%.The YEFECAP was prepared according to the method of Polyorach et al.[29]as shown in Table 3 and Figure 3.

    The beneficial use of YEFECAP has been evaluated by Boonnop et al.[37]and Wanapat et al.[27,38].Boonnop et al.[37]studied the effects of replacing soybean meal with YEFECAP on rumen ecology and nutrient digestibility in dairy crossbred steers.It was found that YEFECAP could replace soybean meal completely and was beneficial to cattle in terms of the efficiency of rumen fermentation,microbial protein synthesis,nitrogen retention and nutrient digestibility.Khampa et al.[39]reported that supplementation with YEFECAP could replace 75%of concentrate to improve ruminal fermentation efficiency and average daily gain and also reduce the cost of production in dairy heifers.Supplementation with YEFECAP could improve the population of bacteria and fungal zoospores,but decrease the population of Holotrich and Entodiniomorph protozoain the rumen of dairy steers[40].Polyorach et al.[41]and Wanapat et al.[27,38]revealed that using YEFECAP to replace soybean meal at 0,33,67 and 100%CP could enhance milk yield,milk fat and milk protein with increasing YEFECAP level and was highest at a 100%level of replacement.Moreover,Wanapat et al.[38]compared four sources of protein in concentrate diets,soybean meal(SBM),cassava hay(CH),Leucaena leucocephala(LL)and YEFECAP in lactating dairy cows and found that CP digestibility was highest in CH-and YEFECAP-supplemented groups.Propionic acid content was highest in cows receiving CH and YEFECAP,while populations of ruminal fungi,proteolytic and cellulolytic bacteria were highest with YEFECAP supplementation.Milk fat and milk protein content significantly increased in cows fed with CH andYEFECAP(P<0.05).Based on these studies,YEFECAP can be practically prepared and used as an alternative protein source in ruminant feeding(Table 4).

    Table 2 Effect of of Mago-pel,Maga-lic,Maga-ulic,LLP,MUP,SWEPP on DMI,digestibility,rumen volatile fatty acid(VFA)production and ruminal microorganisms

    Figure 2 Amino acid profile of YEFECAP products(mg/100 g of YEFECAP).Source:Polyorach et al.[26].

    Wanapat et al.[27,38]reported on a study using YEFECAP to replace soybean meal(SBM)in concentrate mixtures for early lactating cows.It was found that YEFECAP can completely replace SBM in concentrate mixtures for milking dairy cows while enhancing rumen fermentation,dry matter intake,nutrient digestibility,milk yield and composition.A summary of the above research data is shown in Table 5.

    Use of plant secondary compounds in methane reduction

    Plant secondary compounds(condensed tannins and saponins)are important ruminant feed additives,particularly for a methane mitigation strategy because of their natural origin as opposed to chemical additives(Figure 4).Anti-methanogenic activity can be attributed to both condensed tannins and hydrolysable tannins.There are two modes of action of tannins in methanogenesis:a direct effect on ruminal methanogens and an indirect effect on hydrogen production due to lower feed degradation.There is also evidence that some condensed tannins(CT)can reduce methane emissions while reducing bloat and increasing amino acid absorption in the small intestine.Methane emissions are also commonly lower with higher proportions of forage legumes in the diet,partly due to lower fiber contact,a faster rate of passage and,in some cases,the presence of condensed tannins[42,43].Supplementation with Phaseolus calcaratus hay(PCH)at 600 g/hd/d was beneficial for swamp buffaloes fed rice straw as a basal roughage,as it resulted in increased DM intake,reduced protozoal numbers and methane gas production in the rumen,increased N retention as well as improving the efficiency of rumen microbial CP synthesis[44].Legumes containing condensed tannin(e.g.Lotuses)are able to lower methane(based on g/kg DMI)by 12-15%[42,45].Also,some authors have reported that condensed tannins can reduce methane production by 13 to 16%(DMI basis)[46,47],mainly through a direct toxic effect on methanogens.More recently,Woodward et al.[47]carried out a similar trial with cows fed Lotus corniculatus and found that methane production were reduced,McAllister and Newbold[48]reported that extracts from plants such as rhubarb and garlic could also decrease methane emissions.However,there is little information on the effect of different saponins on rumen bacteria.In one study,Sirohi et al.[49]showed that plant secondary metabolites(PSM)at low concentrations could be used to manipulate rumen fermentation favorably.At an appropriate dose,saponins or saponin-containing plants have been shown to suppress the protozoal population,increase the bacteria and fungi population,the production of propionate,the partitioning factor,the yield and efficiency of microbial protein synthesis and to decrease methanogenesis,all of which improve performance in ruminants.Tannins,especially condensed tannins(CT),also decrease methane production and increase the efficiency of microbial protein synthesis.Plant extracts,rich in flavonoids,increase the degradation of cell wall constituents and also the yield and efficiency of microbial protein synthesis[49].

    Table 3 Chemical composition of yeast fermented cassava chip protein(YEFECAP)

    Figure 3 Process chart for yeast fermented cassava chip products(YEFECAP)preparation.Polyorach et al.[29].

    Saponins are natural detergents found in many plants.Interest has increased in using saponin-containing plants as a possible means of suppressing or eliminating protozoa in the rumen.Decreased numbers of ruminal ciliate protozoa may enhance the flow of microbial protein from the rumen,to increase the efficiency of feed utilization and decrease methanogenesis.Saponins are also known to influence both the composition and number of ruminal bacterial species through specific inhibition or selective enhancement of the growth of individual species.Saponins have been shown to possess strong defaunation properties both in vitro and in vivo which could reduce methane emissions[45].Beauchemin et al.[42]recently reviewedthe literature related to the effect of saponins on methane and concluded that although there is evidence for a reduction in methane from some sources of saponins,not all are effective[45].While extracts of CT and saponins may be commercially available,their cost is currently prohibitive for their routine use in ruminant production systems.However,research is still required on the optimum sources of CT and saponins,the level of CT astringency(chemical composition)and the feeding methods and dose rates required to reduce methane and stimulate animal production.

    Table 4 Effect of using YEFECAP as a protein source in ruminants on DMI,digestibility,rumen volatile fatty acid(VFA)production,ruminal microorganisms,and milk production in various studies

    Table 5 Effect of YEFECAP as a protein source in concentrate mixtures on milk production,milk composition and economic return

    Table 6 presents the data from both in vitro and in vivo trials using mangosteen peel powder(MP)with or without other sources on rumen fermentation.Based on these results,MP supplementation both for in vitro and in vivo trials significantly increased the production of total volatile fatty acids(P<0.05),as well as propionate production,while acetate,butyrate production and the acetate:propionate ratio were significantly decreased(P<0.05).Condensed tannins and saponins contained in MP could contribute to the above effects.Similar effects,especially regarding the acetate:propionate ratio,were found by Beauchemin and McGinn[50]while total volatile fatty acids were decreased.The effects of supplementation with MP on DM intake,digestibility and rumen methane production are reported in Table 7.These findings showed that MP supplementation did not affect DM intakes,while digestibility and rumen methane production(by estimation using volatile fatty acid concentration)were significantly decreased(P<0.05).The effects of MP supplementation on the population of ruminal microorganisms are shown in Table 8.MP supplementation reduced rumen protozoa production remarkably,while the numbers of the predominant cellulolytic bacteria increased(P<0.05).In addition,methanogen numbers tended to decrease.However,it was found that mangosteen peel powder significantly increased(P<0.05)the cellulolytic bacteria population[51].The condensed tannins and saponins present in the MP could influence such changes in the rumen.

    Figure 4 Role of plant secondary compounds(condensed tannins and saponins)on rumen fermentation process[1].

    Table 6 Effect of mangosteen peel supplementation on rumen volatile fatty acid production in ruminants using in vitro and in vivo studies

    There are five possible mechanisms by which lipid supplementation reduces methane:reducing fiber digestion(mainly in long chain fatty acids);lowering DMI(if total dietary fat exceeds 6-7%);suppression of methanogens(mainly in medium chain fatty acids);suppression of rumen protozoa and to a limited extent through biohydrogenation[42].Oils offer a practical approach to reducing methane in situations where animals can be given daily feed supplements,but excess oil is detrimental to fiber digestion and animal production.Oils may act as hydrogen sinks but medium chain length oils appear to act directly on methanogens and reduce the numbers of ciliate protozoa.However,Kongmun et al.[55]reported that supplementation of coconut with garlic powder could improve in vitro ruminal fluid fermentation in terms of the volatile fatty acid profile,reduced methane losses and reduced protozoal population.Beauchemin et al.[42]recently reviewed the effects of the level of dietary lipid on methane emissions in 17 studies and reported that with beef cattle,dairy cows and lambs,there was a proportional reduction of 0.056(g/kg DM intake)in methane for each 10 g/kg DM addition of supplemental fat.While this is encouraging,many factors need to be considered such as the type of oil,the form of the oil(whole crushed oilseeds vs.pure oils),handling issues(e.g.coconut oil has a melting point of 25°C)and the cost of oils which has increased dramatically in recent years due to the increased demand for food and industrial use.Few reports cover the effect of oil supplementation on methane emissions from dairy cows,where its impact on milk fatty acid composition and overall milk fat content would need to be carefully studied.Recent strategies,based on processed linseed,turned out to be very promising in both respects.Most importantly,a comprehensive whole system analysis needs to be carried out to assess the overall impact on global GHG emissions[45].

    Table 7 Effect of mangosteen peel supplementation on intake,digestibility and methane production in ruminants using in vitro and in vivo studies

    Table 8 Effects of mangosteen peel powder supplement on population of rumen microbes

    Manh et al.[56]reported that supplementation with Eucalyptus leaf meal at 100 g/d for ruminants could be an alternative feed enhancer:it reduces the production of rumen methane gas in cattle,while the digestibility of nutrients was unchanged.Conversely,Pilajun and Wanapat[54]reported that increasing the coconut oil and Mago-pel levels decreased proportion of methane production,and that a suitable level should not exceed 6%for coconut oil and 4%DM for MPP supplementation.In the future,comprehensive research into the individual components of essential oils,the physiological status of animals,the nutrient composition of diets and their effects on the rumen microbial ecosystem and metabolism of essential oils will be required to obtain consistent beneficial effects.Moreover,previous work,based on using plant secondary compounds and oils in both in vitro and in vivo trials,concerning rumen microorganisms,methane production and their impact on the mitigation of methane in the rumen,shows great potential for improving rumen ecology in the study of ruminant productivity(Table 9).

    Conclusion

    We can conclude that local feed resources are of prime importance for ruminant feeding especially in the tropics and sub-tropical regions.These resources can be established,developed and utilized for feed on the farm as well as being processed commercially by industrial enterprises.They can be used as sources of energy and/or protein either as ingredients in concentrate mixtures or as feed supplements.They have provided good results for enriching the efficiency of rumen fermentation and subsequent ruminant productivity as well as mitigating rumen methane.Using feeds containing plant secondary compounds and essential oils is recommended as a means for reducing rumen methane.However,the potential benefits of manipulatingrumen ecology to improve feed utilization efficiency in ruminants warrants undertaking further research and development in this area.

    Table 9 Effects of plant secondary compounds and plant oil on digestibility and methane gas production in various studies

    Competing interests

    The authors declare that they have no competing interests.

    Authors’contributions

    MW conceived of the manuscript’s purpose and design and critically revised the manuscript.SK and SP wrote and revised the manuscript according to MW’s suggestions.All authors read and approved the final manuscript submitted.

    Author details

    1Tropical Feed Resources Research and Development Center(TROFREC),Department of Animal Science,Faculty of Agriculture,Khon Kaen University,Khon Kaen 40002,Thailand.2Department of Animal Science,Faculty of Natural Resources,Rajamangala University of Technology-Isan,Sakon Nakhon Campus,Phang Khon,Sakon Nakhon 47160,Thailand.

    Published∶27 August 2013

    1. Wanapat M,Chanthakhoun V,Kongmun P:Practical Use of local feed resources in improving rumen fermentation and ruminant productivity in the tropics,In proceedings of 14th animal science congress of the Asian-Australasian association of animal production societies(14th AAAP).Pingtung,Taiwan,Republic of China:AAAP;2010:635–645.1.

    2. FAO:Food and agriculture organization.Rome Italy:STAT database;2008.Available online:www.fao.org.

    3. FAO:Food outlook:global market analysis.Rome,Italy:Trade and Markets Division,FAO;2009:42–51.

    4. Delgado CL,Rosegrant M,Steinfeld H,Ehui S,Courbois C:Livestock to 2020:the next food revolution.Food agriculture,and environment discussion paper 28.Washington D.C:International Food Policy Research Institute;1999.

    5. Wanapat M:Potential used of local feed resources for ruminants.Trop Anim Health Prod 2009,41∶1035–1049.

    6. Devendra C,Leng RA:Feed resources for animals in Asia∶issues,strategies for use,intensification and integration for increased productivity.Asian-Aust J Anim Sci 2011,24(3):303–321.

    7. USEPA:Global mitigation of Non-CO2 greenhouse gases.Washington,DC:U.S.Environmental Protection Agency,Office of Atmospheric Programs(6207J);2006.

    8. IPCC:Summary for Policymakers.In Climate change 2007:mitigation.Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change.Edited by Metz B,Davidson OR,Bosch PR,Dave R,Meyer LA.Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press;2007.

    9. Goodland R,Anhang J:Livestock and climate change∶what if the key actors in climate change are…cows,pigs and chickens.World Watch 2009,22(6):10–19.

    10.Steinfeld H,Gerber P,Wassenaar T,Castel V,Rosales M,De Haan C:Livestock’s Long shadow:environmental issues and options.Rome,Italy:Food and Agriculture Organization(FAO);2006:390.

    11.Wang Y,McAllister TA,Yanke LJ,Cheek PR:Effect of steroidal saponin from Yucca schidigera extract on ruminant microbes.J Appl Microbiol 2000,88∶887–896.

    12.Calabrò S,Guglielmelli A,Iannaccone F,Danieli PP,Tudisco R,Ruggiero C,Piccolo G,Cutrignell MI,Infascelli F:Fermentation kinetics of sainfoin hay with and without PEG.J Anim Physiol Anim Nutr 2012,96(5):842–849.

    13.Makkar HPS,Sen S,Blummel M,Becker K:Effect of fractions containing saponins on rumen fermentation.J Agri Food Chem 1998,46∶4324–4328.

    14.Cotlle DJ,Nolan JV,Wiedemann SG:Ruminant enteric methane mitigation∶a review.Anim Prod Sci 2011,51∶491–514.

    15.Wanapat M,Chanthanhkoun V,Pilajun R:Dietary manipulation to reduce rumen methane production.Chiang Mai University J of Natur Sci 2012,11∶483–490.

    16.Guglielmelli A,Calabrò S,Cutrignelli M,Gonzalez O,Infascelli F,Tudisco R,Piccolo V:In vitro fermentation and methane production of fava and soy beans.EAAP Scientific Series 2010,127(1):457–460.

    17.Hale WH,Theurer CB:Feed preparation and processing.In Digestive physiology and nutrition of ruminants,Volume 3.Edited by Church DC.Corvallis,OR,USA:Dept.Animal Science,Oregon State University;1972:49–76.

    18.Huyen NT,Wanapat M,Navanukraw C:Effect of mulberry leaf pellet(MUP)supplementation on rumen fermentation and nutrient digestibility in beef cattle fed on rice straw-based diets.Anim Feed Sci Technol 2012,175∶8–15.

    19.Tan ND,Wanapat M,Uriyapongson S,Cherdthong A,Pilajun R:Enhancing mulberry leaf meal with urea by pelleting to improve rumen fermentation in cattle.Asian-Aust J Anim Sci 2012,25∶452–461.

    20.Norrapoke T,Wanapat M,Wanapat S:Effects of protein level and mangosteen peel pellets(mago-pel)in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds.Asian-Aust J Anim Sci 2012,25(7):971–979.

    21.Manasri N,Wanapat M,Navanukraw C:Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation.Livest Sci 2012,148∶291–295.

    22.Trinh THN,Wanapat M,Thao TN:Effect of mangosteen peel,garlic and urea pellet supplementation on rumen fermentation and microbial protein synthesis of beef cattle.Agric J 2012,7(2):95–100.

    23.Hung LV,Wanapat M,Cherdthong A:Effects of leucaena leaf pellet on bacterial diversity and microbial protein synthesis in swamp buffalo fed on rice straw.Livest Sci 2013,151∶188–197.

    24.Phesatcha K,Wanapat M:Performance of lactating dairy cows fed a diet based on treated rice straw and supplemented with pelleted sweet potato vines.Trop Anim Health Prod 2013,45(2):533–538.

    25.Poungchompu O,Wanapat M,Wachirapakorn C,Wanapat S,Cherdthong A:Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit.Arch Anim Nutr 2009,63∶389–400.

    26.Polyorach P,Wanapat M,Wanapat S:Increasing protein content of cassava(Manihot esculenta,Crantz)using yeast in fermentation.Khon Kaen Agr J 2012,40(suppl 2):178–182.

    27.Wanapat M,Polyorach S,Chanthakhoun V,Sornsongnern N:Yeastfermented cassava chip protein(YEFECAP)concentrate for lactating dairy cows fed on urea–lime treated rice straw.Livest Sci 2011,139∶258–263.

    28.Nelson GEN,Anderson RF,Rhodes RA,Shekleton MC,Hall HH:Lysine,methionine and tryptophane content of microorganisms II.Yeast Appl Microbiol 1959,8∶179–182.

    29.Polyorach S,Wanapat M,Wanapat S:Enrichment of protein content in cassava(Manihot esculenta Crantz)by supplementing with yeast for use as animal feed.Emir J Food Agric 2013,25(2):142–149.

    30.Robinson PH:Effect of yeast culture(Saccharomyces cerevisiae)on adaptation of cows to diets postpartum.J Dairy Sci 1997,80∶1119–1125.

    31.Lila ZA,Mohammed N,Yasui T,Kurokawa Y,Kanda S,Itabashi H:Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro.J Anim Sci 2004,82∶1847–1854.

    32.Robinson PH,Garrett JE:Effect of yeast culture(Saccharomyces cerevisiae)on adaption of cows to postpartum diets and on lactational performance.J Anim Sci 1999,77∶988–999.

    33.Hristove AN,Varga G,Cassidy T,Long M,Heyler K,Karnati SKR,Corl B,Hovde CJ,Yoon I:Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows.J Dairy Sci 2010,93(2):682–692.

    34.Strohlein H:Back to nature,live yeasts in feed for dairy cows,DMZ.Lebensm Ind Milchwirtsch 2003,124∶68–71.

    35.Desnoyers M,Giger-Reverdin S,Bertin G,Duvaux-Ponter C,Sauvant D:Metha-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal paramitters and milk production of ruminants.J Dairy Sci 2009,92∶1620–1632.

    36.Boonnop K,Wanapat M,Nontaso N,Wanapat S:Enriching nutritive value of cassava root by yeast fermentation.Sci Agric(Piracicaba,Braz.)2009,66∶616–620.

    37.Boonnop K,Wanapat M,Navanukraw C:Replacement of soybean meal by yeast fermented-cassava chip protein(YEFECAP)in concentrate diets fed on rumen fermentation,microbial population and nutrient digestibilities in ruminants.J Anim Vet Adv 2010,9∶1727–1734.

    38.Wanapat M,Boonnop K,Promkot C,Cherdthong A:Effects of alternative protein sources on rumen microbes and productivity of dairy cows.Mj Int J.Sci Tech 2011,5(1):13–23.

    39.Khampa S,Chuelong S,Kosonkittiumporn S,Khejornsart P:Manipulation of yeast fermented cassava chip supplementation in dairy heifer raised under tropical condition.Pak J Nutr 2010,9∶950–954.

    40.Khampa S,Chawarat P,Singhalert R,Wanapat M:Supplement of yeast fermented cassava chip(YFCC)as a replacement concentrate and ruzi grass on rumen ecology in native cattle.Pak J Nutr 2009,8(5):597–600.

    41.Polyorach S,Wanapat M,Sornsongnern N:Effect of yeast fermented cassava chip protein(YEFECAP)in concentrate of lactating dairy cows.In proceedings of the 14th animal science congress of the Asian-Australasian association of animal production societies(AAAP),vol.3,August 23–26,2010.Pingtung,Taiwan,Republic of China:National Pingtung University of Science and Technology;2010:304–307.

    42.Beauchemin KA,Kreuzer M,O’Mara F,McAllister TA:Nutritional management for enteric methane abatement∶a review.Aust J Exp Agric 2008,48∶21–27.

    43.Guglielmelli A,Calabro S,Primi R,Carone F,Cutrignelli MI,Tudisco R,Piccolo G,Ronchi B,Danieli PP:In vitro fermentation patterns and methane production of sainfoin(Onobrychis ViciifoliaScop.)hay with different condensed tannin contents.Grass Forage Sci 2011,66∶488–500.

    44.Chanthakhoun V,Wanapat M,Wachirapakorn C,Wanapat S:Effect of legume(Phaseolus calcaratus)hay supplementation on rumen microorganisms,fermentation and nutrient digestibility in swamp buffalo.Livest Sci 2011,140∶17–23.

    45.Rowlinson P,Steele M,Nefzaoui A:Livestock and global climate change,In proceedings of the international conference in Hammamet,17–20 May 2008.Cambridge:Cambridge University Press;2008:216.

    46.Grainger C,Clarke T,Auldist MJ,Beauchemin KA,McGinn SM,Waghorn GC,Eckard RJ:Mitigation of greenhouse gas emissions from dairy cows fed pasture and grain through supplementation with Acacia mearnsii tannins.Can J Anim Sci 2009,89∶241–251.

    47.Woodward SL,Waghorn GC,Laboyrie P:Condensed tannins in birdsfoot trefoil(Lotus corniculatus)reduced methane emissions from dairy cows.Proc NZ Soc Anim Prod 2004,64∶160–164.

    48.McAllister TA,Newbold CJ:Redirecting rumen fermentation to reduce methanogenesis.Aust J Exper Agri 2008,48∶7–13.

    49.Sirochi SK,Pandey N,Goel N,Singh B,Mohini M,Pandey P,Chaudhry PP:Microbial activity and ruminal methane as affected by plant secondary metabolites in different plant extracts.Int J Environ Sci Engineering 2009,1∶52–58.

    50.Beauchemin KA,McGinn SM:Methane emission from beef cattle∶effects of fumaric acid,essential oil and canola oil.J Anim Sci 2006,84∶1489–1496.

    51.Kongmun P,Wanapat M,Nontaso N,Nishida T,Angthong W:Effect of phytochemical and coconut oil supplementation on rumen ecology and methane production in ruminants,In proceedings of FAO/IAEA international symposium on sustainable improvement of animal production and health:8–11 June 2009.Vienna,Austria:FAO/IAEA;2009:246–247.

    52.Ngamsaeng A,Wanapat M,Khampa S:Effects of mangosteen peel(Garcinia mangostana)supplementation on rumen ecology,microbial protein synthesis,digestibility and voluntary feed intake in cattle.Pakist J Nutr 2006,5∶445–452.

    53.Kanpukdee S,Wanapat M:Effects of mangosteen(Garcinia mangostana)peel and sunflower and coconut oil supplementation on rumen fermentation,milk yield and milk composition in lactating dairy cows.Livest Res Rural Dev 2008,20(Suppl).http://www.lrrd.org/lrrd20/supplement/such2.htm.

    54.Pilajun P,Wanapat M:Effect of coconut oil and mangosteen peel supplementation on ruminal fermentation,microbial population,and microbial protein synthesis in swamp buffaloes.Livest Sci 2011,141∶148–154.

    55.Kongmun P,Wanapat M,Pakdee P,Navanukraw C:Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique.Livest Sci 2010,127∶38–44.

    56.Manh NS,Wanapat M,Uriyapongson S,Khejornsart P,Chanthakhoun V:Effect of eucalyptus(Camaldulensis)leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw.African J Agri Res 2012,7(13):1997–2003.

    57.Sallam SMA,Bueno ICS,Brigide P,Godoy PB,Vitti DMSS,Abdalla AL:Efficacy of eucalyptus oil on in vitro rumen fermentation and methane production.Options Mediterraneennes 2009,85∶267–272.

    58.Kumar R,Kamra DN,Agrawal N,Chaudhary LC:Effect of eucalyptus(Eucalyptus globules)oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor.Anim Nutr Feed Technol 2009,9∶237–243.

    黄片小视频在线播放| 日本免费一区二区三区高清不卡| 99视频精品全部免费 在线| 国产99白浆流出| 精品人妻偷拍中文字幕| 国产三级在线视频| 亚洲真实伦在线观看| 成人三级黄色视频| 午夜福利欧美成人| 国产高清激情床上av| 亚洲av免费在线观看| 十八禁网站免费在线| 中文字幕人妻丝袜一区二区| 天天添夜夜摸| 可以在线观看的亚洲视频| 黑人欧美特级aaaaaa片| 精品国产亚洲在线| 欧美av亚洲av综合av国产av| 国产免费av片在线观看野外av| 色综合站精品国产| 欧美在线一区亚洲| 日韩有码中文字幕| 精品日产1卡2卡| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av| 悠悠久久av| 国产伦精品一区二区三区视频9 | 午夜亚洲福利在线播放| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 热99re8久久精品国产| 色av中文字幕| 国产av麻豆久久久久久久| 波多野结衣巨乳人妻| a级一级毛片免费在线观看| 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 1000部很黄的大片| 男人舔女人下体高潮全视频| 一区二区三区免费毛片| 国产av一区在线观看免费| 成年版毛片免费区| 午夜免费观看网址| 国产精华一区二区三区| 日日夜夜操网爽| 亚洲国产欧美网| 波野结衣二区三区在线 | 久久精品国产亚洲av香蕉五月| 男人舔女人下体高潮全视频| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 国产乱人视频| 99国产综合亚洲精品| 97超级碰碰碰精品色视频在线观看| 中文字幕高清在线视频| 日韩欧美精品v在线| 一个人免费在线观看电影| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看 | 欧美极品一区二区三区四区| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 可以在线观看毛片的网站| 悠悠久久av| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 亚洲成人久久性| 天堂√8在线中文| 午夜精品久久久久久毛片777| 免费观看精品视频网站| 亚洲美女黄片视频| 亚洲欧美一区二区三区黑人| 亚洲人成网站在线播| 欧美激情久久久久久爽电影| 久久久久久久久大av| 在线观看午夜福利视频| 99久久成人亚洲精品观看| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 午夜激情欧美在线| 亚洲欧美日韩东京热| 欧美在线黄色| 亚洲五月婷婷丁香| 在线国产一区二区在线| 国产一区二区在线观看日韩 | 熟妇人妻久久中文字幕3abv| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 狂野欧美激情性xxxx| 日本熟妇午夜| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 亚洲成av人片在线播放无| 欧美av亚洲av综合av国产av| 亚洲国产精品成人综合色| 亚洲不卡免费看| 欧美日韩综合久久久久久 | 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 久久久国产成人精品二区| 757午夜福利合集在线观看| 国产精品av视频在线免费观看| 国产精品久久视频播放| 日日夜夜操网爽| 日本五十路高清| 亚洲av一区综合| 欧美成人免费av一区二区三区| av福利片在线观看| 少妇的逼好多水| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 国产精品亚洲一级av第二区| 岛国视频午夜一区免费看| 在线观看美女被高潮喷水网站 | 亚洲avbb在线观看| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站 | 可以在线观看毛片的网站| 午夜免费成人在线视频| 欧美成人一区二区免费高清观看| 国产av麻豆久久久久久久| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| 国产精品久久视频播放| 波多野结衣巨乳人妻| 91av网一区二区| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 日本免费一区二区三区高清不卡| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| av中文乱码字幕在线| 91久久精品国产一区二区成人 | 热99在线观看视频| 成人av在线播放网站| 99久久99久久久精品蜜桃| avwww免费| 十八禁人妻一区二区| 国产精品电影一区二区三区| 午夜a级毛片| 久久九九热精品免费| 看片在线看免费视频| 亚洲自拍偷在线| 一区二区三区免费毛片| 窝窝影院91人妻| 国产三级在线视频| 精品久久久久久久末码| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 午夜激情欧美在线| 在线观看免费视频日本深夜| 麻豆国产97在线/欧美| 久久草成人影院| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 国产av一区在线观看免费| 日韩免费av在线播放| 日本a在线网址| 国产av一区在线观看免费| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 国产色婷婷99| 人人妻人人澡欧美一区二区| 男人和女人高潮做爰伦理| 色综合婷婷激情| 啦啦啦免费观看视频1| 久久性视频一级片| 亚洲国产欧美网| 国产主播在线观看一区二区| 久久久久性生活片| 亚洲电影在线观看av| 琪琪午夜伦伦电影理论片6080| 少妇的丰满在线观看| 欧美日韩瑟瑟在线播放| 久久精品影院6| 女人被狂操c到高潮| 国产精品久久久久久久电影 | 岛国在线观看网站| 国产精品一区二区三区四区久久| 国产v大片淫在线免费观看| 九九在线视频观看精品| 日本免费a在线| 久久伊人香网站| 1000部很黄的大片| 男女视频在线观看网站免费| 亚洲午夜理论影院| 亚洲av美国av| 精品久久久久久成人av| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 中文资源天堂在线| 亚洲av美国av| 日韩欧美在线二视频| 精品电影一区二区在线| 欧美成人性av电影在线观看| 99热这里只有是精品50| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 国产亚洲精品一区二区www| 午夜免费观看网址| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 午夜老司机福利剧场| 看黄色毛片网站| 久久这里只有精品中国| 在线看三级毛片| 欧美区成人在线视频| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 高清日韩中文字幕在线| 精品久久久久久成人av| 此物有八面人人有两片| 色精品久久人妻99蜜桃| 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| 国产精品久久久久久人妻精品电影| 非洲黑人性xxxx精品又粗又长| 天堂网av新在线| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 69av精品久久久久久| 亚洲一区高清亚洲精品| 国内精品一区二区在线观看| 亚洲av日韩精品久久久久久密| 亚洲精品乱码久久久v下载方式 | 久久伊人香网站| 久久久久亚洲av毛片大全| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 亚洲欧美日韩高清专用| 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 国产激情偷乱视频一区二区| 欧美黄色片欧美黄色片| 成人18禁在线播放| 一a级毛片在线观看| 午夜激情欧美在线| 欧美一区二区精品小视频在线| 亚洲精华国产精华精| 午夜视频国产福利| 免费高清视频大片| 久久伊人香网站| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 国产一级毛片七仙女欲春2| 丝袜美腿在线中文| 久久精品亚洲精品国产色婷小说| 欧美一区二区国产精品久久精品| 脱女人内裤的视频| 97超视频在线观看视频| 高清在线国产一区| av欧美777| 精品无人区乱码1区二区| 国产精品久久久久久久电影 | 色哟哟哟哟哟哟| 母亲3免费完整高清在线观看| 免费av观看视频| 天堂动漫精品| 国产精品一区二区免费欧美| 黄色女人牲交| 女人被狂操c到高潮| 大型黄色视频在线免费观看| 国产精华一区二区三区| 午夜两性在线视频| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 天天躁日日操中文字幕| 久久久久国产精品人妻aⅴ院| 久久久久久国产a免费观看| 最新美女视频免费是黄的| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 亚洲av二区三区四区| 日韩欧美免费精品| 一本综合久久免费| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 久久这里只有精品中国| 精品日产1卡2卡| 免费看a级黄色片| 1024手机看黄色片| 动漫黄色视频在线观看| 日韩高清综合在线| 熟女电影av网| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 日本免费a在线| 中文字幕高清在线视频| 淫秽高清视频在线观看| 18+在线观看网站| 床上黄色一级片| 久久久久久久亚洲中文字幕 | 久久久久九九精品影院| 欧美最新免费一区二区三区 | 给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 国产高清有码在线观看视频| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清| 成人欧美大片| 亚洲精品色激情综合| av黄色大香蕉| 免费av毛片视频| 精品99又大又爽又粗少妇毛片 | 亚洲精品在线观看二区| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 成年免费大片在线观看| 国产午夜精品久久久久久一区二区三区 | 很黄的视频免费| 久久久久久九九精品二区国产| 久久性视频一级片| 国产一级毛片七仙女欲春2| 最后的刺客免费高清国语| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 国产亚洲精品一区二区www| a级毛片a级免费在线| 看免费av毛片| 亚洲国产欧美人成| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 看片在线看免费视频| 最近视频中文字幕2019在线8| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影| 欧美日韩亚洲国产一区二区在线观看| 最新中文字幕久久久久| 亚洲不卡免费看| 精品国产三级普通话版| 99久久成人亚洲精品观看| 婷婷六月久久综合丁香| 狂野欧美白嫩少妇大欣赏| 国产激情偷乱视频一区二区| 午夜免费男女啪啪视频观看 | 日本与韩国留学比较| 99国产综合亚洲精品| 美女高潮的动态| 亚洲精品在线美女| 岛国在线免费视频观看| 一级毛片高清免费大全| 美女黄网站色视频| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 日本免费a在线| 日韩大尺度精品在线看网址| eeuss影院久久| 欧美日韩一级在线毛片| 18+在线观看网站| 波多野结衣高清作品| 内地一区二区视频在线| 国产精品影院久久| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频| 久久这里只有精品中国| x7x7x7水蜜桃| 国产免费男女视频| 亚洲18禁久久av| 又爽又黄无遮挡网站| 身体一侧抽搐| 亚洲精品在线观看二区| 欧美zozozo另类| 99热这里只有精品一区| 男女午夜视频在线观看| 久久久国产成人免费| 国产亚洲精品av在线| 国产精品久久久人人做人人爽| 色视频www国产| 麻豆久久精品国产亚洲av| 51午夜福利影视在线观看| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 在线观看免费午夜福利视频| 老司机在亚洲福利影院| 国产一区二区三区在线臀色熟女| 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| 综合色av麻豆| 欧美中文日本在线观看视频| 女同久久另类99精品国产91| 午夜免费激情av| 日本成人三级电影网站| 欧美色视频一区免费| 在线观看av片永久免费下载| 国产97色在线日韩免费| 一a级毛片在线观看| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9 | 欧美乱色亚洲激情| 两个人视频免费观看高清| 老司机在亚洲福利影院| 日韩高清综合在线| 久久久久久人人人人人| 国产97色在线日韩免费| www日本黄色视频网| 欧美日韩亚洲国产一区二区在线观看| 国产精品一及| 淫妇啪啪啪对白视频| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 欧美黑人欧美精品刺激| 人人妻人人看人人澡| 我要搜黄色片| 黄色成人免费大全| 亚洲五月婷婷丁香| 好男人电影高清在线观看| 成年免费大片在线观看| 搡女人真爽免费视频火全软件 | 国产一级毛片七仙女欲春2| 久久久久国内视频| 日本熟妇午夜| 国产高清激情床上av| 狂野欧美激情性xxxx| 在线观看av片永久免费下载| 国内毛片毛片毛片毛片毛片| 亚洲人成网站在线播| 亚洲 国产 在线| 性色av乱码一区二区三区2| 内地一区二区视频在线| 丁香欧美五月| 国产精品美女特级片免费视频播放器| 精品一区二区三区人妻视频| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 88av欧美| 国产成人啪精品午夜网站| 国产午夜精品久久久久久一区二区三区 | eeuss影院久久| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 免费看十八禁软件| 天天一区二区日本电影三级| av在线天堂中文字幕| 免费人成在线观看视频色| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久久久久| 国产一区在线观看成人免费| 少妇裸体淫交视频免费看高清| 在线a可以看的网站| 露出奶头的视频| 熟女少妇亚洲综合色aaa.| 美女免费视频网站| 久9热在线精品视频| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 九九在线视频观看精品| 一个人观看的视频www高清免费观看| 好看av亚洲va欧美ⅴa在| 国产亚洲欧美在线一区二区| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 国产视频内射| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 99久久成人亚洲精品观看| 亚洲精品成人久久久久久| 老司机午夜十八禁免费视频| 亚洲 欧美 日韩 在线 免费| 我要搜黄色片| 麻豆一二三区av精品| 国产91精品成人一区二区三区| 色视频www国产| 国产三级在线视频| 午夜精品久久久久久毛片777| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 久久精品夜夜夜夜夜久久蜜豆| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 精品久久久久久久人妻蜜臀av| 国产一区二区在线av高清观看| 国产精品永久免费网站| 丁香欧美五月| 三级毛片av免费| 免费在线观看影片大全网站| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 麻豆国产97在线/欧美| 少妇的逼水好多| 淫秽高清视频在线观看| 看黄色毛片网站| 18禁在线播放成人免费| 国产午夜精品论理片| 日本a在线网址| 国产黄片美女视频| 成人av在线播放网站| av国产免费在线观看| 成人亚洲精品av一区二区| 一区福利在线观看| 亚洲国产中文字幕在线视频| 此物有八面人人有两片| 午夜激情福利司机影院| 日韩免费av在线播放| 亚洲av免费高清在线观看| 久久香蕉精品热| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女| 午夜福利在线观看吧| www日本在线高清视频| 俄罗斯特黄特色一大片| 色综合婷婷激情| 亚洲av电影在线进入| 搡老熟女国产l中国老女人| av在线天堂中文字幕| 成人永久免费在线观看视频| 日本免费a在线| 又黄又爽又免费观看的视频| 欧美在线一区亚洲| 三级男女做爰猛烈吃奶摸视频| 俺也久久电影网| 日韩中文字幕欧美一区二区| tocl精华| ponron亚洲| 国产日本99.免费观看| 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 精品国产三级普通话版| 天堂影院成人在线观看| 国产成年人精品一区二区| 国产激情欧美一区二区| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品av在线| 51午夜福利影视在线观看| 国产黄片美女视频| 性色avwww在线观看| 两个人的视频大全免费| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区 | 日韩欧美 国产精品| 一本一本综合久久| 一进一出抽搐gif免费好疼| 欧美丝袜亚洲另类 | 无遮挡黄片免费观看| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 日韩欧美 国产精品| 法律面前人人平等表现在哪些方面| 欧美一区二区国产精品久久精品| 麻豆成人av在线观看| 欧美色欧美亚洲另类二区| 欧美黄色片欧美黄色片| 757午夜福利合集在线观看| 亚洲成人久久爱视频| 他把我摸到了高潮在线观看| 国产精品亚洲美女久久久| 好男人在线观看高清免费视频| 男人舔女人下体高潮全视频| 日韩欧美在线乱码| 久久性视频一级片| 欧美bdsm另类| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 五月伊人婷婷丁香| 国产av麻豆久久久久久久| 欧美xxxx黑人xx丫x性爽| 国产野战对白在线观看| 国产成人a区在线观看| 欧美在线一区亚洲| 午夜福利在线在线| 夜夜躁狠狠躁天天躁| 啪啪无遮挡十八禁网站| 亚洲真实伦在线观看| 人妻丰满熟妇av一区二区三区| 夜夜爽天天搞| 日本五十路高清| 国产色婷婷99| 亚洲五月天丁香| 村上凉子中文字幕在线| 久久久精品大字幕| 老鸭窝网址在线观看| 欧美日本亚洲视频在线播放| 99热精品在线国产| 精品久久久久久久末码| 亚洲欧美日韩无卡精品| 国产激情偷乱视频一区二区| www.www免费av| 国产真人三级小视频在线观看| 人人妻人人看人人澡| 午夜精品在线福利| 草草在线视频免费看| 搡老熟女国产l中国老女人| 别揉我奶头~嗯~啊~动态视频| 香蕉av资源在线| 欧美激情久久久久久爽电影|