• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    主成分分析法在生物科學(xué)專(zhuān)業(yè)學(xué)生成績(jī)?cè)u(píng)價(jià)中的應(yīng)用

    2013-10-30 03:14:22陳向陽(yáng)
    黃山學(xué)院學(xué)報(bào) 2013年3期
    關(guān)鍵詞:必修課分析法變量

    陳向陽(yáng)

    (黃山學(xué)院 生命與環(huán)境科學(xué)學(xué)院,安徽 黃山245041)

    1 引 言

    學(xué)生學(xué)習(xí)成績(jī)是衡量學(xué)生學(xué)習(xí)情況的重要指標(biāo),是教師教學(xué)效果的重要反映。[1]如何準(zhǔn)確、客觀、全面、科學(xué)地評(píng)價(jià)學(xué)生的學(xué)業(yè)綜合成績(jī)對(duì)學(xué)生和教師都是非常重要的。目前大部分高校主要采用總平均學(xué)分績(jī)點(diǎn)或平均分作為評(píng)價(jià)學(xué)生綜合成績(jī)的手段,但方法能否全面反映學(xué)生的綜合成績(jī),這個(gè)問(wèn)題一直讓許多高校和學(xué)者產(chǎn)生疑問(wèn),本文采用主成分分析法來(lái)對(duì)學(xué)生成績(jī)進(jìn)行科學(xué)的評(píng)價(jià)和學(xué)科間具體的優(yōu)勢(shì)、劣勢(shì)的度量。[2]

    2 主成分分析法

    2.1 主成分分析法

    主成分分析是把多個(gè)指標(biāo)化為少數(shù)幾個(gè)綜合指標(biāo)的一種統(tǒng)計(jì)方法,去解釋原來(lái)資料中的大部分變異。在實(shí)際問(wèn)題研究中,為了全面、系統(tǒng)地分析問(wèn)題,往往要考慮眾多影響因素,這些涉及的因素一般稱(chēng)為指標(biāo)或者變量。因?yàn)槊總€(gè)變量都在不同程度上反映了所研究問(wèn)題的某些信息,并且變量之間彼此也存在一定的相關(guān)性,即所得的統(tǒng)計(jì)數(shù)據(jù)反映的信息在一定程度上會(huì)有重疊。因此,人們會(huì)很自然地想到,能否在相關(guān)分析的基礎(chǔ)上,用較少的新變量代替原來(lái)較多的變量,而且使這些較少的新變量盡可能多地保留原來(lái)變量所反映的信息?主成分分析法就能解決這一問(wèn)題,即在眾多的因素中不損失或很少損失原有信息的基礎(chǔ)上,將原始的多個(gè)彼此存在相關(guān)性的變量轉(zhuǎn)化為少數(shù)幾個(gè)彼此不相關(guān)或彼此獨(dú)立的,能綜合評(píng)價(jià)學(xué)生成績(jī)的一種多因素方法。從數(shù)學(xué)角度來(lái)看,這是一種降維處理技術(shù)。[3]

    2.2 主成分分析法的步驟

    1.建立觀測(cè)數(shù)據(jù)矩陣。設(shè)有n 個(gè)樣本,每個(gè)樣本有m 個(gè)指標(biāo):x1,x2,…,xm,將所有樣本寫(xiě)成矩陣形式記為X=(xij)n×m

    2.對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,得

    式中xij——原始數(shù)據(jù);

    x′ij——標(biāo)準(zhǔn)化后的數(shù)據(jù);

    n—樣本容量;

    m—指標(biāo)變量數(shù)。標(biāo)準(zhǔn)化后的數(shù)據(jù)矩陣仍然記為X=(xij)n×m。

    3.計(jì)算相關(guān)系數(shù)矩陣R=(rij)n×m的特征值λ 與對(duì)應(yīng)的特征向量αj(j=1,2,…,m)。

    4.計(jì)算主成分載荷lij,即主成分中xi的系數(shù)lij=。

    5.依據(jù)特征值和累積貢獻(xiàn)率確定所需主成分的個(gè)數(shù)p,使p 滿足:

    6.計(jì)算得出主成分分值,解釋主成分含義,對(duì)影響學(xué)生公共必修課和專(zhuān)業(yè)必修課成績(jī)的諸多因素進(jìn)行分析和評(píng)價(jià)。[4]

    3 結(jié)果與分析

    以黃山學(xué)院生命與環(huán)境科學(xué)學(xué)院生物科學(xué)專(zhuān)業(yè)09 級(jí)學(xué)生在大一-大三的3 學(xué)年的考試課成績(jī)?yōu)槔\(yùn)用主成分分析法對(duì)學(xué)生的綜合學(xué)習(xí)效果和綜合能力進(jìn)行評(píng)價(jià)。該班總共有78 名學(xué)生,隨機(jī)抽取25 名同學(xué)的考試科目成績(jī)作為樣本,即研究對(duì)象。該專(zhuān)業(yè)3年總共開(kāi)設(shè)了30 多門(mén)課程,經(jīng)過(guò)生物科學(xué)專(zhuān)業(yè)視角的初步遴選,確定以15 門(mén)主干課程成績(jī)作為指標(biāo)(或稱(chēng)變量),所選課程為B1(大學(xué)體育)、B2(大學(xué)物理)、B3(C 語(yǔ)言程序設(shè)計(jì))、B4(馬克思主義基本原理概論)、B5(大學(xué)英語(yǔ))、B6(高等數(shù)學(xué))、B7(有機(jī)化學(xué))、B8(動(dòng)物學(xué))、B9(植物學(xué))、B10(生物化學(xué))、B11(微生物學(xué))、B12(細(xì)胞生物學(xué))、B13(遺傳學(xué))、B14(植物生理學(xué))、B15(分子生物學(xué)),其中B1-B6為公共必修課,B7-B15為專(zhuān)業(yè)必修課,以上15 門(mén)課程對(duì)應(yīng)的成績(jī)用x1、x2、x3、x4、x5、x6、x7、x8、x9、x10、x11、x12、x13、x14、x15來(lái)表示,這樣即可得到一個(gè)25×15 的數(shù)據(jù)矩陣,使用DPS 進(jìn)行主成分分析可得到相關(guān)系數(shù)矩陣、特征值及貢獻(xiàn)率表以及主成分的特征向量與相應(yīng)的載荷值表,見(jiàn)表1-表3。

    由表1 可以看出,在被進(jìn)行統(tǒng)計(jì)的15 門(mén)課程中,有14 門(mén)課程成績(jī)間的相關(guān)系數(shù)為正值,即正相關(guān),只有大學(xué)體育與多門(mén)課程之間的相關(guān)系數(shù)為負(fù)值,即負(fù)相關(guān),并且多數(shù)課程之間的相關(guān)系數(shù)都達(dá)到了顯著或極顯著,這表示多數(shù)課程成績(jī)間具有較強(qiáng)的可比性,即某門(mén)課程的成績(jī)高低,可由另外一門(mén)課程成績(jī)的高低分布規(guī)律大致推斷。以有機(jī)化學(xué)(B7)和分子生物學(xué)(B15)為例,二者之間的相關(guān)系數(shù)最高(0.827),這表明有機(jī)化學(xué)掌握較好的同學(xué),其分子生物學(xué)掌握的也較好。此外,對(duì)于生物科學(xué)專(zhuān)業(yè)開(kāi)設(shè)的公共必修課和專(zhuān)業(yè)必修課對(duì)大學(xué)物理(B2)的依賴(lài)性較重,而高等數(shù)學(xué)(B6)和有機(jī)化學(xué)(B7)與絕大多數(shù)課程的相關(guān)系數(shù)都在0.4 以上,這充分地說(shuō)明了在大學(xué)一年級(jí)時(shí)學(xué)好這兩門(mén)課對(duì)生物科學(xué)專(zhuān)業(yè)本科生具有重要的影響。動(dòng)物學(xué)(B8)、植物學(xué)(B9)和生物化學(xué)(B10)與所有的專(zhuān)業(yè)必修課之間的相關(guān)系數(shù)都在0.4 以上,達(dá)到了顯著相關(guān),這3 門(mén)課程也是生物類(lèi)專(zhuān)業(yè)重要的專(zhuān)業(yè)基礎(chǔ)課,這有力地驗(yàn)證了學(xué)好這3 門(mén)課程對(duì)專(zhuān)業(yè)知識(shí)的掌握至關(guān)重要。大學(xué)體育(B1)與多數(shù)課程的相關(guān)系數(shù)較小,甚至與多數(shù)課程出現(xiàn)了負(fù)相關(guān),這可能是課程性質(zhì)的緣故,這就要求教師合理引導(dǎo)學(xué)生轉(zhuǎn)變思維方式,尤其是班級(jí)輔導(dǎo)員要在這方面進(jìn)行充分分析,更加重視大學(xué)體育。

    表1 公共必修課指標(biāo)間相關(guān)系數(shù)

    由表2 可以看出,前第一主成分的方差貢獻(xiàn)率高達(dá)53.410%,即第一主成分可以反映原指標(biāo)53.410%的信息量,表示第一主成分承載了學(xué)生成績(jī)的主要綜合信息。前5 個(gè)主成分的累積方差貢獻(xiàn)率以高達(dá)82.935%,若按照80%的判斷標(biāo)準(zhǔn),只需選取前5 個(gè)主成分就可以代表原來(lái)15 個(gè)指標(biāo)所包含信息量的82.935%。

    表2 主成分的特征值、方差貢獻(xiàn)率和累計(jì)貢獻(xiàn)率

    表3 給出了前5 個(gè)主成分的特征向量和相應(yīng)的載荷值。第一主成分對(duì)應(yīng)的特征向量和載荷值均為正值,數(shù)值上也相差較小,即第一主成分可以反映學(xué)生的綜合學(xué)習(xí)成績(jī)。第一主成分在有機(jī)化學(xué)、動(dòng)物學(xué)、植物學(xué)和植物生理學(xué)專(zhuān)業(yè)基礎(chǔ)課程上的載荷值較大,可以認(rèn)為這4 門(mén)課程在第一主成分中起作用較大,因此在大一和大二這幾門(mén)課學(xué)得怎樣就直接影響學(xué)生的綜合專(zhuān)業(yè)素質(zhì)。第二主成分的方差貢獻(xiàn)率只有9.832%,且在各門(mén)課程上的載荷值有正有負(fù),在評(píng)價(jià)學(xué)生綜合成績(jī)?nèi)菀讓?duì)結(jié)果產(chǎn)生偏差,剩下的3 個(gè)主成分與第二主成分的情況類(lèi)似,因此直接可以利用第一主成分對(duì)學(xué)生綜合成績(jī)進(jìn)行合理的評(píng)價(jià)。依據(jù)表3 可以計(jì)算25 名學(xué)生的選定數(shù)量主成分上的得分。

    表3 5 個(gè)主成分的特征向量和相應(yīng)的載荷值

    第一主成分:

    y1=0.007x1+0.287x2+0.228x3+0.211xx4+0.240x5+0.237x6+0.299x7+0.303x8+0.313x9+0.262x10+0.235x11+0.219x12+0.277x13+0.310x14+0.289x15

    以此類(lèi)推,通過(guò)表3 還可以寫(xiě)出其余4 個(gè)主成分的得分表達(dá)式。對(duì)于學(xué)習(xí)綜合成績(jī)的優(yōu)劣也可以通過(guò)綜合評(píng)價(jià)得分體現(xiàn),其表達(dá)式為:

    Y=8.011y1+1.475y2+1.157y3+0.986y4+0.811y5

    將學(xué)生成績(jī)標(biāo)準(zhǔn)化后的數(shù)據(jù)代入y1、y2、y3、y4、y5和Y的表達(dá)式中,就可以得到每位同學(xué)的主成分得分、綜合得分,進(jìn)而對(duì)25 同學(xué)3年來(lái)的學(xué)習(xí)效果進(jìn)行綜合排序(表4)。從表4 可以看出,第一主成分得分給出的排名與5 個(gè)主成分的綜合得分提供的排名十分接近,平均分排名與主成分得分排名差距較大。從表4 中每名同學(xué)的綜合成績(jī)得分、總成績(jī)平均分以及在5 個(gè)主成分方面的得分情況,可以進(jìn)一步判斷學(xué)生在綜合素質(zhì)和學(xué)科上的優(yōu)劣。

    表4 綜合排序

    4 結(jié) 論

    學(xué)生成績(jī)可以反映學(xué)生的學(xué)習(xí)能力和綜合素質(zhì),但是通過(guò)15 門(mén)課程來(lái)評(píng)價(jià)學(xué)生的學(xué)習(xí)能力又是一個(gè)復(fù)雜的問(wèn)題,本文采用主成分分析的思想與實(shí)際教學(xué)情況相結(jié)合,從枯燥的各科目成績(jī)中挖掘出很多信息,如各門(mén)課程成績(jī)之間具有較強(qiáng)的相關(guān)性,學(xué)好后續(xù)專(zhuān)業(yè)必修課對(duì)動(dòng)物學(xué)、植物學(xué)和生物化學(xué)等科目的依賴(lài)性,高等數(shù)學(xué)作為公共必修課對(duì)專(zhuān)業(yè)課學(xué)習(xí)的基礎(chǔ)性作用,如何從主成分得分情況客觀綜合評(píng)價(jià)每位學(xué)生,體育課與理論課的關(guān)系該如何處理,等。

    本文只是選擇公共必修課和專(zhuān)業(yè)必修課進(jìn)行統(tǒng)計(jì)分析,沒(méi)有考慮公共選修課、專(zhuān)業(yè)限選課對(duì)學(xué)生學(xué)習(xí)成績(jī)的影響,可能在分析綜合成績(jī)方面存在偏差。但是通過(guò)以上的數(shù)據(jù)分析,還是能發(fā)現(xiàn)教學(xué)的一些規(guī)律,旨在為生物科學(xué)專(zhuān)業(yè)教育教學(xué)改革提供科學(xué)的方法和理論依據(jù)。

    [1]宮一博,魏軍.多元統(tǒng)計(jì)分析在體育成績(jī)?cè)u(píng)價(jià)中的應(yīng)用[J].吉林師范大學(xué)學(xué)報(bào),2011,(2):149-151.

    [2]陳忠維,惠淑榮,董建國(guó).主成分分析法在專(zhuān)業(yè)基礎(chǔ)課成績(jī)分析中的應(yīng)用[J].高等農(nóng)業(yè)教育,2011,(6):42-44.

    [3]唐啟義.實(shí)用統(tǒng)計(jì)分析及其DPS 數(shù)據(jù)處理系統(tǒng)[M].北京:科學(xué)出版社,2009:761-771.

    [4]羅雙華,王芬玲.多元統(tǒng)計(jì)在研究專(zhuān)業(yè)課成績(jī)影響因素中的應(yīng)用[J].桂林電子工業(yè)學(xué)院學(xué)報(bào),2005,25,(2):41-44.

    猜你喜歡
    必修課分析法變量
    異步機(jī)傳統(tǒng)分析法之困難及其克服
    鯨寶寶的必修課
    抓住不變量解題
    也談分離變量
    評(píng)注是法學(xué)生的必修課
    法大研究生(2020年2期)2020-01-19 01:41:40
    基于時(shí)間重疊分析法的同車(chē)倒卡逃費(fèi)探析
    層次分析法在SWOT分析法中的應(yīng)用
    讓有效溝通成為醫(yī)生的必修課
    SL(3,3n)和SU(3,3n)的第一Cartan不變量
    AHP和SWOT分析法在規(guī)劃編制中的應(yīng)用
    永德县| 屏山县| 鱼台县| 普格县| 西丰县| 汝州市| 赤峰市| 通许县| 温州市| 玉林市| 栖霞市| 深水埗区| 康乐县| 临朐县| 安塞县| 宾阳县| 德兴市| 镇原县| 西充县| 丰县| 昌江| 疏附县| 房山区| 洛宁县| 拉孜县| 定远县| 永嘉县| 沾化县| 广灵县| 三门峡市| 满洲里市| 鹿邑县| 抚远县| 镇平县| 临清市| 涟源市| 金湖县| 四会市| 新巴尔虎右旗| 如皋市| 江源县|