• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PET tracers and techniques for measuring myocardial blood flow in patients with coronary artery disease

    2013-10-27 09:20:54BailingHsu
    THE JOURNAL OF BIOMEDICAL RESEARCH 2013年6期

    Bailing Hsu

    Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MS 65211, USA.Received 05 September 2013, Accepted 18 September 2013, Epub 25 September 2013

    PET MYOCARDIAL PERFUSION TRACERS

    So far, there are several myocardial perfusion radiopharmaceuticals qualified for PET flow imaging,such15O-water,13N-ammonia and82Rb. Differences in the first-pass extraction of these tracers determine their regional myocardial uptake in relation to regional blood flow (Fig. 1). Resting myocardial blood flow(MBF)measured with these tracers in healthy human is approximately 1.0 mL/(min·g)while MBF increases three fold or higher than 3.0 mL/(min·g)under pharmacological stress with adenosine or dipyridamole[1-3].15O-water as an ideal myocardial flow tracer exhibits a linear relation to MBF over a wide range of flow rates while13N-ammonia and82Rb as two more commonly used tracers in routine clinical environment do not exhibit such a linear property[4].Because of the non-linearity, roll-off of tracer uptake in the myocardium can result in underestimated calculation of regional myocardial blood flow at high flow levels. To accurately quantify MBF, it is necessary to apply proper physiological compensation for the nonlinear relation between uptake and MBF.

    Post intravenous injection, myocardial extraction fraction of15O-water approaches unity since its net uptake (the product of the first-pass tracer extraction)tracks linearly with myocardial blood flow[5-7]. To permit clinical utilization of15O-water with a short physical half-life of 125 seconds, an on-site cyclotron near a PET imaging system is required. Perfusion images of15O-water normally present low target to background ratios because of the phenomenon of equilibrated diffusion between adjacent water spaces (e.g. myocyte and blood pool).15O-water is not typically used for assessment of myocardial perfusion alone, but mostly with measurements of MBF. Technically, the correction for high blood pool activity can be achieved by subtracting the images acquired from labeled arterial blood pool with inhalation of15O or11C carbon monoxide. However, the complexities of this procedure still encounter practical limitations for routine clinical utilization. Alternatively, novel analytical approaches based on factor analysis methods can be employed to simplify the process[8-10]. Since the measurement of MBF with15O-water PET is fairly accurate, it has been widely accepted as a non-invasive gold standard for flow assessment over several decades.

    Fig. 1 Schematic illustration of radiotracer uptake in relation to regional myocardial blood flow.

    13N-ammonia is another myocardial perfusion tracer delivered to the myocardium with intravenous injection and retained metabolically in the myocardium in proportion to MBF[11,12].13N-ammonia exchanges across the capillary wall and transits through the interstitial spaces to reach the myocardial cell. Its first capillary transient retention fraction reaches about 85% for rest MBF but progressively and nonlinearly declines with increased blood flows. After entering myocyte, a fraction of tracer can diffuse back from tissue into blood while another fraction becomes metabolically trapped and retained in the myocardium through the α-ketoglutarate-to-glutamate and the glutamate-to-glutamine reactions[11]. Since the tracer is retained in the myocardium with rapid clearance from blood pool, perfusion images with high diagnostic quality can be obtained. High uptake in the lung and liver may also be observed in patients. In general,over a few to ten minutes,13N-ammonia concentration in the myocardium remains retained before the loss of13N-labeled glutamine from the myocardium may occur.13N-ammonia's physical half-life of 10 minutes permits repeated evaluations of rest and stress MBF at relatively short time intervals (about 30-40 minutes).Additionally, the tracer allows assessment of stress perfusion and left ventricular function with imaging protocols of treadmill exercise. Like15O-water,flow quantitation with13N-ammonia PET has also been widely accepted as another non-invasive gold standard for flow assessment. In fact,13N-ammonia is usually preferred rather than15O-water for qualitative evaluations of myocardial flow and perfusion images because of its superior image quality and simplified imaging protocols for clinical utilization. Nonetheless,because of the short physical half-life,13N-ammonia production still requires an on-site cyclotron.

    Unlike15O-water and13N-ammonia,82Rb with an ultra short physical half-life of 75 seconds is a generator-produced myocardial perfusion PET tracer[13].It is the decayed product from82Sr with a physical half-life of 28 days, which allows the clinical use of a generator system to produce82Rb for as long as 4 to 5 weeks. Since the biologic properties of82Rb as a positron-emitting cation are similar to those of potassium, intracellular uptake of82Rb across the sarcolemmal membrane can reflect the activity of cation transport via the Na-K ATPase transport system.When transported into myocyte,82Rb is retained in the myocardium in proportion to MBF. The first-pass retention fraction of82Rb reaches 65% for MBF at rest but declines corresponding to higher flow rates.In patients with chronic CAD, myocardial uptake of82Rb is preserved in viable regions and largely reduced in scarred regions. In the setting of acute myocardial injury and reperfusion, initial uptake of82Rb can reflect the amount of recovered blood flow in revived area. Since necrotic myocardium cannot retain82Rb,the kinetics of82Rb washout may be utilized as an index of myocardial viability[14]. In the clinical setting,40 to 60 mCi of82Rb is administered intravenously with a sophisticated infusion system to deliver targeted activities from the82Sr column[13]. After infusion of82Rb, data acquisition for perfusion images usually commences 60 to 120 seconds and continues for about 6 minutes[13,15]. Perfusion images with82Rb generally have a good diagnostic quality and can detect flow abnormalities with a similar accuracy to that of13N-ammonia[16,17]. However, patients with low left ventricular ejection fraction (LVEF)or severe lung disease may result in slower blood clearance to affect image quality. A general strategy to overcome this issue is to extend the waiting time beyond 120 seconds to collect perfusion data. Because of the ultra short physical half-life, infusion of high dose activities to attain statistically adequate images is generally necessary for82Rb PET imaging, but the high dose infusion,on the other hand, generates high count rates during the acquisition of input function. The over-exceeded count rates can lead to substantial dead-time losses for many current PET or PET/CT imaging systems,especially when they are operated in a 3D acquisition mode. Nevertheless, measurements of MBF in absolute units are still possible with low-dose protocols[18,19]. Because of the superiority of image quality and diagnostic accuracy over the traditional MPI[20]and the simplicity of on-site82Rb generator for clinical utilization,82Rb has been widely utilized in North America to clinically facilitate detection of CAD in patients suitable for pharmacological stress.

    IMAGING METHODS

    The high spatial and temporal resolutions of PET imaging with the capability of image quantitation are the essentials for MBF measurements. Rapidly acquired dynamic images (typically with 5-10 second frame rates)for several to ten minutes are necessary to track the initial transit of the radiotracer bolus through the central circulation and its continuous exchange from blood into the myocardium. In general, PET dynamic data acquisition should be started at least a few to ten seconds prior to the injection or infusion of PET tracers in order to establish the reference time point before tracer entering the imaging field of view. For stress flow measurement, it is crucial to inject PET tracers when the myocardium reaches the hyperemia stage with pharmacological stimulation or cold presser testing.

    To produce quantitative dynamic images for accurate flow measurement, it is demanded to correct for physical interferences with in the PET images due to attenuation, scatter, randoms, and dead-time loss for high dose injection. Attenuation correction for dedicated PET systems are normally achieved by applying attenuation maps sequentially acquired by rotating multiple radionuclide rod sources (e.g.68Ge)or a single radioactive point source (e.g.137Cs)around patients.For PET/CT systems, separated low-dose CT images are acquired for the generation of attenuation maps.Quality control of misregistration and associated correction between emission images and attenuation maps acquired from either radionuclide transmission or CT is mandatory; otherwise, flow values would be systematically underestimated in regions with attenuation artifacts[21]. Scatter correction is generally achieved by modeling 511-keV scatter photons with reconstructed activity map of tracer distribution using the Monte-Carlo simulation process[22,23]. Randoms correction is usually applied to the sinogram raw data by estimating randoms in PET images based on singles rates measured for paired detector elements[24,25]. Compensation for the dead-time loss is important, particularly for high activity injection. It can be achieved by compensating singles count loss with the non-linear relation of singles count rate to activity presented in the imaging field of view. With all physical corrections applied,quantitative PET images with minimized physical interferences can be obtained. To depict the true regional radiotracer activity concentrations, pixel values in the corrected images are quantitatively presented in a physical unit of (Bq/mL). Quantitative images can be further employed to derive time activity curves of the arterial radiotracer input function and myocardial tissue response for flow calculation. In the process of quantitation, time activity curves are fitted with operational equations derived from tracer kinetic models(described below), which relate the externally observed tracer uptake to absolute MBF in the unit of mL//min/g through tissue kinetics. To utilize quantitative flow values for CAD detection, it is applicable to display regional estimates of MBF in the form of color-coded parametric images for clinical utilization[26].

    PHYSIOLOGICAL FLOW MODELS

    Among non-invasive medical imaging modalities for flow assessment, modeling tracer kinetics is a commonly used technique to simplify physiological proc-ess of tracer uptake in mathematical terms for MBF calculation. Depending on the mechanism of tracer uptake from capillaries into myocyte, tracer kinetics can be described by one or two tissue compartments with multiple kinetic parameters as illustrated in Fig. 2.In general,15O-water and82Rb only require two kinetic parameters, K1(mL/min/g)and K2(min-1), to calculate the rate of tracer uptake from blood to tissue and the rate of tracer washout from the tissue.13N-ammonia demands an additional parameter, K3(min-1), to depict the rate of metabolic process in myocyte as previously described.

    where K1(ml/min/g)and K2(min-1)are two kinetic parameters characterizing the rate of tracer uptake from the blood to the myocardium and the rate of tracer washout from the myocardium, respectively.Cm(t)is the measured activity concentration in the myocardium obtained from PET images, assumed to consist of arterial blood input Ca(t)and true myocardial uptake as a convolution of K1, K2and Ca(t). FBV is referred to the fractional blood volume in Cm(t)coming from Ca(t), and (1-FBV)is the rest of faction contributed from the myocardial uptake. By applying the curve fitting process, K1, K2and FBV can be exactly solved into numerical values. MBF (mL/min/g)is then converted from K1with additional compensation for tracer extraction (E)in myocardium:

    where α and β are physiological parameters derived from the effective capillary permeability surface (PS)area product (mL/min/g)accounting for nonlinear tracer extraction as a function of MBF[29,30]. The assumption in this model is consistent with the observed tracer extraction, which typically decreases with flow as previously described. To compensate for the physiological variance (e.g. hypertension or hypotension),rest blood flow is corrected for baseline heart rate and blood pressure by the factor of rate-pressure product/(10,000 bpm×mm Hg). Coronary flow reserve (CFR)as the indicator of flow augmentation from rest to stress is calculated by stress to rest flow ratio.

    The techniques for noninvasive flow estimates with compartmental modeling can accurately reflect regional MBF up to 5.0 mL/(min·g). Validation studies with the arterial reference microsphere technique in animal experiments have been reported to demonstrate equally accurate flow estimates for both15O-water and13N-ammonia[31,32]. More recently, a study with82Rb shows a similar linear correlation between the flow estimates by PET imaging and microsphere blood flows[33]. Importantly, measurements of regional MBF with PET at rest stage, as well as during pharmacologically stimulated hyperemia or with cold presser testing, are highly reproducible. This property was confirmed by repeated MBF measurements during the same study session or by repeated measurements within several days[34-36].

    Depending on the time period to obtain sequential dynamic images, it is applicable to further simplify the compartmental model for flow calculation by utilizing image data only acquired within the early phase.This applicability is based on the assumption that the tracer washout and metabolic process do not yet occur during the early few minutes; thereby, the effects of k2and k3can be logically neglected. This simplified model is particularly suitable for82Rb and13N-ammonia with the given property of tracer retention in the myocardium[37]. The flow equation only accounting for tracer retention for flow calculation is:

    Fig. 2 Representative flow models. A: one-tissue compartment and two kinetic parameters as a two compartment model. B: two-tissue compartments and three kinetic parameters as a three compartment model.

    Fig. 3 An example of SPECT myocardial blood flow quantitation to detect three-vessel CAD with luminal narrowing in LAD.D1=90%; LCX: M=90%, D=90%, OM1=50%; RCA: PD=80%, confirmed by invasive coronary angiogram (upper panel). Attenuation-corrected perfusion images are interpreted to report a normal perfusion study without evidence of transient ischemia dilatation (middle panel). SPECT flow quantitation uncovers severe CAD with flow steal (CFR< 1.0)for all three territories associated with a total of 91% CAD burden throughout the whole myocardium (lower panel). LAD=left anterior descending, D1=diagonal 1, LCX=left circumflex, M=middle, D=distal, OM1=obtuse margina 1,RCA=right coronary artery, PD=posterior descending.

    CLINICAL APPLICATIONS OF PET FLOW QUANTITATION

    Noninvasive assessment of absolute MBF in mL/(min·g)and CFR with PET is continuously emerging as a clinical tool to stratify risks for cardiac events and predict associated patient outcomes[38-40]and to evaluate the early stage of asymptomatic CAD[41,42]. Assessment of functional abnormalities of the coronary vessels with PET flow has an advantage over structural evaluation of the arterial wall. This advantage has been highlighted in classifying the early functional and progressive stages of coronary atherosclerosis before structural alteration within the arterial wall is magnified[43,44]. Consequently, adding PET flow information to the relative perfusion imaging provides incremental diagnostic value for CAD detection[45-47].In addition, PET flow is an independent predictor of 3-vessel CAD[48,49]and a comprehensive tool to evaluate microvascular dysfunction with or without conventional cardiac risks[43,50,51]. The clinical integration of this approach has been recommended to enhance both CAD detection and risk assessment of patients with known or suspected CAD[52-54].

    PRACTICAL CONSIDERATION

    Although PET myocardial flow quantitation has been clinically marked as a powerful tool for diagnosis and prognosis of CAD, the utilization of PET flow as a routine clinical tool has several practical challenges.The main challenges come from general accessibility of PET flow tracers which are currently restricted to certain regions (e.g. North America and Europe),and the requirement of a relatively high cost to adopt in the clinical environment. Myocardial perfusion single photon emission computed tomography (SPECT)with99mTc-labeled myocardial perfusion tracers, such as99mTc-sestamibi and99mTc-tetrofosmin, remains the clinical standard for MPI worldwide[55]. Flow quantitation with SPECT, when available, may be a simple solution to overcome PET's challenges to warrant a widespread utilization. In fact, modern SPECT instrumentation has been improved to have high temporal resolution for dynamic data acquisition. In the past this unique capability has not yet been well investigated to design clinical protocols for dynamic SPECT flow quantitation. The implementation of iterative reconstruction technique with effective physical corrections[56,57], in addition to SPECT instrumentation,collectively affirms to explore the clinical potential of flow quantitation with dynamic SPECT imaging. Fig.3 demonstrates an example of SPECT MBF quantitation compared with the traditional perfusion and invasive coronary angiography for the detection of multivessel CAD.

    From the clinical standpoint, the accessibility of SPECT flow quantitation as a comprehensive clinical tool can be considerably important to areas where a proper myocardial PET tracer for flow quantitation is not available (e.g. Asian countries). From the economical standpoint, the SPECT approach for flow quantitation demands a much smaller financial overhead than the PET approach, therefore SPECT flow quantitation may also be attractive in areas, where both PET and SPECT myocardial flow tracers are available (e.g. North America and Europe).

    [1]Schindler TH, Facta AD, Prior JO, Campisi R, Inubushi M, Kreissl MC, et al. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. Eur J Nucl Med Mol Imaging 2006; 33: 1140-9.

    [2]Vermeltfoort IA, Raijmakers PG, Lubberink M, Germans T, van Rossum AC, Lammertsma AA, et al. Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with (15)O-labeled water and positron emission tomography. J Nucl Cardiol 2011; 18: 650-6.

    [3]Renaud JM, Dasilva JN, Beanlands RS, Dekemp RA.Characterizing the normal range of myocardial blood flow with (82)rubidium and (13)N-ammonia PET imaging. J Nucl Cardiol 2013; 20: 578-91.

    [4]Schindler TH, Schelbert HR. PET Quantitaton of Myocardial Blood Flow, In: ATLAS Of NUCLEAR CARDIOLOGY SECOND EDITION, Dilsizian V, Narula J, Braunwald E. Current Medicine LLC, Philadelphia USA, 2005, 67-95.

    [5]Bergmann SR, Fox KA, Rand AL, McElvany KD,Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation 1984; 70: 724-33.

    [6]Bergmann SR, Herrero P, Markham J, Weinheimer CJ,Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989; 14: 639-52.

    [7]Iida H, Kanno I, Takahashi A, Miura S, Murakami M,Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988; 78: 104-15.

    [8]Hermansen F, Ashburner J, Spinks TJ, Kooner JS,Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 1998; 39: 1696-702.

    [9]Wu HM, Hoh CK, Buxton DB, Kuhle WG, Schelbert HR, Choi Y, et al. Quantification of myocardial blood flow using dynamic nitrogen-13-ammonia PET studies and factor analysis of dynamic structures. J Nucl Med 1995; 36: 2087-93.

    [10]Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA,Phelps ME, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995; 36: 1714-22.

    [11]Schelbert HR, Phelps ME, Huang SC, MacDonald NS,Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981; 63: 1259-72.

    [12]Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 1979; 43:209-18.

    [13]Gould KL. Clinical cardiac PET using generatorproduced Rb-82: a review. Cardiovasc Intervent Radiol 1989; 12: 245-51.

    [14]Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N,Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991; 32: 1-9.

    [15]Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL,Wong WH, Tewson TJ, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986; 7: 775-89.

    [16]Schelbert HR, Wisenberg G, Phelps ME, Gould KL,Henze E, Hoffman EJ, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982 ;49: 1197-207.

    [17]Demer LL, Gould KL, Goldstein RA, Kirkeeide RL,Mullani NA, Smalling RW, et al. Merhige ME. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825-35.

    [18]Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765-74.

    [19]Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012; 39: 1037-47.

    [20]Bateman TM, Heller GV, McGhie AI, Friedman JD,Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET:comparison with ECG-gated Tc-99m sestamibi SPECT.J Nucl Cardiol 2006; 13: 24-33.

    [21]Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B,Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow.J Nucl Med 2013; 54: 50-4.

    [22]Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996; 41: 153-76.

    [23]Watson CC, Newport D, Casey ME, deKemp A, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997; 44: 90-7.

    [24]Watson CC, Casey ME, Bendriem B, Carney JP,Townsend DW, Eberl S, et al. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med 2005; 46: 1825-34.

    [25]Walker MD, Matthews JC, Asselin MC, Saleem A,Dickinson C, Charnley N, et al. Optimization of the injected activity in dynamic 3D PET: a generalized approach using patient-specific NECs as demonstrated by a series of15O-H2O scans. J Nucl Med 2009; 50: 1409-17.

    [26]Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity.JACC Cardiovasc Imaging 2012; 5: 430-40.

    [27]Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data.J Nucl Med 1997; 38: 660-67.

    [28]Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol 2010; 17: 555-70.

    [29]Renkin EM. Transport of potassium-42 from blood to tissue isolated mammalian skeletal muscles. Am J Physiol 1959; 197: 1205-10.

    [30]Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method.Acta Physiol Scand 1963; 58: 292-305.

    [31]Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using 13Nammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992; 86: 1004-17.

    [32]Muzik O, Beanlands RS, Hutchins GD, et al. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993; 34: 83-91.

    [33]Lautamaki R, George RT, Kitagawa K, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis 2009; 36: 576-86.

    [34]Schindler TH, Zhang XL, Prior JO, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with (13)N-ammonia and PET. Eur J Nucl Med Mol Imaging 2007; 34: 1178-88.

    [35]Siegrist PT, Gaemperli O, Koepfli P, et al. Repeatability of cold pressor test-induced flow increase assessed with H(2)(15)O and PET. J Nucl Med 2006; 47: 1420-6.

    [36]Klein R, Renaud JM, Ziadi MC, et al. Intra- and interoperator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and highly automated analysis program. J Nucl Cardiol 2010; 17: 600-16.

    [37]Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996; 37: 1701-12.

    [38]Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011; 124: 2215-24.

    [39]Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011; 58: 740-48.

    [40]Herzog BA, Husmann L, Valenta I, Gaemperli O,Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009; 54: 150-6.

    [41]Czernin J, Barnard RJ, Sun KT, Krivokapich J, Nitzsche E, Dorsey D, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995; 92: 197-204.

    [42]Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography.Circulation 1994; 90: 808-17.

    [43]Camici PG, Crea F. Coronary microvascular dysfunction. N Eng J Med 2007; 356: 830-40.

    [44]Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994; 23: 833-43.

    [45]Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER Jr, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1998; 31: 534-40.

    [46]Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. J Am Coll Cardiol Img 2009; 2: 751-8.

    [47]Fiechter M, Ghadri JR, Gebhard C, Fuchs TA,Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med 2012; 53: 1230-4.

    [48]Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R,Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004; 11: 440-9.

    [49]Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012; 19: 670-80.

    [50]Graf S, Khorsand A, Gwechenberger M, Novotny C,Kletter K, Sochor H, et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med 2007; 48: 175-81.

    [51]Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC.Inflammation and microvascular dysfunction in cardiac syndrome x patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging 2013; 6: 660-7.

    [52]Schelbert HR. Quantification of myocardial blood flow:what is the clinical role? Cardiol Clin 2009; 27: 277-89.

    [53]Schindler TH, Schelbert HR, Quercioli A, Dilsizian V.Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health.JACC Cardiovasc Imaging 2010; 3: 623-40.

    [54]Schelbert HR. Positron emission tomography measurements of myocardial blood flow: assessing coronary circulatory function and clinical implications. Heart 2012;98(7): 592-600.

    [55]Vitola JV, Shaw LJ, Allam AH, Orellana P, Peix A, Ellmann A, et al. Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world. J Nucl Cardiol 2009; 16: 956-61.

    [56]Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T.Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010; 51: 921-8.

    [57]Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013; 54: 83-9.

    亚洲成人中文字幕在线播放| 国产不卡一卡二| 欧美人与善性xxx| 日本撒尿小便嘘嘘汇集6| 久久6这里有精品| 十八禁网站免费在线| 波多野结衣高清无吗| 亚洲精华国产精华液的使用体验 | 在线a可以看的网站| 亚洲天堂国产精品一区在线| 国产中年淑女户外野战色| 一个人观看的视频www高清免费观看| 亚洲av免费在线观看| 久久久久久九九精品二区国产| 国语自产精品视频在线第100页| 日日夜夜操网爽| 亚洲在线自拍视频| 特大巨黑吊av在线直播| 在线免费十八禁| 欧美黑人巨大hd| 亚洲国产欧美人成| 99久久中文字幕三级久久日本| 深夜a级毛片| 日韩欧美 国产精品| 亚洲第一区二区三区不卡| 国产午夜精品论理片| 日日夜夜操网爽| 亚洲av成人精品一区久久| 欧美另类亚洲清纯唯美| 日本撒尿小便嘘嘘汇集6| 能在线免费观看的黄片| www.www免费av| 一区二区三区免费毛片| 嫩草影院新地址| 听说在线观看完整版免费高清| or卡值多少钱| 久久久久久大精品| 99在线人妻在线中文字幕| 久久久久久久久久黄片| 在线免费观看的www视频| 免费av毛片视频| 九九久久精品国产亚洲av麻豆| 3wmmmm亚洲av在线观看| 欧美日本亚洲视频在线播放| 97碰自拍视频| 国产高潮美女av| 成人毛片a级毛片在线播放| 99视频精品全部免费 在线| 网址你懂的国产日韩在线| 欧美高清成人免费视频www| 午夜久久久久精精品| 两个人的视频大全免费| 中文字幕av在线有码专区| av在线老鸭窝| 乱码一卡2卡4卡精品| 国产精品永久免费网站| 色av中文字幕| 老司机午夜福利在线观看视频| 久久99热6这里只有精品| 在现免费观看毛片| 在线免费十八禁| 国产欧美日韩一区二区精品| 国产成人影院久久av| 亚洲五月天丁香| 天天躁日日操中文字幕| 亚洲aⅴ乱码一区二区在线播放| 69人妻影院| 一级毛片久久久久久久久女| 91在线精品国自产拍蜜月| 免费大片18禁| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品亚洲av| 久久人人爽人人爽人人片va| 国产高清视频在线观看网站| 免费电影在线观看免费观看| 亚洲综合色惰| 丰满人妻一区二区三区视频av| 亚洲一级一片aⅴ在线观看| 高清日韩中文字幕在线| 国产精品一及| 欧美黑人欧美精品刺激| 欧美精品国产亚洲| 久久人人爽人人爽人人片va| 欧美精品国产亚洲| 国产精品人妻久久久影院| 五月玫瑰六月丁香| 亚洲18禁久久av| 麻豆国产97在线/欧美| 国产欧美日韩精品亚洲av| 少妇的逼好多水| 亚洲内射少妇av| 亚洲熟妇中文字幕五十中出| 国产高清视频在线观看网站| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 色综合站精品国产| 欧美性猛交黑人性爽| 我要搜黄色片| 天美传媒精品一区二区| 欧美激情在线99| 少妇猛男粗大的猛烈进出视频 | 男女之事视频高清在线观看| 欧美在线一区亚洲| 久久亚洲真实| 欧美成人a在线观看| 亚洲五月天丁香| 桃红色精品国产亚洲av| 成人性生交大片免费视频hd| 国产真实乱freesex| 欧美xxxx性猛交bbbb| 日本撒尿小便嘘嘘汇集6| 亚洲人成伊人成综合网2020| 免费看av在线观看网站| 成熟少妇高潮喷水视频| 尤物成人国产欧美一区二区三区| 最近最新中文字幕大全电影3| 欧美最黄视频在线播放免费| 少妇的逼水好多| 小蜜桃在线观看免费完整版高清| 成人精品一区二区免费| 91在线观看av| 在线播放无遮挡| 日韩精品中文字幕看吧| 99久久九九国产精品国产免费| 国产精品久久久久久久电影| 国产精品综合久久久久久久免费| 日韩精品青青久久久久久| 日本与韩国留学比较| 自拍偷自拍亚洲精品老妇| 色在线成人网| 3wmmmm亚洲av在线观看| 美女黄网站色视频| АⅤ资源中文在线天堂| 九九热线精品视视频播放| 欧美性感艳星| 天天躁日日操中文字幕| 一本久久中文字幕| 乱系列少妇在线播放| 国产亚洲欧美98| 免费黄网站久久成人精品| 中文字幕人妻熟人妻熟丝袜美| 免费观看精品视频网站| 人人妻人人看人人澡| 可以在线观看毛片的网站| 欧美日本视频| 亚洲av五月六月丁香网| 日本撒尿小便嘘嘘汇集6| 啦啦啦啦在线视频资源| 精品99又大又爽又粗少妇毛片 | 日韩欧美精品v在线| av国产免费在线观看| 国内揄拍国产精品人妻在线| 亚洲精品色激情综合| av在线天堂中文字幕| 日韩av在线大香蕉| 欧美色视频一区免费| 最新在线观看一区二区三区| 成人亚洲精品av一区二区| 真实男女啪啪啪动态图| 赤兔流量卡办理| 国产精品乱码一区二三区的特点| 夜夜看夜夜爽夜夜摸| 欧美又色又爽又黄视频| 欧美日韩精品成人综合77777| 日日撸夜夜添| 亚洲最大成人av| 国产高清有码在线观看视频| 久久午夜福利片| 人妻少妇偷人精品九色| 久久草成人影院| 成人美女网站在线观看视频| 午夜免费男女啪啪视频观看 | 欧美不卡视频在线免费观看| 国产高潮美女av| 亚洲精品日韩av片在线观看| 久久精品国产清高在天天线| 丰满乱子伦码专区| 国产高清有码在线观看视频| 久久国内精品自在自线图片| 美女 人体艺术 gogo| 精品日产1卡2卡| 成人一区二区视频在线观看| 欧美日本视频| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 搡女人真爽免费视频火全软件 | 悠悠久久av| 五月伊人婷婷丁香| 少妇丰满av| 亚洲熟妇熟女久久| 岛国在线免费视频观看| 亚洲最大成人手机在线| 免费看日本二区| 日本一本二区三区精品| 日韩在线高清观看一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 国产精品,欧美在线| 舔av片在线| www.www免费av| 干丝袜人妻中文字幕| av专区在线播放| 成人国产综合亚洲| 又粗又爽又猛毛片免费看| 精品久久久久久,| 免费高清视频大片| 欧美成人性av电影在线观看| 日韩欧美精品免费久久| 欧美色欧美亚洲另类二区| 国产综合懂色| 国产午夜精品论理片| 国产一区二区三区视频了| 亚洲精品日韩av片在线观看| 国产精品人妻久久久影院| 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| 日韩欧美在线二视频| 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久 | 91av网一区二区| 亚洲国产欧洲综合997久久,| 91在线精品国自产拍蜜月| 亚洲国产色片| 欧美高清性xxxxhd video| 久久久久免费精品人妻一区二区| 99久久九九国产精品国产免费| 99久久久亚洲精品蜜臀av| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 亚洲欧美清纯卡通| 亚洲精品456在线播放app | 我的女老师完整版在线观看| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 一级av片app| 午夜免费男女啪啪视频观看 | 小说图片视频综合网站| 精品人妻视频免费看| 亚洲av成人av| 日韩欧美精品免费久久| 久久草成人影院| 国产精品电影一区二区三区| 一级黄色大片毛片| 国产精品无大码| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 亚洲av中文字字幕乱码综合| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 日韩亚洲欧美综合| 日本在线视频免费播放| 内射极品少妇av片p| 精品国产三级普通话版| 国产精品人妻久久久影院| 啪啪无遮挡十八禁网站| 亚洲成a人片在线一区二区| 99热这里只有是精品50| 国产高清不卡午夜福利| 黄片wwwwww| 中文字幕熟女人妻在线| 最近在线观看免费完整版| 亚洲人成网站在线播| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 最新中文字幕久久久久| 黄色视频,在线免费观看| 国产人妻一区二区三区在| 人妻久久中文字幕网| 久久香蕉精品热| 长腿黑丝高跟| 国产亚洲欧美98| 欧美不卡视频在线免费观看| 久久精品久久久久久噜噜老黄 | 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 啦啦啦观看免费观看视频高清| h日本视频在线播放| 国产 一区精品| 欧美性感艳星| 很黄的视频免费| 成人精品一区二区免费| 一进一出抽搐gif免费好疼| 国产亚洲91精品色在线| 嫁个100分男人电影在线观看| 精品久久久久久成人av| 亚洲欧美日韩东京热| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 国产高清视频在线播放一区| 亚洲av成人av| 给我免费播放毛片高清在线观看| 蜜桃久久精品国产亚洲av| 少妇熟女aⅴ在线视频| 美女大奶头视频| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 国产真实乱freesex| 日本一本二区三区精品| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片| 两个人视频免费观看高清| 久久草成人影院| 国产伦在线观看视频一区| 午夜免费成人在线视频| 深爱激情五月婷婷| 最新在线观看一区二区三区| 欧美日本视频| 2021天堂中文幕一二区在线观| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 欧美人与善性xxx| 国产精品福利在线免费观看| 免费看美女性在线毛片视频| 国产单亲对白刺激| 国产精品99久久久久久久久| 色在线成人网| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 伦理电影大哥的女人| www日本黄色视频网| 欧美zozozo另类| 亚洲美女搞黄在线观看 | 亚洲午夜理论影院| av在线观看视频网站免费| 最近视频中文字幕2019在线8| 国产成人av教育| 欧美日本视频| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站| 女人被狂操c到高潮| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 桃红色精品国产亚洲av| 亚洲在线观看片| 一区二区三区高清视频在线| 天堂动漫精品| 国产精品美女特级片免费视频播放器| 人人妻人人看人人澡| 国产三级在线视频| 欧美在线一区亚洲| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 香蕉av资源在线| 精品欧美国产一区二区三| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 69人妻影院| 精品99又大又爽又粗少妇毛片 | 在线观看美女被高潮喷水网站| 精品午夜福利视频在线观看一区| 精品福利观看| 五月玫瑰六月丁香| 18禁黄网站禁片午夜丰满| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 欧美成人性av电影在线观看| 在线播放国产精品三级| 欧美三级亚洲精品| 男女边吃奶边做爰视频| x7x7x7水蜜桃| 国产成人一区二区在线| 国产一区二区在线观看日韩| 精品久久久久久久末码| 久久久精品大字幕| 男人舔奶头视频| 69人妻影院| 亚洲第一电影网av| 熟女电影av网| 国产精品三级大全| 成人鲁丝片一二三区免费| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 黄色欧美视频在线观看| av在线观看视频网站免费| 久久久久久久精品吃奶| 直男gayav资源| 亚洲三级黄色毛片| 国产高潮美女av| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| 女生性感内裤真人,穿戴方法视频| 麻豆av噜噜一区二区三区| 国语自产精品视频在线第100页| 久久久久久久久久黄片| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 国产主播在线观看一区二区| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| eeuss影院久久| 高清毛片免费观看视频网站| 日韩一区二区视频免费看| 精华霜和精华液先用哪个| 日韩高清综合在线| 成人精品一区二区免费| 精华霜和精华液先用哪个| 性色avwww在线观看| 可以在线观看毛片的网站| 美女大奶头视频| 给我免费播放毛片高清在线观看| 国产亚洲精品av在线| www.色视频.com| 国产美女午夜福利| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 国产单亲对白刺激| 欧美区成人在线视频| 亚洲无线在线观看| 日本三级黄在线观看| 12—13女人毛片做爰片一| 国产黄色小视频在线观看| 久久人妻av系列| 婷婷精品国产亚洲av在线| 亚洲av熟女| 日韩大尺度精品在线看网址| 色在线成人网| 久久久久国内视频| 欧美高清成人免费视频www| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲色图av天堂| 久久精品影院6| 老司机福利观看| 1000部很黄的大片| 校园人妻丝袜中文字幕| 国产成人a区在线观看| 午夜福利18| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 特大巨黑吊av在线直播| 日本黄色视频三级网站网址| 日韩欧美免费精品| 天堂网av新在线| 久久精品国产自在天天线| 成人av在线播放网站| 国语自产精品视频在线第100页| 成人特级av手机在线观看| 高清在线国产一区| av天堂在线播放| 日本一二三区视频观看| 亚洲,欧美,日韩| 亚洲18禁久久av| 99久国产av精品| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 少妇被粗大猛烈的视频| bbb黄色大片| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产 | 亚洲av.av天堂| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 亚洲专区中文字幕在线| 国产精品久久视频播放| av在线亚洲专区| 美女高潮喷水抽搐中文字幕| 成人亚洲精品av一区二区| 国产精品久久久久久亚洲av鲁大| 性色avwww在线观看| 不卡视频在线观看欧美| 欧美性猛交黑人性爽| 国产 一区 欧美 日韩| 国产真实伦视频高清在线观看 | 不卡视频在线观看欧美| 成年女人永久免费观看视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 在现免费观看毛片| 国内精品一区二区在线观看| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 国产主播在线观看一区二区| 日本黄色片子视频| 精品人妻偷拍中文字幕| 一本久久中文字幕| 日韩,欧美,国产一区二区三区 | 亚洲av一区综合| 看片在线看免费视频| 97超视频在线观看视频| 亚洲男人的天堂狠狠| 色在线成人网| 国产成人av教育| 国产一区二区三区视频了| 亚洲精品影视一区二区三区av| 国产午夜精品论理片| 有码 亚洲区| av在线老鸭窝| 久久久成人免费电影| 成人鲁丝片一二三区免费| 国产乱人视频| 1024手机看黄色片| 国产亚洲精品久久久久久毛片| 欧美成人性av电影在线观看| 尾随美女入室| 精品久久国产蜜桃| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 22中文网久久字幕| 99在线视频只有这里精品首页| 91久久精品国产一区二区成人| 色5月婷婷丁香| 极品教师在线免费播放| 亚洲国产日韩欧美精品在线观看| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 九九热线精品视视频播放| 中文字幕久久专区| 亚州av有码| 天堂影院成人在线观看| 国产主播在线观看一区二区| 校园春色视频在线观看| 91av网一区二区| 麻豆精品久久久久久蜜桃| 嫩草影视91久久| 能在线免费观看的黄片| 免费在线观看影片大全网站| 国产亚洲精品久久久com| 国产老妇女一区| 久久午夜福利片| 亚洲经典国产精华液单| 69人妻影院| 搞女人的毛片| 国产精品女同一区二区软件 | 亚州av有码| 国产精品一区二区免费欧美| 99热网站在线观看| 在线播放国产精品三级| 草草在线视频免费看| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件 | 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 国产综合懂色| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 成人亚洲精品av一区二区| 欧美日韩精品成人综合77777| 亚洲欧美精品综合久久99| av国产免费在线观看| 欧美成人免费av一区二区三区| 日本色播在线视频| 久久精品国产99精品国产亚洲性色| 日韩欧美精品v在线| 成人二区视频| 搡老岳熟女国产| 极品教师在线视频| 婷婷色综合大香蕉| 亚洲人成网站在线播| 久久久成人免费电影| 又爽又黄a免费视频| 一进一出好大好爽视频| 亚洲天堂国产精品一区在线| 亚洲av免费在线观看| 亚洲欧美日韩高清在线视频| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 亚洲内射少妇av| 成人精品一区二区免费| 亚洲狠狠婷婷综合久久图片| 尾随美女入室| 精品免费久久久久久久清纯| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 国产男靠女视频免费网站| 97超级碰碰碰精品色视频在线观看| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 黄片wwwwww| 高清在线国产一区| 男女下面进入的视频免费午夜| 欧美国产日韩亚洲一区| 我的女老师完整版在线观看| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 亚洲午夜理论影院| 日本免费a在线| 国语自产精品视频在线第100页| 中国美女看黄片| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久亚洲av鲁大| 色视频www国产| 搡老岳熟女国产| 免费黄网站久久成人精品| 国产三级中文精品| 成人鲁丝片一二三区免费| 少妇丰满av| 老女人水多毛片| 国产av不卡久久| 国产精品不卡视频一区二区| 日本a在线网址| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院|