• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak

    2013-10-19 06:58:26SydiMonjeziTleiMnojKhndelwl

    A.Sydi,M.Monjezi,N.Tlei,Mnoj Khndelwl

    aIslamic Azad University,Tehran South Branch,Tehran,Iran

    bFaculty of Engineering,Tarbiat Modares University,Tehran,Iran

    cMaharana Pratap University of Agriculture and Technology,Udaipur,India

    1.Introduction

    Backbreak is one of the undesirable phenomena in the blasting operation.In other words,a blast without any unwanted effects can be evaluated as a successful activity,and in such activity,a large proportion of the available energy has been consumed in the right direction,i.e.rock fragmentation.Rock fragmentation can be considered as the main objective of the blasting operation.Size distribution of the rock fragments is very important on the overall mining and processing plant economics(Michaux and Djordjevic,2005;Monjezi et al.,2009).On the other hand,the blasting operation usually is accompanied by various unwanted phenomena such as backbreak.Backbreak is the fractured zone beyond the last blasting row(Jimeno et al.,1995).Occurrence of this phenomenon is an indication of wasting potential explosive energy.Moreover,it has some other hazardous effects such as slope instability.Therefore,remedial measures should be presented for diminishing and/or omitting backbreak.The effective blast design parameters are(1)blasting pattern components,(2)rock mass geomechanical properties,and(3)explosive specifications(Thorntonetal., 2002;Zhuetal., 2007,2008).Implementation of a suitable blasting pattern,as a controllable parameter,is very important in preventing backbreak and achieving proper fragmentation(Monjezi and Dehghani,2008).Gates et al.(2005)pointed out that the backbreak is increased when inappropriate delay timing is applied.Many researchers believe that excessive burden is the main cause of the backbreak and producing oversize rock fragments(Konya and Walter,1991;Konya,2003).To date,several empirical models have been developed to predict the blasting results.However,complicated nature of the problem due to multiplicity of the effective parameters has caused development of simplified prediction models with limited number of independent variables.The simplification assumptions are the main cause of poor performance of the empirical models.Moreover,simultaneous prediction of backbreak and fragmentation is not possible using previously developed models.In order to overcome shortcomings of the empirical models,artificial intelligence(AI)based methods can effectively be applied to solving complicated problems.Some of the most popular AI paradigms are artificial neural network (ANN), fuzzy inference system (FIS) and genetic algorithm(GA).

    ANN has capability of learning,evoking and generalizing from the given patterns(Cheng and Ko,2006).Its high performance in solving complicated problems has made this technique so applicable.Various applications of the ANN method in rock engineering have been reported in the literature(Cai and Zhao,1997;Yang and Zhang,1997a,1997b;Maulenkamp and Grima,1999;Benadros and Kaliampakos,2004;Ermini et al.,2005).Also,several researchers have implemented the method in the field of mine blasting(Khandelwal and Singh,2005,2006,2007,2009;Bakhshandehetal.,2010;Kulatilakeetal.,2010;Khandelwal,2010,2012;Monjezi et al.,2010).

    In this paper,an attempt has been made to simultaneously predict backbreak and fragmentation due to blasting operation in the Tehran Cement Company limestone mines using ANN method.

    Fig.1.Tehran cement company limestone mines.

    2.Case study

    Tehran Cement Company limestone mines,i.e.Bibishahrbanoo,Nesari and Safaie,are located at the southeast of Tehran.These mines are under development and have total proved limestone deposits of 41.3 million tons.From the geological point of view,these mines are situated in the sedimentary rocks of Cretaceous period.The limestone layers with an eastwest extension have 75°dip to the north.Limestone is the main exposure layer in the area while in some parts black shale and cream marl are also observed.The Nesari mine is located 10km northeast of Tehran Cement Company.Layers of dolomite and dolomitic limestone are observed in this mine in a narrow strip formation.Safaie Mountain is also located in the northwest of Bibishahrbanoo Mountain(Fig.1).

    The blasting pattern specifications of limestone mines are presented in Table 1.Mean fragment size of 45cm is suitable for the mine primary crusher.

    The controllable parameters of burden,spacing,stemming,bench height,specific charge and specific drilling are considered as inputs to develop an ANN model for predicting backbreak and rock fragmentation as the model outputs.Fig.2 shows the undesirable backbreak after blasting in mines.

    It is noted that,for determining fragmentation quality,image processing method is employed.As such,80%passing size(D80)is considered as the fragmentation evaluation index.Variations of the input and output parameters are given in Table 2.In this study,103 datasets are collected from practical blasting operations of the mines.The available datasets are grouped into training and testing datasets.For this,using sorting mechanism,10%of the datasets are kept apart for testing and evaluating of the simulations.

    3.Statistical analysis

    Multivariate regression analysis(MVRA)is an extension of regression analysis,which was firstly employed by Pearson in 1908(Yilmaz and Yuksek,2009).This method can easily be used for determining the linear and/or nonlinear relationship between dependent predictive and independent criterion variables.The main form of MVRA is where β1,β2,...,βnare the coefficients of regression model;β0is a constant value;Y is the dependent variable;and x1,x2,...,xnare the independent variables.

    Two MVRA models are developed to predict backbreak and fragmentation considering input parameters given in Table 2.

    Eqs.(2)and(3)show mathematical formulations of the developed models for predicting backbreak and fragmentation,respectively.Also,statistical details of the MVRA models are summarized in Table 3.

    4.Basis of artificial neural network

    ANN is a subsystem of AI.This computational system is a simulation of human brain(Maulenkamp and Grima,1999).Original ANN was introduced by McCulloch and Pitts(1943),and since then it was popular and applicable to various fields of science and technology to solve complicated problems. Capabilities of the techniqueare calculating arithmetic and logical functions, generalizing and transforming independent variables to the dependent variables,parallel computations, nonlinearity processing, handling imprecise or fuzzy information, function approximation and pattern recognition.

    ANN is trained using a set of real inputs and their corresponding outputs.For a better approximation,sufficient number of datasets is required.Performance of the trained model is checked with part of the available data known as testing datasets.To find out the best possible network,various topologies are constructed and tested.The process of model training-testing has to be continued until the optimum model with minimum error and maximum accuracy is achieved.ANN training-testing(Monjezi and Dehghani,2008)is illustrated in Fig.3.

    A neural network has a layered structure,and each layer contains processing units or neurons.Problem effective variables are placed in the input layer,whereas objectives or dependent variables are put in the last (output) layer. The computation components (black box) of the system are the neurons of hidden layers.All of the layers are connected to each other by weighted connections.Fig.4 shows a typical ANN structure.Each neuron is connected to the neurons in the subsequent layer.However,there is no connection between the neurons of the same layer(Demuth and Beale,1994).

    Table 1Blasting pattern specifications of limestone mines.

    Fig.2.The undesirable backbreak after blasting in mines.

    Table 2Basic statistics of inputs and output parameters.

    In the training process, the interconnections among the neurons are initially assigned specific weights.The network would be able to perform a function by adjusting the initial weights.

    A single neuron containing multiple inputs(x1,···,xn)and a single output(y)is shown in Fig.5.In the process of ANN training,an initial arbitrary value(weight)is assigned to the connections and then to combine all of the weighted inputs and generate the neuron output,and the following equation is applied:where xiis the inputs,wiis the connection weights,and b is the bias.

    To map a neuron net output to its actual output,an activation function f has to be selected. The transfer function can be expressed as

    Fig.3.Artificial neural network training-testing process.

    Fig.4.Artificial neural network structure.

    Fig.5.Neuron structure.

    Applying Eq.(5)to the neuron initial summation output resulting from Eq.(4),the neuron final output within a range of[0,1]or[-1,1]is achieved depending on the type of applied transfer function.It is noted that a single activation function should be selected for the neurons of a particular layer.Type of the activation function is fully dependent on nature of the problem to be solved.Also their respective graphic presentations are shown in Table 4. Duringthe training process,network tries to decrease difference between predicted and real values.

    To do so,a specific algorithm is selected by which connection weights and biases are repeatedly updated until the minimum error is provided.There are various types of training algorithms,such as back propagation and radial basis(Demuth and Beale,1994).

    Table 3Linear regression coefficients for backbreak and fragmentation.

    4.1.Back propagation neural network

    Back propagation neural network(BPNN)normally has a multi layer structure with one or more nonlinear hidden layer and a linear output layer.It is widely used as a predicting tool in various fields of geo-sciences.Generally,in BPNN four transfer functions are used as presented in Table4.These networks can be used to make nonlinear and/or linear correlation between input(s)and output(s).

    Various types of functions,such as Newton and gradient descent,can be used for training BPNNs.In the simplest form,weights and biases are frequently updated to decrease performance function.Two different techniques(incremental method and batch method)are implemented in the learning process of the ANN.Inthe incremental method,weights and biases are upgraded after each input entrance to net but in the batch method upgrading process is done after entrance of all inputs.Generally,performance function is considered as the mean square error(MSE),which is calculated by the following equation(Demuth and Beale,1994;Benadros and Kaliampakos,2004):

    whereNis the number of input-output datasets.

    Table 4BPNN most usual transfer functions.

    4.2.Radial basis function neural network

    Radial basis function neural network(RBFNN)is one of the efficient artificial networks.These types of the networks are mostly used for function approximation.However,they can also beapplied for pattern recognition and classification.Arriving in very small errors during training process can be considered as the main advantage of RBFNN over BPNN(Haykin,1999;Christodoulou and Georgiopoulos,2001).Unlike BPNN,in the structure of RBFNN,there is only one hidden layer that makes computation time very less.Moreover,transfer function φ of the hidden layer is always of the Gaussian type:

    where P is the input vector;Cjand σjare the center and extension(spread factor)of Gaussian function,respectively.

    As illustrated in Fig.6a,φ(P)reaches the maximum value(1.0)when Pis equal to0.0.In this way,when difference between values of weights and inputs is lower,the neuron output will be greater.In fact,here the amount of output of hidden layer shows the absolute difference between connection weights and inputs.In the RBFNN,thejth network outputdj(Demuth and Beale,1994)can be calculated by

    whereφjis thejth neuron output,andwijis the output layer weight.

    During the training process,parametersCj,σjandwijare determined by the network to provide the best approximation function.In this process,optimum number of neurons required for the hidden layer is also determined by the network.The structure of a RBFN is illustrated in Fig.6b.

    5.Results and discussion

    To compare model performance of the regression analysis and ANN method,value account for(VAF),root mean square error(RMSE),determination coefficient(R2)and maximum relative error(MRE)are utilized:

    where y and y’are the measured and predicted values,respectively;ˉy andˉy′are the average measured and average predicted values,respectively;var(·)is the variance.

    Fig.6.(a)Radial basis transfer function(radbas)and(b)structure of a radial basis function network.

    Table 5 shows the performance of some of the constructed BPNN models.As it is observed from this table,BPNN model with architecture 6-10-2 gives the best result with minimum errors and maximum accuracy,and is considered as the optimum model amongst the BPNN models.Also,Table 6 shows the performance of some of the constructed RBFNN models with various spread factors.As it is seen from Table 6,the model with spread factor of 0.79 provides the best results.Furthermore,performance of the regression model is shown in Table 7.Figs.7-9 show the correlation between predicted and measured outputs for the three methods of modeling.In Figs.7-9,dashed line shows 1:1 slope line,where measured and predicted values will be same. From Tables5-7and Figs.7-9,it is noted that BPNN modeling shows better prediction capability as compared to the other applied methods.Superiority of BPNN over RBFNN was also reported by Monjezi et al.(2010).

    Fig.7.The correlation of measured and predicted data with back propagation neural network.

    Fig.8.The correlation of measured and predicted data with radial basis function neural network.

    6.Sensitivity analysis

    Cosine amplitude method(CAM)of sensitivity analysis was first introduced by Yang and Zhang(1997a).This technique was employed to find out the most effective input parameters on output parameters.In this method,all the data pairs are defined as a specific point in m-dimensional space.In this way,each of the parameters is directly connected to the outputs.The strength of this relation Rijis calculated by where xiand xjare inputs and outputs,respectively;and m is the number of all datasets.The larger the Rijis,the higher the influence of relevant input is.

    In Fig.10,it can be inferred that the stemming and burden are the most influential input parameters on the backbreak and fragmentation.It is noted that for both the outputs,specific charge is the least effective parameter.

    Table 5The calculated performance indices for back propagation neural network models.

    Table 6The calculated performance indices for radial basis function neural network models.

    Table 7The calculated performance indices for multivariate regression analysis model.

    Fig.9.The correlation of measured and predicted data with multivariate regression analysis.

    Fig.10.Sensitivity analysis for backbreak and fragmentation.

    7.Conclusions

    Precise prediction of backbreak and fragmentation is very crucial for success of a mining project.In this paper,an attempt is made to utilize different types of ANNs for predicting simultaneous fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines.The ANN models are trained using a database including 103 datasets.To achieve more reliable predictive models,parameters including burden,spacing,stemming,bench height,specific charge and specific drilling are considered as the model inputs to predict outputs fragmentation and backbreak.BPNN and RBFNN are adopted for this study.Also,regression analysis is performed between the same independent and dependent variables.For the BPNN and RBFNN modeling,networks with architectures 6-10-2 and 6-36-2 respectively are found to be optimum.Ef ficiency of the developed models is examined using testing datasets.Indices of VAF,RMSE,R2and MRE are calculated for predicted outputs and compared with the real outputs.It is found that performance of the BPNN model with maximum accuracy and minimum error is better than that of the RBFNN and statistical models.Also,it is observed that inputs burden and stemming are the most effective parameters on the outputs,whereas specific charge is the least effective parameter for both the outputs.At the end,it is recommended that hybrid models,combination of fuzzy logic and/or genetic algorithm with neural networks,could be applied for further research.

    Bakhshandeh H,Mozdianfard MR,Siamaki A. Predicting of blasting vibrations in Sarcheshmeh copper mine by neural network.Safety Science 2010;48(3):319-25.

    Benadros AG,Kaliampakos DC.Modeling TBM performance with artificial neural networks.Tunneling and Underground Space Technology 2004;19(6):597-605.

    Cai JG,Zhao J.Use of neural networks in rock tunneling.In:Proceedings of the 9th international conference on computer methods and advances in geomechanics.A.A.Balkema:Rotterdam;1997.p.629-34.

    Cheng MY,Ko CH.A genetic-fuzzy-neuro model encodes FNNs using SWRM and BRM.Engineering Application of Artificial Intelligence 2006;19(8):891-903.

    Christodoulou C,Georgiopoulos M.Applications of neural networks in electromagnetics.Norwood,MA,USA:Artech House Publishers;2001.

    Demuth H,Beale M.Neural network toolbox user’s guide.Natick,MA,USA:The Math Work,Inc;1994.

    Ermini L,Catani F,Casagli N.Artificial neural networks applied to landslide susceptibility assessment.Geomorphology 2005;66(1-4):327-43.

    Gates W,Ortiz LT,Florez RM.Analysis of rockfall and blasting backbreak problems.In:Proceedings of the 40th U.S.symposium on rock mechanics.Alexandria,VA:American Rock Mechanics Association;2005.p.671-80.

    Haykin S.Neural networks:a comprehensive foundation.Upper Saddle River,NJ:Prentice-Hall;1999.

    Jimeno CL,Jimeno EL,Carcedo FJA.Drilling and blasting of rocks.Rotterdam:A.A.Balkema;1995.

    Khandelwal M,Singh TN.Prediction of blast induced air overpressure in opencast mine.Noise Vibration Worldwide 2005;36(2):7-16.

    Khandelwal M,Singh TN.Prediction of blast induced ground vibrations and frequency in opencast mine:a neural network approach.Journal of Sound and Vibration 2006;289(4):711-25.

    Khandelwal M,Singh TN.Evaluation of blast induced ground vibration predictors.Soil Dynamics and Earthquake Engineering 2007;27(2):116-25.

    KhandelwalM,Singh TN. Prediction of blast induced ground vibration using artificial neural network.International Journal of Rock Mechanics and Mining Sciences 2009;46(7):1214-22.

    Khandelwal M.Evaluation and prediction of blast induced ground vibration using support vector machine.International Journal of Rock Mechanics and Mining Sciences 2010;47(3):509-16.

    Khandelwal M. Application of an expert system for the assessment of blast vibration.Geotechnical and Geological Engineering 2012;30(1):205-17.

    Kulatilake PHSW,Wu Q,Hudaverdi T,Kuzu C. Mean particle size prediction in rock blast fragmentation using neural networks.Engineering Geology 2010;114(3):298-311.

    Konya CJ.Rock blasting and overbreak control.2nd ed.Washington,DC:US Department of Transportation,Federal Highway Administration;2003.

    Konya CJ,Walter EJ.Rock blasting and overbreak control.1st ed.Washington,DC:US Department of Transportation,Federal Highway Administration;1991.

    Maulenkamp F,Grima MA.Application of neural networks for the prediction of the unconfined compressive strength(UCS)from Equotip hardness.International Journal of Rock Mechanics and Mining Sciences 1999;36(1):29-39.

    McCulloch WS,Pitts WH.A logical calculus of ideas immanent in nervous activity.Bulletin of Mathematical Biophysics 1943;5(4):115-33.

    Michaux S,Djordjevic N.Influence of explosive energy on the strength of the rock fragments and SAG mill throughput.Miner Engineering 2005;18(4):439-48.

    Monjezi M,Amiri H,Farrokhi A,Goshtasbi K.Prediction of rock fragmentation due to blasting in Sarcheshmeh copper mine using artificial neural networks.Geotechnique and Geology Engineering 2010;28(4):423-30.

    Monjezi M,Dehghani H.Evaluation of effect of blasting pattern parameters on backbreak using neural networks.International Journal of Rock Mechanics and Mining Sciences 2008;45(8):1446-53.

    Monjezi M,Rezaei M,Yazdian Varjani A.Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic.International Journal of Rock Mechanics and Mining Sciences 2009;46(8):1273-80.

    Thornton D,Kanchibolta SS,Brunton I.Modeling the impact and blast design variation on blast fragmentation.International Journal of Fragmentation Blasting 2002;6(2):169-88.

    Yang Y,Zhang Q.Analysis for the results of point load testing with artificial neural network.In:Proceedings of the 9th international conference on computer methods and advances in geomechanics.Rotterdam:A.A.Balkema;1997a.p.607-12.

    Yang Y,Zhang Q.A hierarchical analysis for rock engineering using artificial neural networks.Rock Mechanic and Rock Engineering 1997b;30(4):207-22.

    Yilmaz I,Yuksek G.Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences 2009;46(4):803-10.

    Zhu Z,Mohanty B,Xie H.Numerical investigation of blasting-induced crack initiation and propagation in rocks.International Journal of Rock Mechanics and Mining Sciences 2007;44(3):412-24.

    Zhu Z,Xie H,Mohanty B.Numerical investigation of blasting-induced damage in cylindrical rocks.International Journal of Rock Mechanics and Mining Sciences 2008;45(2):111-21.

    国产精品女同一区二区软件 | 亚洲国产精品久久男人天堂| 一a级毛片在线观看| 日韩人妻高清精品专区| 村上凉子中文字幕在线| 久久精品国产清高在天天线| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看| 久久久久久久精品吃奶| 在线观看免费午夜福利视频| 国产97色在线日韩免费| 99热精品在线国产| 免费无遮挡裸体视频| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区色噜噜| 精品电影一区二区在线| 一进一出好大好爽视频| 舔av片在线| 欧美在线一区亚洲| 亚洲人成伊人成综合网2020| 国产精品久久电影中文字幕| 99久久99久久久精品蜜桃| av福利片在线观看| 午夜福利高清视频| 国产91精品成人一区二区三区| 九九热线精品视视频播放| 国产精品 国内视频| 国产精品 国内视频| 亚洲内射少妇av| 亚洲av第一区精品v没综合| 久久久久国内视频| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 99久久精品一区二区三区| www日本在线高清视频| 久久香蕉精品热| 午夜两性在线视频| 国产野战对白在线观看| 琪琪午夜伦伦电影理论片6080| 久久性视频一级片| 亚洲人成网站在线播| 国产精品 欧美亚洲| 看黄色毛片网站| 国产老妇女一区| 日韩欧美国产一区二区入口| 国产男靠女视频免费网站| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| 黄片小视频在线播放| 国产亚洲欧美在线一区二区| 午夜福利视频1000在线观看| 国产视频内射| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 国产激情欧美一区二区| 午夜免费男女啪啪视频观看 | 免费在线观看成人毛片| 99热这里只有是精品50| 欧美日韩精品网址| 欧美+亚洲+日韩+国产| av国产免费在线观看| 99久久精品热视频| 亚洲avbb在线观看| 韩国av一区二区三区四区| 欧美日韩精品网址| 国产欧美日韩一区二区三| 欧美性感艳星| x7x7x7水蜜桃| 成人精品一区二区免费| 又粗又爽又猛毛片免费看| 国产伦精品一区二区三区视频9 | 真实男女啪啪啪动态图| 亚洲av五月六月丁香网| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 日本 欧美在线| 免费在线观看亚洲国产| 午夜免费男女啪啪视频观看 | 国产亚洲av嫩草精品影院| 两人在一起打扑克的视频| 99热这里只有是精品50| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 国产成人av教育| 国产高清videossex| 又黄又粗又硬又大视频| 国产男靠女视频免费网站| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| 亚洲欧美日韩高清在线视频| 全区人妻精品视频| 久久久久久久久大av| 中国美女看黄片| 又爽又黄无遮挡网站| 久久久久免费精品人妻一区二区| 亚洲国产精品999在线| 日本精品一区二区三区蜜桃| av欧美777| 午夜福利18| av中文乱码字幕在线| 国产av在哪里看| 国产高清视频在线观看网站| 久久亚洲真实| 国产精品亚洲av一区麻豆| 国产av麻豆久久久久久久| 熟女电影av网| 亚洲国产精品sss在线观看| 亚洲av一区综合| 可以在线观看的亚洲视频| 国产在视频线在精品| 久久精品国产亚洲av涩爱 | 免费看十八禁软件| 亚洲av第一区精品v没综合| 色综合站精品国产| 桃红色精品国产亚洲av| 欧美一级毛片孕妇| 久久久久久久久中文| 欧美激情久久久久久爽电影| 夜夜夜夜夜久久久久| 日本三级黄在线观看| xxxwww97欧美| 天堂av国产一区二区熟女人妻| 成人永久免费在线观看视频| 日韩精品青青久久久久久| 国产主播在线观看一区二区| 天美传媒精品一区二区| 亚洲欧美激情综合另类| 亚洲国产日韩欧美精品在线观看 | 色哟哟哟哟哟哟| 久久久久久人人人人人| 99久久精品热视频| 亚洲精品粉嫩美女一区| 午夜精品在线福利| 国产视频内射| 又黄又爽又免费观看的视频| 国产真实伦视频高清在线观看 | 白带黄色成豆腐渣| 欧美又色又爽又黄视频| 久久久久久国产a免费观看| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 在线观看免费视频日本深夜| 精品国产三级普通话版| 91久久精品国产一区二区成人 | 老司机在亚洲福利影院| ponron亚洲| 亚洲激情在线av| 长腿黑丝高跟| 亚洲av免费高清在线观看| 精品午夜福利视频在线观看一区| 免费av观看视频| 999久久久精品免费观看国产| 无遮挡黄片免费观看| 乱人视频在线观看| 禁无遮挡网站| 成人鲁丝片一二三区免费| www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级在线视频| 欧美性猛交黑人性爽| 久久精品影院6| 男人和女人高潮做爰伦理| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 91字幕亚洲| 露出奶头的视频| a在线观看视频网站| 狂野欧美激情性xxxx| 日韩大尺度精品在线看网址| 免费av不卡在线播放| 精品国产美女av久久久久小说| 黄色视频,在线免费观看| 亚洲av免费高清在线观看| 亚洲国产中文字幕在线视频| 免费av观看视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 三级男女做爰猛烈吃奶摸视频| 久久人人精品亚洲av| 国产一区二区在线av高清观看| 嫩草影院精品99| 精品无人区乱码1区二区| 精品一区二区三区av网在线观看| 欧美三级亚洲精品| 日韩 欧美 亚洲 中文字幕| 国产高清有码在线观看视频| 女人被狂操c到高潮| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 国产国拍精品亚洲av在线观看 | 欧美成狂野欧美在线观看| 成人亚洲精品av一区二区| 成人精品一区二区免费| 精品电影一区二区在线| 乱人视频在线观看| 久久精品国产99精品国产亚洲性色| 波多野结衣巨乳人妻| 久久精品91蜜桃| av天堂在线播放| 亚洲国产欧美人成| 久久久色成人| 免费人成在线观看视频色| 免费人成在线观看视频色| 成人av一区二区三区在线看| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 免费观看精品视频网站| 亚洲av中文字字幕乱码综合| 免费在线观看日本一区| 免费av观看视频| 国产亚洲精品久久久久久毛片| 在线观看av片永久免费下载| 日韩欧美免费精品| 老司机午夜福利在线观看视频| 啦啦啦韩国在线观看视频| 一个人看的www免费观看视频| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 亚洲一区二区三区色噜噜| 久久久久久久久中文| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 欧美成人性av电影在线观看| 亚洲成人久久爱视频| 天堂av国产一区二区熟女人妻| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| 精品国产三级普通话版| 色播亚洲综合网| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 一a级毛片在线观看| 在线免费观看的www视频| 成人无遮挡网站| 国产在视频线在精品| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 久久欧美精品欧美久久欧美| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 香蕉av资源在线| 性色avwww在线观看| 天堂影院成人在线观看| 看黄色毛片网站| h日本视频在线播放| 免费av毛片视频| 男人的好看免费观看在线视频| 午夜精品一区二区三区免费看| 中文字幕av成人在线电影| 精品久久久久久久毛片微露脸| 成年免费大片在线观看| www日本在线高清视频| 九色成人免费人妻av| 黄色片一级片一级黄色片| 午夜激情福利司机影院| 无限看片的www在线观看| 日韩成人在线观看一区二区三区| 高清毛片免费观看视频网站| xxxwww97欧美| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 国产亚洲精品综合一区在线观看| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 两个人看的免费小视频| 亚洲精品一卡2卡三卡4卡5卡| 天天添夜夜摸| 可以在线观看的亚洲视频| 国产亚洲精品综合一区在线观看| 美女大奶头视频| 亚洲成av人片免费观看| 丁香六月欧美| 免费av不卡在线播放| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 久久久国产成人精品二区| 国产午夜福利久久久久久| 久久香蕉国产精品| 国产色婷婷99| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 狂野欧美激情性xxxx| 好看av亚洲va欧美ⅴa在| 免费高清视频大片| 最近最新免费中文字幕在线| 国产激情偷乱视频一区二区| 国产精品99久久久久久久久| 深夜精品福利| 午夜精品久久久久久毛片777| 99热这里只有精品一区| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 人人妻人人看人人澡| 国产不卡一卡二| 免费看十八禁软件| 99久久精品一区二区三区| 亚洲国产精品sss在线观看| 一夜夜www| 少妇的逼好多水| 90打野战视频偷拍视频| 亚洲男人的天堂狠狠| 国产99白浆流出| 嫩草影院精品99| 亚洲第一欧美日韩一区二区三区| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 久久久国产成人精品二区| 欧美区成人在线视频| 欧美午夜高清在线| 18美女黄网站色大片免费观看| 国产精品野战在线观看| 国产一区在线观看成人免费| 久久久国产成人精品二区| 真人做人爱边吃奶动态| 久久这里只有精品中国| 高清毛片免费观看视频网站| 国产亚洲精品一区二区www| 99久久精品热视频| 欧美成人一区二区免费高清观看| 少妇熟女aⅴ在线视频| 99精品欧美一区二区三区四区| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 日本免费一区二区三区高清不卡| www.999成人在线观看| 桃色一区二区三区在线观看| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 亚洲久久久久久中文字幕| 丁香六月欧美| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 99国产精品一区二区三区| 日韩免费av在线播放| 美女高潮喷水抽搐中文字幕| 一进一出抽搐动态| 一本综合久久免费| 国产精品三级大全| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 久久亚洲真实| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 超碰av人人做人人爽久久 | av视频在线观看入口| 久久久久久久久中文| 亚洲av日韩精品久久久久久密| 日本黄色片子视频| 1000部很黄的大片| 国产一区二区亚洲精品在线观看| 高清在线国产一区| 波多野结衣高清无吗| 色精品久久人妻99蜜桃| 免费无遮挡裸体视频| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 精品一区二区三区人妻视频| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 亚洲中文字幕日韩| 搡老岳熟女国产| av女优亚洲男人天堂| 两个人看的免费小视频| 一区福利在线观看| 午夜福利免费观看在线| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 免费观看的影片在线观看| 精品国产亚洲在线| 免费观看人在逋| 国产色爽女视频免费观看| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 在线a可以看的网站| 性色avwww在线观看| 欧美区成人在线视频| 日本a在线网址| 伊人久久精品亚洲午夜| 免费高清视频大片| xxx96com| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 免费观看精品视频网站| 免费av毛片视频| 天堂影院成人在线观看| 国产一区二区在线观看日韩 | 乱人视频在线观看| 蜜桃久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 成年免费大片在线观看| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 麻豆久久精品国产亚洲av| 91在线精品国自产拍蜜月 | 久久精品91蜜桃| 欧美激情在线99| 一级毛片高清免费大全| 我的老师免费观看完整版| 综合色av麻豆| 九色国产91popny在线| 欧美av亚洲av综合av国产av| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩无卡精品| bbb黄色大片| 亚洲 欧美 日韩 在线 免费| 两个人视频免费观看高清| 亚洲无线观看免费| 日韩欧美三级三区| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 99国产综合亚洲精品| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 黄色女人牲交| 婷婷丁香在线五月| 五月伊人婷婷丁香| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 欧美激情在线99| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 午夜视频国产福利| 日本精品一区二区三区蜜桃| 亚洲国产色片| 国产乱人视频| av女优亚洲男人天堂| 伊人久久大香线蕉亚洲五| 亚洲国产精品成人综合色| 99久久99久久久精品蜜桃| 美女黄网站色视频| 亚洲欧美精品综合久久99| 搡女人真爽免费视频火全软件 | 少妇丰满av| 国内精品久久久久久久电影| 日本免费一区二区三区高清不卡| 久久久色成人| av天堂中文字幕网| 免费电影在线观看免费观看| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 69人妻影院| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| aaaaa片日本免费| 国产极品精品免费视频能看的| 亚洲欧美日韩卡通动漫| 日本熟妇午夜| 18禁在线播放成人免费| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩 | 亚洲专区中文字幕在线| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 日韩人妻高清精品专区| 啦啦啦免费观看视频1| 久久久久性生活片| 麻豆一二三区av精品| 日韩欧美三级三区| 国产高清videossex| 色在线成人网| 国产av一区在线观看免费| 亚洲av成人不卡在线观看播放网| 可以在线观看的亚洲视频| 国产成人系列免费观看| 亚洲国产色片| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 国产亚洲精品一区二区www| 精品久久久久久久毛片微露脸| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 中亚洲国语对白在线视频| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 一区二区三区免费毛片| 麻豆成人av在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲一区二区三区不卡视频| 日本成人三级电影网站| 热99re8久久精品国产| 中文字幕av成人在线电影| 久久久久国内视频| ponron亚洲| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 搡老岳熟女国产| 久久久久国内视频| 国产一区二区三区在线臀色熟女| 深爱激情五月婷婷| 亚洲不卡免费看| a级一级毛片免费在线观看| 丁香欧美五月| 一级a爱片免费观看的视频| 毛片女人毛片| 一本综合久久免费| 欧美午夜高清在线| 亚洲成a人片在线一区二区| 精品福利观看| 亚洲av成人av| 亚洲欧美激情综合另类| 亚洲欧美激情综合另类| 国产精品1区2区在线观看.| 国产高清激情床上av| 男插女下体视频免费在线播放| 9191精品国产免费久久| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 国产探花在线观看一区二区| 色在线成人网| 久久久久九九精品影院| 麻豆一二三区av精品| 免费看a级黄色片| 嫩草影院入口| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| 麻豆成人av在线观看| 天天添夜夜摸| 黄色丝袜av网址大全| 日韩人妻高清精品专区| 欧美xxxx黑人xx丫x性爽| 亚洲第一欧美日韩一区二区三区| 我的老师免费观看完整版| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 日本黄大片高清| 99国产综合亚洲精品| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| 日本 av在线| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 长腿黑丝高跟| 亚洲国产色片| 日韩精品青青久久久久久| 嫁个100分男人电影在线观看| 国产免费男女视频| 国产精品爽爽va在线观看网站| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 国产亚洲精品一区二区www| 国产亚洲精品久久久com| 我的老师免费观看完整版| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 午夜福利欧美成人| 国产aⅴ精品一区二区三区波| 欧美bdsm另类| 午夜免费男女啪啪视频观看 | 亚洲片人在线观看| 国产久久久一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 黄色成人免费大全| 国产精品 国内视频| 日韩精品青青久久久久久| 蜜桃亚洲精品一区二区三区| 日本与韩国留学比较| 人妻丰满熟妇av一区二区三区| 亚洲av日韩精品久久久久久密| 天堂av国产一区二区熟女人妻| 一边摸一边抽搐一进一小说| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 男人和女人高潮做爰伦理| 国产三级黄色录像| 非洲黑人性xxxx精品又粗又长| 国产精品一及| 日韩欧美国产在线观看| 日本a在线网址| 大型黄色视频在线免费观看| 色综合站精品国产| 女同久久另类99精品国产91| 久久草成人影院| 一a级毛片在线观看| 18+在线观看网站| 成年人黄色毛片网站| 午夜福利欧美成人| 两个人看的免费小视频| 欧美在线一区亚洲| 少妇高潮的动态图| 久久久久九九精品影院| 国产一区二区在线观看日韩 | 欧美日韩瑟瑟在线播放| 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 欧美一级毛片孕妇| 欧美黑人欧美精品刺激| 在线国产一区二区在线| 日本免费a在线| 天天一区二区日本电影三级| 国产中年淑女户外野战色| 亚洲国产欧洲综合997久久,|