• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Failure behavior of highly stressed rocks under quasi-static and intensive unloading conditions

    2013-10-19 06:58:18JieLiPengxianFanMingyangWang

    Jie Li , Pengxian Fan, Mingyang Wang

    aState Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact,PLA University of Science and Technology,Nanjing,Jiangsu 210007,China

    bSchool of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China

    cCollege of Field Engineering,PLA University of Science and Technology,Nanjing,Jiangsu 210007,China

    1.Introduction

    With increasing depth of underground structures,in situ stresses become higher,which may lead to change of rock properties.In presence of excavation disturbance,rock mass at great depth presents some abnormal behaviors,such as rockburst,zonal disintegration(Shemyakin et al.,1986),anomalous low friction,and pendulum-type wave phenomena(Wu et al.,2009a).Highstress state and artificial disturbances(i.e.explosion,excavation unloading,or changes of boundary conditions)are believed to be the most important factors in the evolution process of deformation and failure of rocks.

    Since the concept of unloading rock mechanics was proposed by Ha (1997), failure behavior of rocks has been one of the hot issues in rock mechanics.Experimental results(Li et al.,2001,2010;Huang and Huang,2008,2010;Qiu et al.,2010)indicate that in case of unloading,rock strength tends to decrease and tensile failure is more likely to occur.In some theoretical analyses,the influence of initial stress,as well as unloading speed,was studied(Wang et al.,2010;Fan et al.,2010a,b).Analytical results reveal that the failure mode of surrounding rock is governed by the initial stress level and unloading intensity.In addition,the mechanism of zonal disintegration of tunnel surrounding rocks was also widely investigated(Metlov et al.,2002;Wang et al.,2006;Qian and Li,2008;Wu et al.,2009b).However,the zonal disintegration of rocks ahead of working face was not paid enough attention to.

    Moreover,the effect of strong dynamic unloading of stressed rocks has also been focused on(Lu et al.,2011,2012;Yan et al.,2012).The failure behaviors of brittle rock under intensive unloading have been observed in laboratory tests(Bauch and Lemmp,2004;Chen et al.,2012)and field investigations(Yan et al.,2009).According to their results,the damaged zone of surrounding rocks is much larger than that under the quasi-static loading condition.However,due to the complexity of multi-factor coupling,the unloading failure mechanism of rock mass at great depth remains unknown.The paper attempts to reveal some common characteristics of unloading failure process of highly stressed rocks.Two unloading patterns,quasi-static and intensive unloadings,are considered on the basis of some assumptions for simplicity,which are helpful in understanding the physical nature of unloading fracture of rocks.

    Fig.1.Stress distribution of rock ahead of working face.

    2.Quasi-static failure of rocks

    It is known that stress will be redistributed in the vicinity of working face during excavation.The increasing deviatonic stress induces irreversible deformation or failure of rocks. Sometimes, the rock ahead of working face is broken into blocks with a hierarchical structure.The size characteristics(Qi and Qian,2009)determine the post-peak trend of rock mass,while the frictional properties between rock blocks determine the residual strength of rock mass.

    2.1.Problem definition

    In this paper,a simplified plane strain problem is targeted to investigate the failure characteristics of rocks ahead of working face.The real stress distribution of rocks is undoubtedly in three dimensions;thus,a mathematical simplification is needed for analytical solutions.

    Under the plane strain condition,the stress field,deduced by elastoplastic model,of rock mass ahead of the working face is demonstrated in Fig.1.In Fig.1,σ is the stress,γ is the unit weight of overlying rocks,H is the buried depth of the tunnel,and h is the half height of the tunnel.

    Suppose that,at time t=0,the rock mass is under hydrostatic compression by gravitational stress of σ0=-γH in initial state.After rocks are unloaded,there are basically two zones ahead of working face.One is the irreversible deformation zone and the other is the elastic zone,which are separated by the section x=xc.The balance equation is

    In consideration of the brittleness of rock,an elasto-brittle model is adopted in the analysis.As shown in Fig.2,the relationship between the maximum shear stress and the maximum shear strain is linear in pre-failure zone.When the principal shear stress satis fies Tresca criterion,the rock fails and the shear stress drops to residual strength.where τfis the maximum shear strength.

    Fig.2.Relation between maximum shear stress and maximum shear strain distortion.

    After rock failure,the shear stress drops from the maximum shear strength τfto residual shear strength τr,thus rock blocks and slip network are formed.Within the irreversible deformation zone,i.e.the failure zone,the stresses can be written as

    In plane xoz,the relations between strains and displacements can be written as

    where u,w are the displacements along x and z,respectively;εx,εzare the normal stains along x and z,respectively;and γxzis the shear strain.

    2.2.Stress-displacement distribution

    In case of h?H,the stress state of rock mass in the vicinity of working face can be represented by Prandtl’s solution(Yu,2006)for thin compressed layer as

    where piis the pressure acting on the compressed layer;?x and?z are the dimensionless parameters,and we have?x=x/h,?z=z/h.

    At free boundary,according to Saint-Venant principle,we have

    Substituting σxinto Eq.(6),we get

    The stress state of elastic zone can be determined by Hooke’s law and stress function method.The Hooke’s law can be written as

    where E is the Young’s modulus,ν is the Poisson’s ratio,and G is the shear modulus.

    Fig.3.Distribution of stress σzand displacement u for different initial stresses.

    The solution(Li,2012)to Eq.(8)is

    where ai(i=1,2,3)is the unknown coefficient and can be determined by boundary and continuity conditions.

    Let x→∞,it is noted that σx=σz=-γH,thus we have In the contact zone between failure zone and elastic zone,the rock stress is in balance state,thus the stress σxin Eqs.(5)and(9)is identical when x=xc.Meanwhile,the rock material on the separatrix satis fies the Tresca criterion as given in Eq.(2).Thus we have

    The peak stress can be computed by

    As an example,let h=3m,E=5GPa,ν=0.25,τs=15MPa,τf=20MPa,and the initial stress,σ0,is assumed to be 21MPa,30MPa and 45MPa.The distributions of stress σzand displacement u are shown in Fig.3.

    From Fig.3 we can see that in all the three cases,the stress σzundergoes a jump-up,while the displacement u almost keeps constant.As the initial stress increases,the peak value of σzincreases,and the catastrophe point of stress appears far from the working face(in other words,the values of x/h increases).Additionally,the peak value of σzis much larger than the initial stress,and thus in the peak stress area,the rock mass may be fractured.

    2.3.Conditions for tensile fracture of peak stress area

    For simplicity,we choose the middle section with peak stress as an example,i.e.the rectangle ABCD illustrated in Fig.1.As the

    working face advances,the stress state of rectangle ABCD undergoes three states shown in Fig.4 subsequently.When the working face leaves,the rectangle ABCD is under the state of hydrostatic stress.As the working face advances,the distance between working face and rocks in the rectangle ABCD decreases.The stress state of the material in the rectangle ABCD gradually transforms from initial stress state to that of the peak stress zone.At last,the rectangle ABCD will locate in the neighborhood of the free face,and the boundary line AC acts as the working face,as shown in Fig.4c.

    According to Qian et al. (2011), the main causation of volumetric change of rocks in the vicinity of working face is likely to be the layer splitting. In the peak stress area, the value of σzis several times that of σx(or σy).When σxand σyare regarded as confining pressures,the tensile strain will develop and the tensile failure of peak stress area is likely to occur.The material in the peak stress area tends to be cracked,forming structure-like pillars or pseudo working face,which is believed to be the main reason of volumetric dilatation.According to field observations,the displacement of working face is much larger than the predicted value by elastoplastic theory.

    Fig.4.The evolution of stress state as working face advances.

    In tensor form,the stress can be expressed as where σijis the stress tensor,δijis the Kronecker delta,p is the average stress,and Sijis the deviatoric stress tensor.

    The adopted constitutive model can be expressed as where Kpis the unloading volumetric modulus with consideration of dilation.

    Assuming that the plastic volumetric deformation is uncompressible,i.e.dεpijδij=0,the volumetric deformation can be expressed as

    It is noted that rock mass in depth has been subjected to high compressive stress for millions of years. The volumetric modulus of the material can be regarded as a constant K,which is the maximum volumetric modulus.During unloading,plastic deformation develops and the material is broken into blocks along the slip lines.The unloading volumetric modulus Kpis a varying parameter because of dilation and the failure of the material, and it relates to the degree of damage of rocks.However,there are few reports on this issue.In our analysis,the volumetric modulus is generally determined by interpolation.

    In the present analysis of rock deformation, the boundaries in y and z-directions are confined,and the strain along x-axis induced by dilation is

    Fig.5.Loading and unloading deformation processes of rocks.

    where σiis the average compressive stress acting on the rectangle ABCD.When the rectangle ABCD is located on the working face,σireaches its minimum value-τr.Thus we have

    The strain induced by elastic deformation is

    Assuming when εdx+ εex≥ εtis satisfied,in which εtis the tensile strain limit of material,rocks fail.Therefore,the condition for the tensile fracture of rocks can be expressed as

    where γfis the shear strain when rock breaks.

    Eq.(19)implies that the critical condition for the tensile fracture of rock ahead of the working face mainly relates to the shear strength,the tensile strain limit,the shear modulus and the volumetric modulus of rocks.Fig.5 shows the relationship between the volumetric stain and compressive stress during loading and unloading.In the isotropic compression process of rocks,the volumetric modulus is approximately linear, and the bearing capacity of rocks is significantly increased.However,under unloading condition,rock mass tends to fracture more easily and undergoes larger volumetric strain(expansion).If rocks fail during the unloading process,the volumetric strain will be in the tensile(left side of Fig.5)region of the coordinate of pressure and volumetric strain.

    Generally,unloading process is nonlinear. However, for simplicity,we will adopt a linear approximation of unloading process and consider the volumetric modulus as a constant.Thus,we have whereεvcis the volumetric strain under compressive stressσ0,and εvdis the dilatation strain when the stress is unloaded to zero.

    From Eq.(20),we have

    Fig.6.Sketch of intensive unloading.

    Thus,Eq.(19)can be rewritten as

    Eq.(22)implies that the stress condition for quasi-static unloading tensile failure of rocks is closely related to the fracture dilatation characteristics which are controlled by material deformation parameters.However,literature about the post-peak deformation of rocks is rarely reported.

    3.Intensive unloading induced fracture

    For the problems of intensive unloading of highly stressed rock,we can suppose an ideal particulate material being located between two smooth, absolutely rigid parallel flat planes (see Fig. 6). The particles are closely packed in the defined space by high in situ stresses.The x-axis is parallel to the plane and the material occupies the region x>0.For simplicity,it is assumed that the material is brittle and linearly elastic.In fact,this one-dimensional(1D)problem is identical to the unloading of a semi-in finite plane.

    It is supposed that,at time t=0,the material in the half space x>0 is in equilibrium state and under hydrostatic compression by stress σ0=γH.When x=0 and t>0,the stress at the boundary x=0 is released abruptly.After the instantaneous unloading of external loads,a perturbation wave will propagate from the free boundary.If the pressure σ0is sufficiently high,the loading perturbation wave will be followed by a fracture wave(Cherepanov,1979).The velocity of the fracture wave can be determined by solving the 1D problem.

    The fracture wave is derived by the potential energy of elastic compression.When the necessary conditions are satisfied,the fracture wave is self-sustained. The possibility and intensity of self sustained fracture depend on the amount of potential energy.

    Similarly,the unloading process of highly stressed rock consists of two unloading waves.The first is the elastic unloading wave,which propagates from the free boundary with a velocity identical to the elastic compression wave and unloads the material to a certain lower stress state σc,i.e.the critical stress for unloading fracture.The second is the fracture wave,which unloads the material to the destination stress state σd.In other words,the unloading wave will be split into an elastic unloading wave and a fracture wave when unloading intensity is sufficiently strong.Thus,the region x>0 can be divided into three zones:fractured zone,elastic unloading zone and undisturbed zone(see Fig.6).Fig.7 demonstrates the unloading process of highly stressed rocks,in which ceand cfare the velocities of elastic compression wave and fracture wave,respectively.

    In the following analysis,it is assumed that the deformation of unbroken material is small and the fracturing is an irreversibleprocess.Mass conservation equation,momentum conservation law and energy conservation law of fracture surface can be written as

    Fig.7.Decomposition of unloading wave.

    (1)Mass conservation equation:

    (2)Momentum conservation law:

    (3)Energy conservation law:

    In the above three equations,ρ is the density of material,υ is the particle velocity,U is the elastic potential of unit mass,and D is the energy dissipated in the fracture process of unit mass,subscripts“0”and “F”stand for the elastic unloading zone and the fractured zone,respectively.

    Combining Eqs.(23)-(25),noting that υ0?υF,and ρ=ρ0=ρF,the dissipative energy D can be determined:

    In the 1D problem,the motion equation of material is

    where u is the displacement.

    The physical state in the elastic unloading zone is expressed as

    In the fractured zone,the shear deformation is plastic and the volumetric deformation is elastic.The strain state of the material can be expressed as

    Substituting σxin Eqs.(28)and(29)into Eq.(27),the following equations can be derived:

    where

    The energy accumulated in unit mass of elastic unloading zone can be expressed as

    The energy stored in unit mass of fractured zone consists of two components:the elastic energy induced by the volumetric strain and the deformation energy induced by shape change.Then,we have

    where σm=(σx+σy+σz)/3 is the average stress.

    If the dissipative energy D is regarded as a material constant,the critical condition of self-sustained fracture can be given by theoretical analysis.According to the compatibility of characteristic lines,two displacement fields of fracture process can be established.The solution to Eq.(31)is

    where bi(i=1,2,3,4)is the unknown coefficient,which can be determined by the displacement continuity condition,momentum conservation law and boundary condition in the area where the material state changes.

    The displacement continuity condition is

    The momentum conservation laws can be expressed as

    The stress boundary condition of free surface is

    Eqs.(35)-(38)actually can make up an equation set with four unknowns.The solution for the unknowns is

    Substituting Eq.(39)into Eq.(40),the self-sustained fracture stress condition can be obtained:

    Eq.(41)implies that the stress condition for self-sustained fracture under intensive unloading condition is related to energy dissipation in fracture process, as well as the shear strength and the Poisson’s ratio.If the dissipative energy in fracture process is D=0,i.e.the material is comprised of compacted cohesionless particles,the critical stress can be expressed as

    4.Discussion

    The unloading failure of highly stressed rock(core discing,spalling,rockburst,etc.)is a very common phenomenon in engineered rock mass at great depth. Although it remains unclear,many researchers(Lajtai,1998;Hajiabdolmajid et al.,2002;Suknev,2008;Feng et al.,2012)tended to believe that the failure of brittle rock is dominated by tensile fracture at the beginning,especially under unloading condition.The representation of tensile fracture is determined by the initial stress state and the unloading mode.

    Actually,the proposed quasi-static unloading failure problem is a simplified form of zonal disintegration phenomenon with only one tensile fracture zone.And the proposed intensive unloading fracture mode possibly occurs in drill-and-blast process and has close relations with instantaneous strain rockburst.

    Dividing Eq.(22)by 2τrand assuming α=εvc/εvd,Eq.(22)can be rewritten as

    Similarly,dividing Eq.(41)by2τrand as sumingσ0=γH,wehave

    Eqs.(43)and(44)are the dimensionless stress conditions for quasi-static and intensive unloading fracture of highly stressed rocks.An example is presented for this issue.The Poisson’s ratio is assumed to be 0.2.The results are shown in Fig.8.From Fig.8,we can conclude that:(1)the stress required for dynamically self-sustained fracture is higher than that for quasi-static tensile fracture;and(2)among the factors,the ratio of residual shear strength to ultimate shear strength has the most important impact, while the ratio of ultimate tensile strain to ultimate shear strain has a minor influence.

    The zonal disintegration phenomenon has been widely studied(Odintsev,1994;Qian and Li,2008;Qi et al.,2011),and some researchers have reported the stress conditions in their observations or analytical studies(Adams and Jager,1980;Wang et al.,2006;Li et al.,2008).Generally,zonal disintegration is observed under the condition of γH/σc>1,which is somewhat higher than the quasi-static unloading failure condition.However,no specificinvestigation on the stress condition for zonal disintegration of rock ahead of working face is reported.

    The intensive unloading fracture of rocks can be characterized in terms of susceptibility of a particular rock to self-disintegration,which is closely related to rockburst.Self-disintegration is possible when the amount of specific elastic energy stored in the material under peak strength load is equal to or exceeds the specific energy absorbed by the rock material while undergoing deformation and rupture during the post-failure phase.A model experiment has already been conducted to simulate the intensive unloading behavior of rocklike materials (Chen et al., 2012), and a fracture wave was observed when the highly stressed material was instantaneously unloaded.

    Someone may argue that the model presented is over-simplified and some factors are not considered,such as stress path effect and unloading rate effect, from a practical point of view. The results can give us some basic insight into the unloading fracture process.The results suggest that the post-peak deformation or strength characteristics of rocks,i.e.the strain softening of rocks,especially the unloading deformation properties,should be paid more attention to in further study.

    Fig.8.The dimensionless stress conditions for quasi-static and intensive unloading fracture of highly stressed rocks.

    5.Conclusions

    Two extreme unloading conditions are considered in this paper.Theoretical analysis demonstrates the tensile nature of the fracture of brittle rock under quasi-static and intensive unloading conditions.The results can be drawn as follows:

    (1) Quasi-static unloading of highly stressed rock ahead of working face will induce stress redistribution and form a peak stress area.If certain conditions are satisfied,the rock in peak stress area tends to be fractured.The stress condition mainly relates to the tensile strain,the shear strain,especially the post-peak softening characteristics of rock.

    (2)If highly stressed rock is unloaded intensively,an elastic unloading wave followed by a fracture wave will propagate in the material.The critical initial stress for the formation of fracture wave is much higher than that of quasi-static unloading failure,and governed by the disintegration dissipative energy.

    Acknowledgements

    This research is sponsored by the National Science Fund for Distinguished Young Scholars(50825403),the National Key Basic Research Program of China(2010CB732003,2013CB036005),and the Science Fund for Creative Research Group of the National Natural Science Foundation of China(51021001).

    Adams GR,Jager AJ.Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mine.Journal of the South African Institute of Mining and Metallurgy 1980;44(6):204-9.

    Bauch E,Lemmp C.Rock splitting in the surrounds of underground openings:an experimental approach using triaxial extension test.In:Hack R,Azzam R,Charlier R,editors.Engineering geology for infrastructure planning in Europe.Berlin:Springer;2004.p.244-54.

    Chen W,Song C,Cheng T,Xiao Y.On the rockburst model experiment based on similar material and the energy releasing mechanism.Journal of Experimental Mechanics 2012;27(5):630-6[in Chinese].

    Cherepanov GP.Mechanics of brittle fracture.New York:McGraw-Hill;1979.

    Fan P,Wang M,Li W,Chen M.Time effect of stress and deformation of surrounding rock of circular tunnels during unloading.Rock and Soil Mechanics 2010a;31(Suppl.1):28-34[in Chinese].

    Fan P,Wang M,Qian Q.Time effect and main influence factors of unloading splitting of deep-seated rock with nonuniformities.Chinese Journal of Rock Mechanics and Engineering 2010b;29(7):1389-96[in Chinese].

    Feng X,Chen B,Ming H,Wu S,Xiao Y,Feng G,et al.Evolution law and mechanism of rockbursts in deep tunnels:immediate rockburst.Chinese Journal of Rock Mechanics and Engineering 2012;31(3):433-44[in Chinese].

    HaQ. Rock slope engineering and unloading nonlinear rock mass mechanics. Chinese Journal of Rock Mechanics and Engineering 1997;16(4):386-91[in Chinese].

    Hajiabdolmajid V,Kaiser PK,Martin CD.Modelling brittle failure of rock.International Journal of Rock Mechanics and Mining Sciences 2002;39(6):731-41.

    Huang R,Huang D.Experimental research on affection laws of unloading rates on mechanical properties of Jinping marble under high geostress.Chinese Journal of Rock Mechanics and Engineering 2010;29(1):21-33[in Chinese].

    Huang R,Huang D.Experimental research on mechanical properties of granites under unloading condition.Chinese Journal of Rock Mechanics and Engineering 2008;27(11):2205-13[in Chinese].

    Lajtai EZ.Microscopic fracture processes in a granite.Rock Mechanics and Rock Engineering 1998;31(4):237-50.

    Li J,Xiong J,Yang X.Experimental investigation on unloading mechanical characteristic of rock mass.Water Resources and Hydropower Engineering 2001;32(5):48-51[in Chinese].

    Li J.Research on the unloading mechanical mechanism of deep rock mass and its constitutive model.Nanjing:PLA University of Science and Technology;2012[PhD thesis;in Chinese].

    Li S,Wang H,Qian Q,Li S,Fan Q,Yuan L,et al.In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways. Chinese Journal of Rock Mechanics and Engineering 2008;27(8):1545-53[in Chinese].

    Li J,Wang L,Wang X,Wang R,Cheng Z,Dang L.Research on unloading nonlinear mechanical characteristics of jointed rock masses.Journal of Rock Mechanics and Geotechnical Engineering 2010;2(4):357-64.

    Lu W,Yang J,Chen M,Zhou C.Mechanism and equivalent numerical simulation of transient release of excavation load for deep tunnel.Chinese Journal of Rock Mechanics and Engineering 2011;30(6):1089-96[in Chinese].

    Lu W,Yang J,Yan P,Chen M,Zhou C,Luo Y,et al.Dynamic response of rock mass induced by the transient release of in-situ stress.International Journal of Rock Mechanics and Mining Sciences 2012;53(2):129-41.

    Metlov LS,Morozov AF,Zborshchik MP.Physical foundations of mechanism of zonal rock failure in the vicinity of mine working.Journal of Mining Science 2002;38(2):150-5.

    Odintsev VN.Mechanism of the zonal disintegration of a rock mass in the vicinity of deep-level workings.Russian Journal of Mining Science 1994;30(4):334-43.

    Qi C,Qian Q,Wang M,Luo J.Advance in investigation of zonal disintegration phenomenon.Journal of PLA University of Science and Technology(Natural Science Edition)2011;12(5):472-9[in Chinese].

    Qi C,Qian Q.Basic problems of dynamic deformation and fracture of rock mass.Beijing:Science Press;2009[in Chinese].

    Qian Q,Li S.A review of research on zonal disintegration phenomenon in deep rock mass engineering.Chinese Journal of Rock Mechanics and Engineering 2008;27(6):1278-84[in Chinese].

    Qian Y,Wang D,Li J,Chen W.Study of mechanism of rock mass deformation and failure ahead of working face on supporting zone.Rock and Soil Mechanics 2011;32(10):3058-64[in Chinese].

    Qiu S,Feng X,Zhang C,Zhou H,Sun F.Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures.Chinese Journal of Rock Mechanics and Engineering 2010;29(9):1807-17[in Chinese].

    Shemyakin EI,Fisenko GL,Kurlenya MV,Oparin VN,Reva VN,Glushikhin FP,et al.Zonal disintegration of rocks around underground workings.Part 1:data of in situ observations.Journal of Mining Science 1986;22(3):157-68.

    Suknev SV. Formation of tensile fractures in the stress concentration zone in gypsum.Journal of Mining Science 2008;44(1):43-51.

    Wang M,Fan P,Li W.Mechanism of splitting and unloading failure of rock.Chinese Journal of Rock Mechanics and Engineering 2010;29(2):234-41[in Chinese].

    WangM, Song H, Zheng D, Chen S.Onmechanism of zonal disintegration within rock mass around deep tunnel and definition of “deep rock engineering”.Chinese Journal of Rock Mechanics and Engineering 2006;25(9):1771-6[in Chinese].

    Wu H,Fang Q,Lu Y,Zhang Y,Liu J.Model tests on anomalous low friction and pendulum-type wave phenomena.Progress in Natural Science 2009a;19(12):1805-20.

    Wu H,Fang Q,Zhang Y,Gong Z.Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels-mechanism and discussion of characteristic parameters.Mining Science and Technology 2009b;19(3):306-11.

    Yan P,Lu W,Chen M,Shan Z,Chen X,Zhou Y.Energy release process of surrounding rocks of deep tunnels with two excavation methods.Journal of Rock Mechanics and Geotechnical Engineering 2012;4(2):160-7.

    Yan P,Lu W,Chen M,Zhou C.Study of the damage characteristics of surrounding rocks for tunnels constructed using TBM and drill-and-blast.China Civil Engineering Journal 2009;42(11):121-8[in Chinese].

    Yu H-S.Plasticity and geotechnics.New York:Springer Science and Business Media;2006.

    又爽又黄a免费视频| 国产激情偷乱视频一区二区| av黄色大香蕉| 天堂av国产一区二区熟女人妻| 亚洲性久久影院| 午夜精品一区二区三区免费看| 亚洲av电影不卡..在线观看| 成熟少妇高潮喷水视频| 国产色爽女视频免费观看| 国产在线男女| 亚洲最大成人中文| 婷婷精品国产亚洲av| 九九在线视频观看精品| ponron亚洲| 久久精品夜夜夜夜夜久久蜜豆| 成年女人永久免费观看视频| 亚洲无线在线观看| 欧美黑人欧美精品刺激| or卡值多少钱| 国产精品免费一区二区三区在线| 亚洲av.av天堂| 一级a爱片免费观看的视频| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久久久免| 国产亚洲精品久久久com| 69人妻影院| 97热精品久久久久久| 中亚洲国语对白在线视频| 黄色视频,在线免费观看| 国产精品精品国产色婷婷| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 日韩高清综合在线| 国模一区二区三区四区视频| 国产精品三级大全| 亚洲精品成人久久久久久| 成人av一区二区三区在线看| 联通29元200g的流量卡| aaaaa片日本免费| 亚洲精品影视一区二区三区av| 狂野欧美激情性xxxx在线观看| eeuss影院久久| 91久久精品电影网| 一级黄色大片毛片| 久久久久免费精品人妻一区二区| 亚洲精品乱码久久久v下载方式| 国产淫片久久久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲av一区综合| 色吧在线观看| av国产免费在线观看| 男女做爰动态图高潮gif福利片| 美女高潮喷水抽搐中文字幕| 亚洲av免费在线观看| 亚洲自偷自拍三级| 床上黄色一级片| 在线观看美女被高潮喷水网站| 久久人人爽人人爽人人片va| 国产成年人精品一区二区| 噜噜噜噜噜久久久久久91| 男女视频在线观看网站免费| 99精品久久久久人妻精品| 午夜老司机福利剧场| 久久久色成人| 99在线视频只有这里精品首页| 简卡轻食公司| 日本撒尿小便嘘嘘汇集6| 国产日本99.免费观看| 欧美成人免费av一区二区三区| 成年女人毛片免费观看观看9| 久99久视频精品免费| 99精品久久久久人妻精品| 久久天躁狠狠躁夜夜2o2o| 亚洲av一区综合| 一个人观看的视频www高清免费观看| 床上黄色一级片| 一区福利在线观看| 国产精品久久久久久亚洲av鲁大| 全区人妻精品视频| 黄色配什么色好看| 国产在线男女| 在线免费观看不下载黄p国产 | 97超级碰碰碰精品色视频在线观看| 99riav亚洲国产免费| 露出奶头的视频| 久久中文看片网| 美女免费视频网站| 1000部很黄的大片| 国产精品国产高清国产av| 国产毛片a区久久久久| 婷婷亚洲欧美| .国产精品久久| 免费在线观看影片大全网站| 国产免费一级a男人的天堂| 午夜免费男女啪啪视频观看 | 精品一区二区三区视频在线| 久99久视频精品免费| 蜜桃亚洲精品一区二区三区| 男人的好看免费观看在线视频| 好男人在线观看高清免费视频| 亚洲avbb在线观看| 国产在线精品亚洲第一网站| 国产毛片a区久久久久| 亚洲美女黄片视频| 成年女人永久免费观看视频| 久久久久九九精品影院| 亚洲人成网站在线播| 中文字幕久久专区| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看 | 最近最新中文字幕大全电影3| 成人二区视频| 欧洲精品卡2卡3卡4卡5卡区| 老司机深夜福利视频在线观看| 国产三级中文精品| 十八禁网站免费在线| 亚洲欧美日韩卡通动漫| 女人被狂操c到高潮| 亚洲av中文字字幕乱码综合| 亚洲va日本ⅴa欧美va伊人久久| 别揉我奶头 嗯啊视频| 级片在线观看| 欧美精品啪啪一区二区三区| 亚洲真实伦在线观看| www.色视频.com| 噜噜噜噜噜久久久久久91| 欧美黑人巨大hd| 亚洲四区av| 一个人观看的视频www高清免费观看| 久久久久久久精品吃奶| 男女视频在线观看网站免费| 国产精品女同一区二区软件 | 无人区码免费观看不卡| 十八禁网站免费在线| 亚洲av成人av| 不卡一级毛片| 亚洲av中文av极速乱 | 免费人成视频x8x8入口观看| 亚洲av一区综合| 国产一区二区激情短视频| 国产一区二区三区在线臀色熟女| 99在线人妻在线中文字幕| 亚洲性夜色夜夜综合| av视频在线观看入口| 亚洲av免费高清在线观看| 一进一出抽搐动态| 免费看日本二区| 亚洲不卡免费看| 成人精品一区二区免费| 老司机深夜福利视频在线观看| 免费观看在线日韩| 亚洲国产精品sss在线观看| 村上凉子中文字幕在线| 国产精品免费一区二区三区在线| 免费观看人在逋| 最近在线观看免费完整版| 亚洲人与动物交配视频| 女人被狂操c到高潮| 国产高清三级在线| 18+在线观看网站| 欧美+日韩+精品| 成人毛片a级毛片在线播放| eeuss影院久久| 97超视频在线观看视频| 亚洲av日韩精品久久久久久密| 亚洲狠狠婷婷综合久久图片| 国产男人的电影天堂91| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 九九爱精品视频在线观看| 熟妇人妻久久中文字幕3abv| 永久网站在线| 亚洲综合色惰| av视频在线观看入口| 国内精品久久久久久久电影| av专区在线播放| 在线天堂最新版资源| 最好的美女福利视频网| 国产精品国产三级国产av玫瑰| 免费人成视频x8x8入口观看| 亚洲久久久久久中文字幕| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 波多野结衣高清作品| 亚洲欧美清纯卡通| 又爽又黄a免费视频| 老熟妇乱子伦视频在线观看| 久久久久久久久久成人| 成人国产综合亚洲| 国产视频一区二区在线看| 午夜福利在线观看免费完整高清在 | 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线观看免费| 身体一侧抽搐| 国产爱豆传媒在线观看| 又粗又爽又猛毛片免费看| 亚洲乱码一区二区免费版| 91av网一区二区| 我的女老师完整版在线观看| 欧美精品国产亚洲| 淫秽高清视频在线观看| 综合色av麻豆| 日韩欧美精品免费久久| 欧美3d第一页| 亚洲在线自拍视频| 国产精品永久免费网站| 国产aⅴ精品一区二区三区波| 国产综合懂色| 啦啦啦观看免费观看视频高清| 免费在线观看日本一区| 色综合婷婷激情| 久久久久国产精品人妻aⅴ院| 国产精品亚洲一级av第二区| 国产高潮美女av| 99国产极品粉嫩在线观看| 少妇人妻一区二区三区视频| 婷婷色综合大香蕉| 99热网站在线观看| 丰满乱子伦码专区| 亚洲七黄色美女视频| 日韩亚洲欧美综合| 欧美3d第一页| 亚洲人成网站在线播| 高清在线国产一区| 可以在线观看毛片的网站| 国产午夜精品论理片| 一个人看视频在线观看www免费| 看十八女毛片水多多多| 国产亚洲精品久久久久久毛片| 国产女主播在线喷水免费视频网站 | 3wmmmm亚洲av在线观看| 不卡一级毛片| 成人特级黄色片久久久久久久| 国产精品98久久久久久宅男小说| 九九在线视频观看精品| 久久热精品热| 搡老岳熟女国产| 日日撸夜夜添| 欧美性感艳星| 一个人观看的视频www高清免费观看| 最后的刺客免费高清国语| 真人一进一出gif抽搐免费| 中文字幕精品亚洲无线码一区| 天堂影院成人在线观看| 午夜免费男女啪啪视频观看 | 搡老熟女国产l中国老女人| .国产精品久久| 人人妻人人澡欧美一区二区| 婷婷色综合大香蕉| 波多野结衣高清作品| 18禁在线播放成人免费| 两个人视频免费观看高清| 日韩亚洲欧美综合| 亚洲精品456在线播放app | 2021天堂中文幕一二区在线观| eeuss影院久久| 狂野欧美激情性xxxx在线观看| 高清毛片免费观看视频网站| 桃色一区二区三区在线观看| 久久久精品大字幕| 特级一级黄色大片| 亚洲电影在线观看av| 五月伊人婷婷丁香| 国产成人福利小说| 夜夜爽天天搞| 国产成人av教育| 欧美另类亚洲清纯唯美| 日日摸夜夜添夜夜添小说| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 男女边吃奶边做爰视频| 亚洲精华国产精华精| 非洲黑人性xxxx精品又粗又长| 国产又黄又爽又无遮挡在线| 国产伦一二天堂av在线观看| 又粗又爽又猛毛片免费看| 久久久久久伊人网av| 嫩草影院新地址| 简卡轻食公司| 亚洲在线观看片| 色综合色国产| 亚洲乱码一区二区免费版| 精品乱码久久久久久99久播| 色综合站精品国产| 国产精华一区二区三区| 久久久国产成人精品二区| 少妇的逼水好多| 色在线成人网| 国产成年人精品一区二区| 欧美在线一区亚洲| 乱系列少妇在线播放| 国产aⅴ精品一区二区三区波| 麻豆成人av在线观看| 亚洲 国产 在线| АⅤ资源中文在线天堂| 国产精品久久视频播放| 美女 人体艺术 gogo| 午夜久久久久精精品| 黄色一级大片看看| 亚洲成人中文字幕在线播放| 欧美精品国产亚洲| 俺也久久电影网| 特大巨黑吊av在线直播| netflix在线观看网站| 日本黄大片高清| 久久精品国产自在天天线| 免费看美女性在线毛片视频| 亚洲欧美日韩高清专用| 天堂影院成人在线观看| 老熟妇仑乱视频hdxx| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 亚洲成人久久爱视频| 黄色丝袜av网址大全| 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| a级毛片免费高清观看在线播放| 99riav亚洲国产免费| 如何舔出高潮| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区 | 麻豆av噜噜一区二区三区| 国产欧美日韩精品一区二区| 国产一区二区三区视频了| 97超视频在线观看视频| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 欧美+日韩+精品| 国产一区二区三区av在线 | 人妻丰满熟妇av一区二区三区| 波野结衣二区三区在线| 国产 一区精品| 免费观看人在逋| 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 97碰自拍视频| a级毛片免费高清观看在线播放| 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 黄色日韩在线| 久久精品国产自在天天线| 日本a在线网址| 最新在线观看一区二区三区| 日日夜夜操网爽| 国产极品精品免费视频能看的| 久久久久久伊人网av| 亚洲精华国产精华精| 国产精品久久电影中文字幕| 国产免费男女视频| 五月伊人婷婷丁香| 色播亚洲综合网| 欧美高清性xxxxhd video| 黄色配什么色好看| 午夜a级毛片| 天天躁日日操中文字幕| 午夜久久久久精精品| 在线天堂最新版资源| 久久中文看片网| 国产精华一区二区三区| 国产探花在线观看一区二区| 我的老师免费观看完整版| 五月玫瑰六月丁香| 久久午夜亚洲精品久久| 亚洲av成人精品一区久久| .国产精品久久| 97超视频在线观看视频| 欧美色视频一区免费| 成人欧美大片| 久久久午夜欧美精品| 最近中文字幕高清免费大全6 | 成人国产综合亚洲| 亚洲美女视频黄频| 久久久久国内视频| 男女那种视频在线观看| 成人特级黄色片久久久久久久| 久久久成人免费电影| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 精品一区二区三区视频在线观看免费| 88av欧美| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 无人区码免费观看不卡| 日韩欧美在线乱码| 天堂动漫精品| 日本爱情动作片www.在线观看 | 一本一本综合久久| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 制服丝袜大香蕉在线| 老司机福利观看| 日本成人三级电影网站| 国产成年人精品一区二区| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 中文字幕av成人在线电影| 日本爱情动作片www.在线观看 | 国产av一区在线观看免费| 欧美区成人在线视频| 亚洲国产欧洲综合997久久,| 国产真实乱freesex| 尾随美女入室| 成人国产综合亚洲| 国产一区二区三区av在线 | 啦啦啦韩国在线观看视频| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 精品日产1卡2卡| 小说图片视频综合网站| 长腿黑丝高跟| 韩国av在线不卡| 黄色一级大片看看| 我的女老师完整版在线观看| 欧美色视频一区免费| 免费av观看视频| 日本色播在线视频| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 亚洲 国产 在线| 午夜亚洲福利在线播放| 精品人妻一区二区三区麻豆 | 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 欧美成人性av电影在线观看| 日日夜夜操网爽| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 黄色日韩在线| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 亚洲专区国产一区二区| 免费高清视频大片| 美女高潮的动态| 白带黄色成豆腐渣| 欧美黑人欧美精品刺激| 韩国av在线不卡| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| 99热6这里只有精品| 99久久九九国产精品国产免费| 亚洲综合色惰| 精品一区二区三区视频在线| 人人妻人人看人人澡| 成人三级黄色视频| 中国美女看黄片| 真人做人爱边吃奶动态| 久久精品国产自在天天线| 久久九九热精品免费| 尾随美女入室| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 亚洲狠狠婷婷综合久久图片| 国产精品久久电影中文字幕| 在线a可以看的网站| 久久精品综合一区二区三区| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| av视频在线观看入口| 成人综合一区亚洲| 午夜福利欧美成人| 99视频精品全部免费 在线| 哪里可以看免费的av片| 中出人妻视频一区二区| 国产一级毛片七仙女欲春2| 国产精品女同一区二区软件 | 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 亚洲精品色激情综合| 久久久久性生活片| 国产老妇女一区| 亚洲性夜色夜夜综合| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 欧美高清成人免费视频www| 精品一区二区免费观看| 免费在线观看成人毛片| 免费无遮挡裸体视频| 成年女人永久免费观看视频| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 超碰av人人做人人爽久久| 成人欧美大片| 国产高清激情床上av| 亚洲成人久久爱视频| .国产精品久久| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 美女免费视频网站| 可以在线观看的亚洲视频| 亚洲色图av天堂| 男女边吃奶边做爰视频| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区 | 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看| 国产免费男女视频| 变态另类丝袜制服| 亚洲不卡免费看| 国产精品福利在线免费观看| 一本一本综合久久| .国产精品久久| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 一区福利在线观看| 在线看三级毛片| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久 | 精品一区二区三区人妻视频| av视频在线观看入口| 麻豆一二三区av精品| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| 99国产极品粉嫩在线观看| 日本欧美国产在线视频| 国产乱人伦免费视频| 国产精品女同一区二区软件 | 我的女老师完整版在线观看| 极品教师在线视频| 人人妻,人人澡人人爽秒播| 久久久色成人| 国产老妇女一区| 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 色综合站精品国产| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 国产单亲对白刺激| 神马国产精品三级电影在线观看| 在线国产一区二区在线| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 国产三级在线视频| 亚洲成a人片在线一区二区| 国产精品一区二区性色av| www.www免费av| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 国产精品人妻久久久久久| 亚洲无线在线观看| 日韩一区二区视频免费看| 免费高清视频大片| 淫妇啪啪啪对白视频| 亚洲av美国av| 一本精品99久久精品77| 国产不卡一卡二| 女的被弄到高潮叫床怎么办 | 午夜激情福利司机影院| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 真人一进一出gif抽搐免费| 不卡一级毛片| 给我免费播放毛片高清在线观看| 国产老妇女一区| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 日韩av在线大香蕉| 伦理电影大哥的女人| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区 | 女人十人毛片免费观看3o分钟| 91狼人影院| 噜噜噜噜噜久久久久久91| 日韩欧美在线乱码| 国产一区二区三区在线臀色熟女| 少妇的逼水好多| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 国产成人福利小说| 成人精品一区二区免费| 成人特级av手机在线观看| 国产在线男女| 日韩强制内射视频| 亚洲成av人片在线播放无| 国产一区二区三区在线臀色熟女| 中国美白少妇内射xxxbb| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 18禁裸乳无遮挡免费网站照片| 亚洲成人免费电影在线观看| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 春色校园在线视频观看| 国内精品美女久久久久久| 亚洲国产色片| 97碰自拍视频| 免费在线观看成人毛片| av在线观看视频网站免费| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 我的老师免费观看完整版| av女优亚洲男人天堂| 日韩一本色道免费dvd| 色视频www国产| 婷婷色综合大香蕉| 国产v大片淫在线免费观看| 黄片wwwwww| 国产av一区在线观看免费| 亚洲av美国av|