• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ligand substitution reaction mechanism and trans-effect of square-planar complexes

    2013-10-11 06:20:10YUZhaowenZHANGWuTENGHongmei
    化學(xué)研究 2013年4期
    關(guān)鍵詞:陳榮導(dǎo)論北京大學(xué)出版社

    YU Zhao-wen,ZHANG Wu,TENG Hong-mei

    (College of Chemistry and Chemical Engineering,Henan University,Kaifeng,475004,Henan,China)

    In 1926,CHERNYAEV discovered that the ligand substitution reactions of square planar Pt(II)complexes follow the trans-effect rule;that is,the reactivity of one ligand in the complex is related to the nature of the trans-position ligand.Under the guidance of the trans-effect rule,many novel Pt(II)complexes have been synthesized,and some of them have been found to exhibit antitumor activity[1-4].This adds to theoretical and practical significance to understand the cause of trans-effect.For this purpose,several theories,includingГРИНБЕРГ’s electrostatic polarization theory,CHATT’sπ-bonding theory,and BENERJEA’s dissociation theory,have been proposed to explain the trans-effect rule[5-7].Among them,dissociation theory is now rarely mentioned,because it does not conform to the generally accepted association mechanism.Electrostatic polarization theory is only applicable toσ-ligands,whileπ-bond theory is only applicable toπ-ligands andπ-acid ligands.

    Considering that trans-effect is a kind of kinetic phenomenon,we think it should be better explained from a kinetic viewpoint.Thus we propose a new theory——ligand repulsion theory to illustrate the transeffect while the reaction mechanism is taken into account.

    1 Theoretic basis and proposal of the new theory

    The trans-effect strength summarized from a large number of substitution reactions of Pt(II)complexes for common ligands is as follows:

    It can be seen from the sequence that the trans-effect strength of the ligands increases with increasing of their softness.Because the softness of ligands is measured by deformability,we can infer that the transeffect strength of the ligands increases with increasing deformability (as toπ-ligands andπ-acid ligands,the inherent deformability and additional deformability owing to the formation ofπ-back bonding must be considered simultaneously).The correlation between ligands′deformability and their trans-effect is further discussed below.

    1.1 Substitution mechanism of square-planar Pt(II)complexes

    It is now widely accepted that the substitution reactions of square-planar Pt(II)complexes react by a SN2mechanism[8-14],and the generally accepted mechanism is outlined in Fig.1[15-16].

    Fig.1 Substitution reaction mechanism of Pt(II)square-planar complexes

    We can imagine that,if the reactants are fixed,no matter which ligand is to be replaced,transition state 1 (TS1)is unique,but the intermediate(IM)and transition state 2 (TS2)may have different configurations.Which ligand is to be replaced finally depends mainly on the configurations of IM and TS2.

    Then three questions arise:(1)What drives the transformation from TS1to IM?(2)Which ligand is located on the equatorial sites of the trigonal bipyramid of IM?(3)Which ligand is located on the axial site of the tetragonal pyramid of TS2?Answers to these questions are to be discussed below.

    1.2 The driving force of the transformation from TS1to IM

    As to TS1in Fig.1,the bond electron pair of Pt-Y suffers the repulsions from the other four bond electron pairs.In order to reduce the repulsion according to VSEPR[17],the tetragonal pyramidal TS1will transform to the trigonal bipyramidal IM spontaneously.That is to say,the repulsion between the bond electron pairs is the driving force for TS1to transform to IM.The existence of some trigonal bipyramidal d8complexes such as[Ni(CN)5]3-,[Pt(SnCl3)5]3-,and Fe(CO)5confirms that the trigonal bipyramidal configuration is more stable than the tetragonal pyramidal one.

    1.3 The ligands locating on the equatorial sites of the trigonal bipyramid of IM

    It can be concluded from VSEPR[17]that the coordination bond electron pair from a ligand with greater deformability will be closer to the central atom,so its repulsion to the neighboring electron pair will be greater.For example[18],the bond angle of SCl2(103°)is bigger than that of SF2(98°),and ∠H-C-H(118°)in H2CO is bigger than∠Cl-C-Cl(112°)in COCl2.

    In a five-electron-pairs arrangement,i.e.the trigonal bipyramid,there are two different sites:the axial sites and the equatorial sites.The ligands with greater deformability prefer to be located on the equatorial sites.For example[19],in the configurations of the trigonal bipyramidal fluoride-chlorides of phosphorus(V),the chlorine atom is located on an equatorial site in PClF4,while two chlorine atoms and three chlorine atoms are located on the equatorial sites in PCl2F3and in PCl3F2,respectively.

    In principle,the most stable IM should be the one with minimum repulsions among the bond electron pairs,which requires that the three ligands with the greatest deformability are located on the equatorial sites of IM.However,the transformation from TS1to IM is actually a kinetic process;as a result,the ligands can′t rearrange completely.Besides,it is quite easy to change from the tetragonal pyramidal TS1to the trigonal bipyramidal IM,which only needs a couple of trans-position ligands to respectively rotate 30°towards the opposite direction of Y.

    As above-mentioned,the trans-effect strength of the ligands increases with the increase of their deformability.If T has the strongest trans-effect,the M-T bond electron pair will be closer to the central atom,and its repulsion to the bond electron pair of the entering ligand Y will be greater as compared with that of anyone of the other three ligands.As a result,Y will shift towards X,exerting agreater repulsion to X and compelling X to leave its original position.Therefore,T,X,and Y will be generally located on the equatorial sites of the trigonal bipyramid of IM.However,in special cases,which ligands are located on the equatorial sites depends on the relative magnitude of the total repulsions of Y suffered,respectively coming from the two couple of trans-position ligands in TS1.If the repulsion of T and X to Y is bigger,T,X and Y will be located on the equatorial sites(Fig.1);if the repulsion of L and L to Y is bigger,L,L and Y will be located on the equatorial sites.

    1.4 The ligand locating on the axial site of the tetragonal pyramid of TS2

    Similar to the change from TS1to IM,the change from IM to TS2is also quite easy and it only requires that T and Y respectively rotate 30°towards X (Fig.1).

    It should be noted that the ligands on the axial sites of IM are difficult to shift to the axial site of TS2,since it requires three ligands to rotate simultaneously,two on the equatorial sites of IM respectively rotate 30°,and one on the axial site of IM rotates 90°.That is to say,the ligand on the axial site of TS2must be one of those on the equatorial sites of IM.

    Both X and T are possible to locate on the axial site of TS2affording different products.Nevertheless,it should be noted that the ligand on the axial site of TS2not only suffers the repulsion of other four ligands but also suffers the repulsion of the dz2electrons of the central atom.Thus only a ligand with weaker trans-effect is preferably located on this position.Namely,in most cases,X will be located on the axial site of TS2with relatively lower energy.

    The entering ligand Y is also possible to locate on the axial site of TS2,if the trans-effect of Y is weaker than that of X.In this case,most IM would come back to the reactants,so the reaction rate will be very slow.

    1.5 Ligand repulsion theory

    It can be seen from the discussion above that,the trans-effect arises from the repulsions between the bond electron pairs in TS1.In TS1,different ligands give different repulsions to the entering ligand Y.The ligand T with greatest repulsion to Y pushes Y shift to the trans-position of T,leading to the activation of the trans-position ligand.Acordingly,a new theory——ligand repulsion theory,is proposed as follows:(1)the trans-effect of the ligands increases with the increase of their deformability;(2)the larger the deformability of a ligand,the greater its repulsion to the entering ligand is;(3)The equatorial sites of IM are most likely located by the entering ligand Y and a couple of trans-position ligand with bigger repulsion to Y;(4)The ligand on the axial site of TS2is the one on the equatorial sites of IM with weaker trans-effect and it is activated and finally replaced.

    2 Explanation of experimental results with ligand repulsion theory

    CHEN Rongsan[5]summarized the substitution directions for square planar Pt(II)complexes(Scheme 1)according to the relative trans-effect strength of the four ligands surrounding the Pt(II)ion.The summarizations are listed in the second and the third columns of Table 1.Also presented in the fourth and fifth columns of Table 1are the examples given by us,and the sixth column in this table gives the explanation of ligand repulsion theory.

    Scheme 1

    Table 1 The substitution direction for square planar Pt(II)complexes according to the relative trans-effect strength of the four ligands

    Ligand repulsion theory can give satisfactory explanations for all the situations shown in Table 1.In general,if the strongest trans-effect ligand is determined,the configurations of IM and TS2are determined,so the ligand being replaced is determined(No.1,3,4,5,7,and 8in Table 1).In some special cases,the synergistic repulsions to the entering ligand from the two couple of trans-position ligands must be considered so as to determine the configurations of IM and TS2and the ligand being replaced(No.2,6,9).This new theory is advantageous over electrostatic polarization theory andπ-bonding theory,since they are difficult to explain the situations of No.2and No.6,why the replaced ligand is not the ammonia with the weakest trans-effect,and the situation of No.9is much more difficult to be understood by the old theory.

    Ligand repulsion theory and electrostatic polarization theory have some similarity,since they all cover the polarization effect of the central ion to the ligands.However,electrostatic polarization theory is concerned about the weakening of trans-position bond by the polarization effect(a kind of thermodynamic consideration),while ligand repulsion theory is concerned about the influence of polarization effect on the configuration of intermediate(a kind of kinetic consideration).

    [1]ROSENBERG B,VANCAMP L,TROSKO J E,et al.Platinum compounds:a new class of potent antitumour agents[J].Nature,1969,222:385-386.

    [2]WONG E,GIANDOMENICO C M.The interactions of low oxidation state transition metal[J].Chem Rev,1999,99:2451-2466.

    [3]PANTOJA E,GALLIPOLI A,van ZUTPHENA S,et al.In vitro antitumor activity and interaction with DNA model bases ofcis-[PtCl2(iPram)(azole)]complexes and comparison with their trans analogues[J].Inorganica Chimica Acta,2006,359(13):4335-4342.

    [4]van RIJT S,van ZUTPHEN S D H,BROUWER J,et al.Structure-activity relationship studies for three new asymmetriccis-platinum(II)aminoethanol-based complexes[J].Inorganica Chimica Acta,2006,359(12):4125-4129.

    [5]陳榮三.金屬絡(luò)合物中的反位效應(yīng) [J].化學(xué)通報,1965(8):474-479.

    [6]CHATT J,DUNCANSON L A,VENANZI L M.Directing effects in inorganic substitution reactions.Part I.A hypothesis to explain the trans-effect[J].J Chem Soc,1955,4456-4460.

    [7]BENERJEA D,BASOLO F,PEARSON R G.Mechanism of some substitution reactions of complex ions.Ⅻ.Reactions of some platinum(Ⅱ)complexes with various reactants[J].J Am Chem Soc,1957,79:4055.

    [8]FEKL U,van ELDIK R.Specific chelate tuning of the substitution kinetics of platinum(II)complexes in aqueous solution[J].Eur J Inorg Chem,1998:389-396.

    [9]WEBER C F,van ELDIK R.Influence of solvent on ligand-substitution reactions of PtII complexes as function of the acceptor properties of the spectator chelate[J].Eur J Inorg Chem,2005:4755-4761.

    [10]JAGANYI D,MUNISAMY V M,REDDY D.Role of bridging diamine linkers on the rate of ligand substitution in a series of dinuclear PtⅡcomplexes[J].Intern J Chem Kinet,2006,38:202-210.

    [11]KARMAKAR P,MALLICK S,MONDAL S,et al.Kinetics and mechanism of the interaction of adenosine withcis-diaqua(cis-1,2-diaminocyclohexane)platinum(II)perchlorate in aqueous medium [J].Intern J Chem Kinet,2011,43:219-229.

    [12]MAMBANDA A,JAGANYI D,HOCKREUTHER S,et al.Tuning the reactivity of chelated dinuclear Pt(II)complexes through a flexible diamine linker.A detailed kinetic and mechanistic study[J].Dalton Trans,2010,39:3595-3608.

    [13]MAMBANDA A,JAGANYI D.A kinetics and mechanistic study on the role of the structural rigidity of the linker on the substitution reactions of chelated dinuclear Pt(II)complexes[J].Dalton Trans,2012,41:908-920.

    [14]ONGOMA P,JAGANYI D.Theπ-acceptor effect in the substitution reactions of tridentate N-donor ligand complexes of platinum(II):a detailed kinetic and mechanistic study[J].Dalton Trans,2012,41:10724-10730.

    [15]項斯芬.無機化學(xué)新興領(lǐng)域?qū)д摚跰].北京:北京大學(xué)出版社,1988:152-163.

    [16]章 慧.配位化學(xué)——原理與應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2008:344-345.

    [17]GILLESPIE R J,NYHOLM R S.Inorganic stereochemistry[J].Q Rev Chem Soc,1957,11:339-380.

    [18]HARGITTAI I.Space concept in chemistry[J].Pure Appl Chem,1992,64(10):1489-1498.

    [19]GILLESPIE R J,ROBINSON E A.Models of molecular geometry[J].Chem Soc Rev,2005,34:396-407.

    猜你喜歡
    陳榮導(dǎo)論北京大學(xué)出版社
    陳榮:做一只奔跑、跳躍的“袋鼠”
    華人時刊(2023年15期)2023-09-27 09:05:04
    Integration of Communicative Language Teaching and Speech Acts
    速讀·上旬(2021年4期)2021-07-23 08:38:31
    評《工程管理導(dǎo)論》(書評)
    A Cognitive Study of English Body Idioms in Textbooks from the Perspective of Conceptual Metaphors
    西部論叢(2018年11期)2018-10-19 09:11:24
    A Pragmatic Study of Gender Differences in Verbal Communication
    Overseas and Domestic Research Status of Analysis of Humor from the Perspective of Cooperative Principle
    灰太狼的陰謀
    重慶暖男“暖化”法國美女
    使公民有道德:導(dǎo)論
    258條評論追愛,重慶暖男搞定法國女神
    www.色视频.com| 内射极品少妇av片p| 麻豆乱淫一区二区| 日韩av在线大香蕉| 中文精品一卡2卡3卡4更新| av在线观看视频网站免费| 国产探花在线观看一区二区| 亚洲欧美精品综合久久99| 18禁裸乳无遮挡免费网站照片| 亚洲18禁久久av| 亚洲欧美日韩无卡精品| 全区人妻精品视频| 中文资源天堂在线| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲av嫩草精品影院| 精品免费久久久久久久清纯| 高清日韩中文字幕在线| 夜夜看夜夜爽夜夜摸| 青春草视频在线免费观看| 人妻系列 视频| 欧美成人a在线观看| 亚洲内射少妇av| 国产伦精品一区二区三区视频9| 亚洲激情五月婷婷啪啪| 岛国毛片在线播放| 亚洲天堂国产精品一区在线| 乱系列少妇在线播放| 69av精品久久久久久| 国产精品人妻久久久影院| 成人毛片a级毛片在线播放| 国产乱人偷精品视频| 国语对白做爰xxxⅹ性视频网站| 国内精品美女久久久久久| 十八禁国产超污无遮挡网站| 美女高潮的动态| 97热精品久久久久久| 69人妻影院| 久久久精品欧美日韩精品| 高清av免费在线| 美女国产视频在线观看| 深夜a级毛片| 亚洲精品aⅴ在线观看| 国产精品乱码一区二三区的特点| 成人一区二区视频在线观看| 中文字幕亚洲精品专区| 中文字幕精品亚洲无线码一区| 一边摸一边抽搐一进一小说| 久久久精品94久久精品| 日韩欧美三级三区| 黄片wwwwww| 久久欧美精品欧美久久欧美| 九九在线视频观看精品| 两性午夜刺激爽爽歪歪视频在线观看| 啦啦啦韩国在线观看视频| 桃色一区二区三区在线观看| 成人无遮挡网站| 国产精品爽爽va在线观看网站| 99热网站在线观看| 91av网一区二区| 免费av不卡在线播放| a级一级毛片免费在线观看| 亚洲av电影不卡..在线观看| 在现免费观看毛片| 搡老妇女老女人老熟妇| 九九久久精品国产亚洲av麻豆| 成人毛片60女人毛片免费| 岛国毛片在线播放| www.av在线官网国产| 天堂影院成人在线观看| 特大巨黑吊av在线直播| 干丝袜人妻中文字幕| 性插视频无遮挡在线免费观看| 免费观看人在逋| 国产一区二区亚洲精品在线观看| av免费在线看不卡| 只有这里有精品99| 国产一级毛片七仙女欲春2| 欧美激情国产日韩精品一区| 丝袜喷水一区| 久久久久久久国产电影| 日韩亚洲欧美综合| 亚洲av熟女| 视频中文字幕在线观看| 九九热线精品视视频播放| 久久人人爽人人爽人人片va| www.色视频.com| 国产 一区精品| 国产女主播在线喷水免费视频网站 | 六月丁香七月| 日韩强制内射视频| 成年女人永久免费观看视频| 91av网一区二区| 只有这里有精品99| 国产精品久久久久久精品电影| 日本与韩国留学比较| 少妇熟女aⅴ在线视频| 亚洲成av人片在线播放无| 可以在线观看毛片的网站| 成人综合一区亚洲| 国产在线一区二区三区精 | 成人亚洲精品av一区二区| 又爽又黄无遮挡网站| 三级国产精品片| 国产精品一二三区在线看| 久久国内精品自在自线图片| 一个人免费在线观看电影| 久久人人爽人人爽人人片va| 国产亚洲91精品色在线| 亚洲精品乱久久久久久| 美女黄网站色视频| 在线观看一区二区三区| 免费观看a级毛片全部| 两个人的视频大全免费| 三级男女做爰猛烈吃奶摸视频| 亚洲成色77777| 国产在线男女| 天堂影院成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产一级毛片在线| 水蜜桃什么品种好| 成人av在线播放网站| 日本欧美国产在线视频| 午夜老司机福利剧场| 精品人妻视频免费看| 亚洲国产精品sss在线观看| 婷婷色综合大香蕉| 欧美日韩精品成人综合77777| 人人妻人人澡欧美一区二区| 日本色播在线视频| 中文欧美无线码| 久久精品人妻少妇| 欧美一区二区精品小视频在线| 久久久久国产网址| 国产伦理片在线播放av一区| 特级一级黄色大片| 搞女人的毛片| 亚洲国产日韩欧美精品在线观看| av专区在线播放| 国产成人午夜福利电影在线观看| 国产午夜精品论理片| 国产精品乱码一区二三区的特点| 内射极品少妇av片p| av在线亚洲专区| 亚洲av中文字字幕乱码综合| 最近最新中文字幕大全电影3| 级片在线观看| 夜夜爽夜夜爽视频| 99久久成人亚洲精品观看| 亚洲美女搞黄在线观看| 国产乱人偷精品视频| 中文字幕人妻熟人妻熟丝袜美| 男女那种视频在线观看| 丝袜喷水一区| 夜夜爽夜夜爽视频| 免费人成在线观看视频色| 国产淫语在线视频| 国产成人午夜福利电影在线观看| 特级一级黄色大片| 国产精品一区二区三区四区免费观看| 免费无遮挡裸体视频| 一级黄色大片毛片| 国产一级毛片七仙女欲春2| 日韩av在线免费看完整版不卡| 神马国产精品三级电影在线观看| 国产三级在线视频| 国产极品天堂在线| 哪个播放器可以免费观看大片| 亚洲怡红院男人天堂| 久久久久久久久大av| 久久婷婷人人爽人人干人人爱| 色吧在线观看| 亚洲av福利一区| 亚洲av熟女| 一二三四中文在线观看免费高清| 免费搜索国产男女视频| 丝袜美腿在线中文| 日本一二三区视频观看| 成人av在线播放网站| 美女高潮的动态| 18禁动态无遮挡网站| 国产亚洲av片在线观看秒播厂 | 国产成人福利小说| 一级二级三级毛片免费看| 一夜夜www| 丝袜美腿在线中文| 男人和女人高潮做爰伦理| 建设人人有责人人尽责人人享有的 | 国产精品综合久久久久久久免费| 少妇被粗大猛烈的视频| 国产精品日韩av在线免费观看| 99九九线精品视频在线观看视频| 天美传媒精品一区二区| 久久韩国三级中文字幕| 99久国产av精品国产电影| 51国产日韩欧美| 国产精品久久久久久久久免| 午夜久久久久精精品| 99热精品在线国产| 日韩国内少妇激情av| 人体艺术视频欧美日本| 久久热精品热| 欧美日韩精品成人综合77777| 国产亚洲91精品色在线| 一级二级三级毛片免费看| 午夜福利视频1000在线观看| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 男女边吃奶边做爰视频| 国产免费视频播放在线视频 | 免费大片18禁| 禁无遮挡网站| 国产单亲对白刺激| 国产又黄又爽又无遮挡在线| 看黄色毛片网站| 国产黄片美女视频| 男的添女的下面高潮视频| 午夜福利在线在线| 99久久精品热视频| 综合色av麻豆| 一个人观看的视频www高清免费观看| 国产精品久久久久久精品电影小说 | 又爽又黄无遮挡网站| 国产综合懂色| 国产成人freesex在线| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 日日撸夜夜添| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看| 免费看日本二区| 国产成人a区在线观看| 看免费成人av毛片| 欧美一区二区精品小视频在线| 久久精品久久久久久噜噜老黄 | 日本三级黄在线观看| 久久这里有精品视频免费| 国产黄片美女视频| 国内少妇人妻偷人精品xxx网站| 国产欧美另类精品又又久久亚洲欧美| 日韩高清综合在线| 国产麻豆成人av免费视频| 精品久久久久久成人av| 成人欧美大片| 欧美不卡视频在线免费观看| 边亲边吃奶的免费视频| 久久这里只有精品中国| 久久久久久大精品| 国产精品久久视频播放| 麻豆精品久久久久久蜜桃| 老师上课跳d突然被开到最大视频| 久久亚洲国产成人精品v| 国产av码专区亚洲av| av播播在线观看一区| 国产男人的电影天堂91| av卡一久久| 精品无人区乱码1区二区| 亚洲国产精品国产精品| 国产精品人妻久久久久久| 精品国产露脸久久av麻豆 | 国产免费又黄又爽又色| 麻豆成人av视频| 国产成人精品久久久久久| 97人妻精品一区二区三区麻豆| 国产一区亚洲一区在线观看| 岛国在线免费视频观看| 亚洲国产色片| av黄色大香蕉| 不卡视频在线观看欧美| 男的添女的下面高潮视频| 色综合亚洲欧美另类图片| 激情 狠狠 欧美| 禁无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| av在线亚洲专区| 欧美激情久久久久久爽电影| 国产精品福利在线免费观看| 日日撸夜夜添| 免费观看性生交大片5| 国产黄色视频一区二区在线观看 | 免费看a级黄色片| 免费电影在线观看免费观看| 午夜亚洲福利在线播放| 最近的中文字幕免费完整| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看免费完整高清在| www日本黄色视频网| 偷拍熟女少妇极品色| 国产精华一区二区三区| 国产精品一二三区在线看| 免费一级毛片在线播放高清视频| 国产av码专区亚洲av| 搡女人真爽免费视频火全软件| or卡值多少钱| 国产黄色视频一区二区在线观看 | 日本色播在线视频| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 小蜜桃在线观看免费完整版高清| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 久久人人爽人人片av| 久久这里有精品视频免费| 寂寞人妻少妇视频99o| 免费电影在线观看免费观看| 一二三四中文在线观看免费高清| 亚洲一区高清亚洲精品| 免费一级毛片在线播放高清视频| 永久网站在线| 国产伦精品一区二区三区视频9| 岛国在线免费视频观看| 美女高潮的动态| 国产成人午夜福利电影在线观看| 成人毛片a级毛片在线播放| 久久久久久国产a免费观看| 99热全是精品| 内射极品少妇av片p| 亚洲真实伦在线观看| 99在线人妻在线中文字幕| 一本一本综合久久| 黄色欧美视频在线观看| 成年女人看的毛片在线观看| 精品一区二区免费观看| 亚洲高清免费不卡视频| 国产乱人偷精品视频| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 一边摸一边抽搐一进一小说| 国产久久久一区二区三区| 伊人久久精品亚洲午夜| 国产精品无大码| 一夜夜www| 国产精品蜜桃在线观看| 国产毛片a区久久久久| 日韩欧美精品v在线| 91精品国产九色| 中文资源天堂在线| 日日啪夜夜撸| 听说在线观看完整版免费高清| 日韩 亚洲 欧美在线| 91狼人影院| 神马国产精品三级电影在线观看| 亚洲国产欧美人成| 国产人妻一区二区三区在| 国产午夜精品一二区理论片| 国产三级中文精品| 最近视频中文字幕2019在线8| 中文字幕精品亚洲无线码一区| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 嫩草影院精品99| 国产亚洲一区二区精品| 国产伦一二天堂av在线观看| 只有这里有精品99| 校园人妻丝袜中文字幕| 国产91av在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩中字成人| 好男人视频免费观看在线| 天堂影院成人在线观看| 两个人的视频大全免费| 我要看日韩黄色一级片| 色视频www国产| 免费看光身美女| 日韩精品有码人妻一区| 性插视频无遮挡在线免费观看| av线在线观看网站| 国产精品久久久久久久电影| 高清av免费在线| 亚洲国产精品成人久久小说| 天堂av国产一区二区熟女人妻| 日本五十路高清| 日本免费a在线| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99 | 国产午夜精品论理片| 黄片wwwwww| 亚洲高清免费不卡视频| 观看免费一级毛片| 国产女主播在线喷水免费视频网站 | 免费看光身美女| 国内揄拍国产精品人妻在线| 能在线免费看毛片的网站| 久久久久久久亚洲中文字幕| 大话2 男鬼变身卡| 久久久久久久午夜电影| 亚洲精品456在线播放app| 看十八女毛片水多多多| 精品一区二区免费观看| 国产亚洲av嫩草精品影院| 99久久精品一区二区三区| 日本五十路高清| 一区二区三区四区激情视频| 欧美极品一区二区三区四区| 人人妻人人澡人人爽人人夜夜 | 网址你懂的国产日韩在线| 丰满人妻一区二区三区视频av| 国产真实乱freesex| 久久亚洲国产成人精品v| 亚洲成人中文字幕在线播放| 69av精品久久久久久| 国产色婷婷99| 中文欧美无线码| 日本欧美国产在线视频| 成年版毛片免费区| 久久人人爽人人爽人人片va| 热99re8久久精品国产| 亚洲,欧美,日韩| 亚洲av男天堂| 亚洲成人久久爱视频| 国产成人一区二区在线| 热99在线观看视频| 2021少妇久久久久久久久久久| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 欧美成人a在线观看| 国产成人a区在线观看| 欧美又色又爽又黄视频| 国产黄片视频在线免费观看| 亚洲国产精品久久男人天堂| 国内精品美女久久久久久| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 国产av码专区亚洲av| 国产成人福利小说| 中文字幕免费在线视频6| 国产极品精品免费视频能看的| 久久久久久久午夜电影| 老司机福利观看| 亚洲中文字幕日韩| 综合色av麻豆| 老司机福利观看| 一区二区三区高清视频在线| 亚洲最大成人av| 国产乱人偷精品视频| 亚洲真实伦在线观看| 国产精品久久视频播放| 国产伦精品一区二区三区四那| 最新中文字幕久久久久| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| 亚洲av成人av| 晚上一个人看的免费电影| 国产成人精品久久久久久| 在线观看美女被高潮喷水网站| 国产又黄又爽又无遮挡在线| 久久久午夜欧美精品| videossex国产| 日韩在线高清观看一区二区三区| 美女国产视频在线观看| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 婷婷色麻豆天堂久久 | 日韩成人伦理影院| 亚洲av.av天堂| 桃色一区二区三区在线观看| 国产av码专区亚洲av| 国语自产精品视频在线第100页| 变态另类丝袜制服| 99热这里只有精品一区| 中文天堂在线官网| 亚洲高清免费不卡视频| 国产亚洲精品av在线| 亚洲一级一片aⅴ在线观看| 日本黄色片子视频| 大话2 男鬼变身卡| 69av精品久久久久久| 97超碰精品成人国产| 在线免费观看的www视频| 欧美丝袜亚洲另类| 国产老妇女一区| 美女xxoo啪啪120秒动态图| av在线老鸭窝| 欧美又色又爽又黄视频| 国产在视频线精品| 麻豆成人午夜福利视频| 亚洲成色77777| 精品午夜福利在线看| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 在线免费观看不下载黄p国产| 精品国产一区二区三区久久久樱花 | 男女那种视频在线观看| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 欧美精品国产亚洲| 国内精品宾馆在线| 国内精品一区二区在线观看| 国产不卡一卡二| 人妻夜夜爽99麻豆av| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 美女被艹到高潮喷水动态| 亚洲伊人久久精品综合 | 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 九草在线视频观看| 亚洲av.av天堂| 午夜福利成人在线免费观看| 天堂中文最新版在线下载 | 我的老师免费观看完整版| 狂野欧美激情性xxxx在线观看| 久久久a久久爽久久v久久| 1000部很黄的大片| 欧美成人a在线观看| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 91久久精品国产一区二区三区| a级毛色黄片| 日本黄大片高清| 汤姆久久久久久久影院中文字幕 | 亚洲自偷自拍三级| 成人性生交大片免费视频hd| 大香蕉久久网| 久久久久精品久久久久真实原创| 亚洲婷婷狠狠爱综合网| 午夜福利成人在线免费观看| 99久久九九国产精品国产免费| 日本爱情动作片www.在线观看| 午夜福利成人在线免费观看| 亚洲成人av在线免费| 国产精品av视频在线免费观看| 国产麻豆成人av免费视频| 高清视频免费观看一区二区 | 成年版毛片免费区| 91午夜精品亚洲一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲自拍偷在线| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 亚洲经典国产精华液单| 亚洲av.av天堂| 亚洲国产色片| 精品一区二区免费观看| 美女内射精品一级片tv| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 亚洲精品自拍成人| 国产黄a三级三级三级人| 免费看日本二区| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 亚洲av二区三区四区| 国产视频首页在线观看| 啦啦啦啦在线视频资源| 国产伦精品一区二区三区四那| 全区人妻精品视频| 国产视频首页在线观看| 午夜精品一区二区三区免费看| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 精品一区二区三区视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 床上黄色一级片| 国产成人aa在线观看| 国产午夜精品论理片| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 只有这里有精品99| 国产精品嫩草影院av在线观看| 国产在线男女| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| av又黄又爽大尺度在线免费看 | av免费在线看不卡| 亚洲精品影视一区二区三区av| 欧美激情国产日韩精品一区| 国产成人91sexporn| 亚洲四区av| 可以在线观看毛片的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av电影在线观看一区二区三区 | 久久精品人妻少妇| av视频在线观看入口| 桃色一区二区三区在线观看| 91午夜精品亚洲一区二区三区| 久久99热这里只频精品6学生 | 建设人人有责人人尽责人人享有的 | 亚洲av电影在线观看一区二区三区 | 91aial.com中文字幕在线观看| 51国产日韩欧美| 色综合色国产| 有码 亚洲区| 亚洲欧美一区二区三区国产| av在线蜜桃| 欧美最新免费一区二区三区| 国产精品国产三级专区第一集| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 熟女电影av网| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 麻豆成人午夜福利视频| 纵有疾风起免费观看全集完整版 | 国产黄片美女视频| 亚洲五月天丁香| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 国产免费一级a男人的天堂| 国产人妻一区二区三区在| 午夜日本视频在线| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 成人亚洲精品av一区二区|