• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Characterization of Sodium Sulfate/Silica Composite as a Shape-stabilized Phase Change Material by Sol-gel Method*

    2014-07-24 15:40:13GUOQiangandWANGTao

    GUO Qiang (郭 強(qiáng)) and WANG Tao (王 濤)

    State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    Preparation and Characterization of Sodium Sulfate/Silica Composite as a Shape-stabilized Phase Change Material by Sol-gel Method*

    GUO Qiang (郭 強(qiáng)) and WANG Tao (王 濤)**

    State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    A sodium sulfate (Na2SO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3as the silica source. Na2SO4in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2acts as a support material to provide structural strength and prevent leakage of melted Na2SO4. The microstructure and composition of the prepared composite were characterized by the N2adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SO4/SiO2composite is a nanostructured hybrid of Na2SO4and SiO2without new substances produced during the phase change. The macroscopic shape of the Na2SO4/SiO2composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared Na2SO4/SiO2(50%, by mass) composite are 82.3 kJ·kg?1and 83.7 kJ·kg?1, and temperatures of melting and freezing are 886.0 °C and 880.6 °C, respectively. Furthermore, the Na2SO4/SiO2composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.

    sodium sulfate, silicon dioxide, phase change material, shape-stabilized, sol-gel method

    1 INTRODUCTION

    The technique of thermal energy storage is an effective way to improve the utilization of energy. In recent years, the interest for latent heat storage technology using phase-change materials (PCMs) increases, since they can store a large amount of thermal energy at a constant temperature due to their high fusion heat during phase transition [1-5]. The phase-change materials have been applied in many fields, such as solar energy storage, building energy saving, heat storage in space stations, and waste heat recovery and storage from industrial furnaces [6-9].

    A shape-stabilized PCM composed of a phasechange substance and a carrier matrix is a kind of novel PCMs, with phase change properties lying between solidsolid and solid-liquid phase change. They keep solid state even though the phase-change substance change from solid to liquid, which is more convenient for applications than the solid-liquid system [10-13]. Among the composite PCMs available, inorganic salt/ceramic shape-stabilized PCMs for high-temperature (>300 °C) thermal energy storage has significant advantages: good chemical and thermal stability, good high-temperature resistance and high heat conductivity [14-19].

    Na2SO4/SiO2composites are one kind of shapestabilized PCM with good heat storage performance at high temperatures [20-22]. As a phase-change substance, Na2SO4has a high latent heat of phase transition, excellent stability, and low vapor pressure. As a support material, SiO2, which will soften at 1400 °C, has good mechanical property, good thermal conductivity and thermal stability. Two main methods have been used for the preparation of Na2SO4/SiO2shape-stabilized phase change composites. In the infiltration method, the Na2SO4powder melts in an electric furnace and infiltrates into the porous SiO2matrix previously prepared with specific shape and size, and the Na2SO4/SiO2composite is formed when the furnace cools to room temperature [20]. In another method, a mixture of SiO2powder, Na2SO4, and an appropriate amount of an additive is pressed to form a short cylinder and sintered at high temperature [21]. In both methods, pure SiO2and Na2SO4are used as the raw materials, and a lot of energy is consumed for high-temperature sintering.

    In this study, Na2SiO3is used as the silicon source for the preparation of shape-stabilized PCM Na2SO4/SiO2composites by a sol-gel process. The Na2SiO3solution reacts with sulfuric acid to form a silica gel, and Na2SO4is generated in situ in the sol-gel process. A Na2SO4/SiO2shape-stabilized PCM for thermal energy storage is prepared by embedding Na2SO4in the silica xerogel network structure. The composites are characterized with respect to chemical compatibility by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal properties and thermal reliabilities of the composite PCMs are investigated using the differential scanning calorimeter (DSC) analysis technique. The morphology and microstructure are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results demonstrate this composite has good properties and will be useful for the high-temperature thermal energy storage.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    Sodium metasilicate nonahydrate (Na2SiO3·9H2O, AR), sodium form cation exchange resin (732) and Na2SO4(98%, AR) were bought from Beijing Modern Eastern Fine Chemicals (Beijing, China). Deionized water was prepared in our laboratory by electrodialysis.

    2.2 Methods

    Na2SiO3solution (0.5 mol·L?1) passed through the sodium form cation exchange resin to remove Na+until pH of the solution reached 7. The solution (pH=7) was stirred vigorously for 10 min after adding Na2SO4. The mixture was kept at 25 °C in a water bath to gelatinize for 24 h. The gel formed was dried in the oven at 100 °C for 48 h to produce a powder Na2SO4/SiO2composite. The composite was pressed to form circular shapes at 4 MPa for 2 min to study the shape stability of the composite. The maximum mass percentage of Na2SO4dispersed into the PCM composites was determined as 50%. There was no leakage of Na2SO4from the surface of the composite up to this mass ratio even when it melts.

    2.3 Characterization

    The composition and structure of the prepared samples were characterized by infrared (IR) spectroscopy (FTIR-8201, Shimadzu, Kyoto, Japan), X-ray diffraction (XRD; D8A, Bruker, Karlsruhe, Germany), N2adsorption analyzer (Autosorb-1-C Quantachrome, USA), high-resolution transmission electron microscopy (TEM; JEM2010, JEOL, Kyoto, Japan) and scanning electron microscopy (SEM; JSM7401, Shimadzu, Kyoto, Japan). Differential scanning calorimetry (DSC; STA409PC, Selb, Netzsch, Germany) measurements were conducted to determine the phase-transition enthalpy, phase-transition temperature, and thermal stability for the prepared Na2SO4/SiO2shape-stabilized PCM. is caused by the SO stretching vibration and a peak at 617 cm?1is caused by the S O symmetric stretch-

    3 RESULTS AND DISCUSSION

    3.1 IR analysis of Na2SO4/SiO2composite

    The IR spectra of Na2SO4, SiO2, and the Na2SO4/SiO2[50% (by mass) Na2SO4] composite are shown in Fig. 1 (a). For Na2SO4, a peak at 1126 cm?1represents the SiOSi antisymmetric stretching vibration, and the peaks at 800 cm?1and 473 cm?1are caused by the SiO Si symmetric stretching and ing vibration [23]. For SiO2, the peak at 1049 cm?1bending vibrations. The peak at 3483 cm?1 in the IR spectrum of silica corresponds to the OH stretching vibration from the SiOH groups and adsorbed H2O in the silica [24]. Characteristic peaks at 1103 cm?1, 794 cm?1, 621 cm?1, and 486 cm?1are found in the IR spectrum of the composite PCM without significant new peaks. Fig. 1 (b) shows the IR spectrum of the supporting SiO2with removal of Na2SO4in the composite by washing and extracting, which is quite consistent with the IR spectrum of pure SiO2. Thus there is no residual Na2SO4in the supporting SiO2after washing and extracting Na2SO4. The IR spectral analysis indicates that the prepared composite PCM is a physical hybrid of Na2SO4and SiO2only.

    3.2 XRD analysis of Na2SO4/SiO2composite

    X-ray spectra of the Na2SO4/SiO2[50% (by mass) Na2SO4] composites after different heating and cooling cycles are shown in Fig. 2. Although they look different, only Na2SO4and SiO2are present in the composite by phase analysis. The difference in the X-ray spectra is mainly caused by crystal structure change of SiO2and Na2SO4during the melting and cooling cycle. The much stronger SiO2peaks are attributed to the change of SiO2in the composite PCM from an amorphous structure to a crystalline structure, while the change of Na2SO4peaks indicates the crystal transformation of Na2SO4after the heating-cooling process [25]. Formation of new compounds is not found during the process, demonstrating good chemical stability of this Na2SO4/SiO2composite.

    Figure 1 FTIR spectra for: Na2SO4, SiO2, and Na2SO4/SiO2composite (a), pure SiO2and supporting SiO2(b)

    Figure 2 X-ray spectrum of Na2SO4/SiO2composite after different heating and cooling cycles

    3.3 Morphology characterization of Na2SO4/SiO2composite

    The macroscopic and external SEM photographs of the Na2SO4/SiO2[50% (by mass) Na2SO4] composite are shown in Fig. 3. Apart from a slight shrink after the first heating-cooling cycle, the macroscopic shape of the composite does not change after other cycles of melting and cooling and there is no leakage of Na2SO4in the composite [Fig. 3 (a)]. The average thermal expansion coefficient of the composite determined is 35×10?6°C?1at 800-900 °C, which is in the similar level as reported by Huang et al [25]. These results indicate that the Na2SO4/SiO2composite is well shape-stable. The surface SEM shows that SiO2and Na2SO4are distributed in a staggered way with scales less than 100 nm [Fig. 3 (b)]. After heating to 950 °C and cooling to room temperature, Na2SO4crystals are found in some small disjunctive regions (< 1 μm2) on the external surface of the sample [Fig. 3 (c)]. This phenomenon implies that some Na2SO4permeates through from the interior of the sample when it melts. However, the melted Na2SO4only penetrates and adheres to the micro-areas, so the solid shape of the sample is unchanged. There are a number of honeycomb-like holes on the surface of the sample after 10 heating-cooling cycles [Fig. 3 (d)], caused by the seepage of melted Na2SO4into the void of the SiO2matrix due to capillary force and surface tension. All these results show that the Na2SO4/SiO2composite is capable of maintaining its shape in the solid state without losing melted Na2SO4during the phase-change process.

    3.4 Microstructure and pore size distribution analysis of Na2SO4/SiO2composite

    TEM image of the Na2SO4/SiO2composite shows that the supporting SiO2in the composite forms a porous network structure with the pore size below 20 nm to provide strong supporting body for the composite (Fig. 4). Fig. 5 shows the pore size distributions of the composite [50% (by mass) Na2SO4] and the supporting SiO2after removal of Na2SO4. There is no collapse of SiO2framework after removal of Na2SO4by washing and extracting without stirring, because the nanoporous SiO2framework has enough mechanical strength. The range of pore size and pore volume are 2.8-7.5 nm and 0.261 cm3·g?1for the composite, respectively, and 3.6-16.3 nm and 0.819 cm3·g?1for the supporting SiO2. From larger pore sizeand pore volume of the supporting SiO2after removing Na2SO4, we conclude that Na2SO4in the prepared composite is coated in SiO2porous network structure.

    Figure 3 Images of the Na2SO4/SiO2composite

    Figure 4 The TEM images of the Na2SO4/SiO2composite

    Figure 5 Isotherm N2adsorption-desorption curves and pore size distribution curves of Na2SO4/SiO2composite and SiO2support after removing Na2SO4

    3.5 Thermal analysis of Na2SO4/SiO2composite

    DSC curves of Na2SO4and the Na2SO4/SiO2composite at scanning rate of 20 °C·min?1are shown in Fig. 6. The melting heat and freezing latent heat are respectively 167.1 and 171.4 kJ·kg?1at its melting temperature of 888.7 °C and freezing temperature of 888.2 °C for pure Na2SO4. The phase-transition enthalpies of the prepared composite [50% (by mass) Na2SO4] are 82.3 kJ·kg?1at 886.0 °C for melting and 83.7 kJ·kg?1at 880.6 °C for freezing. The melting heat of both pure Na2SO4and the composite is less than its crystallization heat, possibly caused by crystal structure change of Na2SO4during freezing [25]. The melting point of Na2SO4confined in the network structure of the SiO2support is obviously lower than that of Na2SO4in the bulk state. This melting point depression is considered to be caused mainly by the small-size effect and the surface effect [26, 27].

    Figure 6 DSC curves of Na2SO4and Na2SO4/SiO2(50%, by mass) composite at scanning rate of 20 °C·min?1

    To test the thermal cycling stability, we determined the phase change latent heats of the Na2SO4/SiO2composite (50%, by mass) after 100 cycles of heating and cooling between 750 °C and 950 °C at a rate of 20 °C·min?1. Fig. 7 shows that the melting latent heat of the composite is less than the crystallization latent heat. In addition, the phase change latent heats of the composite decreases with the increase of the number of thermal cycles, which may be caused by crystal structure change of Na2SO4[25, 28].

    Figure 7 Phase change enthalpy of Na2SO4/SiO2(50%, by mass) composite after different cycles of melting and cooling

    4 CONCLUSIONS

    The Na2SO4/SiO2composite was prepared as the shape-stabilized phase-change material by sol-gel process. The composite [50% (by mass) Na2SO4] can maintain its solid shape without any leakage of Na2SO4after melting and freezing cycles. In the composite, Na2SO4is coated in SiO2porous network structure with average pore diameter less 20 nm. The phase change latent heats of melting and freezing of the prepared Na2SO4/SiO2composite are 82.3 and 83.7 kJ·kg?1, and temperatures are 886.0 °C and 880.6 °C, respectively. The Na2SO4/SiO2composite maintains good thermal energy storage and release ability after 100 cycles of meting and freezing. The thermal storage performance renders this composite a versatile tool for the high-temperature thermal energy storage.

    REFERENCES

    1 Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H., “Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications”, Appl. Therm. Eng., 23, 251-283 (2003).

    2 Farid, M.M., Khudhair, A.M., Razack, S.AK., Al-Hallaj, S., “A review on phase change energy storage: Materials and applications”, Energ. Convers. Manag., 45, 1597-1615 (2004).

    3 Sharma, S.D., Sagara, K., “Latent heat storage materials and systems: A review”, International Journal of Green Energy, 2, 1-56 (2005).

    4 Regin, A.F., Solanki, S.C., Saini, J.S., “Heat transfer characteristics of thermal energy storage system using PCM capsules: A review”, Renew. Sust. Energ. Rev., 12, 2438-2458 (2008).

    5 Raoux, S., “Phase change materials”, Ann. Rev. Mater. Res., 39, 25-48 (2009).

    6 Kenisarin, M., Mahkamov, K., “Solar energy storage using phase change materials”, Renew. Sust. Energ. Rev., 11, 1913-1965 (2007).

    7 Tyagi, V.V., Buddhi, D., “PCM thermal storage in buildings: A state of art”, Renew. Sust. Energ. Rev., 11, 1146-1166 (2007).

    8 Mondal, S., “Phase change materials for smart textiles—An overview”, Appl. Therm. Eng., 28, 1536-1550 (2008).

    9 Cabeza, L.F., Castell, A., Barreneche, C., Gracia, A., Fernandez, A.I.,“Materials used as PCM in thermal energy storage in buildings: A review”, Renew. Sust. Energ. Rev., 15, 1675-1695 (2011).

    10 Feng, L.L., Zheng, J., Yang, H.Z., Guo, Y.L., Li, W., Li, X.G.,“Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials”, Sol. Energ. Mater. Sol. C., 95, 644-650 (2010).

    11 Wang, Y., Xia, T.D., Zheng, H., Feng, H.X., “Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage”, Energ. Buildings, 43, 2365-2370 (2011).

    12 Ahmet, S., Kamil, K., “Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications”, Chin. J. Chem. Eng., 14, 270-275 (2006).

    13 Sun, D., Wang, L.J., Li, C.M., “Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material”, Materials Letters, 108, 247-249 (2013).

    14 Petri, R.J., Ong, E.T., Claar, T.D., “High-temperature salt/ceramic thermal storage phase-change media”, In: Proceedings of the 18th Intersociety Energy Conversion Engineering Conference, American Institute of Chemical Engineers, Orlando, 1769-1774 (1983).

    15 Notter, W., Hahne, E., “Thermal expansion models for polycrystalline salt-ceramics”, Thermochim Acta, 290, 93-100 (1997).

    16 Kenisarin, M.M., “High-temperature phase change materials for thermal energy storage”, Renew. Sust. Energ. Rev., 14, 955-970 (2010).

    17 Mao, A., Park, J.H., Han, G.Y., Seo, T., Kang, Y., “Heat transfer characteristics of high temperature molten salt for storage of thermal energy”, Korean J. Chem. Eng., 27, 1452-1457 (2010).

    18 Zhao, C.Y., Wu, Z.G., “Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite”, Sol. Energ. Mater. Sol. C., 95, 636-643 (2011).

    19 Wang, T., Mantha, D., Reddy, R.G., “Thermal stability of the eutectic composition in LiNO3-NaNO3-KNO3ternary system used for thermal energy storage”, Sol. Energ. Mater. Sol. C., 100, 162-168 (2012).

    20 Notter, W., Lechner, T., Gro, U., Hahne, E., “Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4)”, Thermochim Acta, 218, 455-463 (1993).

    21 Huang, P., Guo, Y., Quirk, R.P., Ruan, J., Lotz, B., Thomas, E.L., Hsiao, B.S., Avila-Orta, C.A., Sics, I., Cheng, Z.D., “Comparison of poly(ethylene oxide) crystal orientations and crystallization behaviors in nano-confined cylinders constructed by a poly(ethylene oxide)-β-polystyrene diblock copolymer and a blend of poly(ethylene oxide)-b-polystyrene and polystyrene”, Polymer, 47, 5457-5466 (2006).

    22 Shi, D.Z., Rapp, R.A., “The solubility of SiO2in fused Na2SO4at 900 °C”, J. Electrochem. Soc., 133, 849-850 (1986).

    23 Qu, Q., Li, L., Bai, W., Yan, C.W., “Initial atmospheric corrosion of zinc in presence of Na2SO4and (NH4)2SO4”, T. Nonferr. Metal. Soc., 16, 887-891 (2006). (in Chinese)

    24 Wang, W.L., Yang, X.X., Fang, Y.T., Ding, J., “Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials”, Appl. Energ., 86, 170-174 (2009).

    25 Huang, J., Zhang, R.Y., Wu, B., “Crystal forms transformation and thermal expansion property of polycrystalline Na2SO4/SiO2composite phase change energy storage materials”, J. Mater. Eng., 12, 16-20 (2006). (in Chinese)

    26 Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., “Effects of confinement on freezing and melting”, J. Phys-condens. Mater., 18, 15-68 (2006).

    27 Cheng, T., Charnaya, E.V., Podorozhkin, D.Y., Lee, M.K., Baryshnikov, S.V., “Ferroelectricity and gradual melting in NaNO2particles confined within porous alumina”, Physica. Status. Solidi. B., 246, 2346-2351 (2009).

    28 Jiang, S., Ji, X., An, L., Jiang, B., “Crystallization behavior of PCL in hybrid confined environment”, Polymer, 42, 3901-3907 (2001).

    MATERIALS AND PRODUCT ENGINEERING

    Chinese Journal of Chemical Engineering, 22(3) 360—364 (2014)

    10.1016/S1004-9541(14)60047-1

    2012-06-14, accepted 2013-01-07.

    *Supported by the National Natural Science Foundation of China (2107611).

    **To whom correspondence should be addressed. E-mail: taowang@tsinghua.edu.cn

    亚洲第一区二区三区不卡| 亚洲中文字幕一区二区三区有码在线看| 欧美3d第一页| 国产淫片久久久久久久久| 国内精品宾馆在线| videossex国产| 男人的好看免费观看在线视频| 亚洲熟妇中文字幕五十中出| 国内揄拍国产精品人妻在线| 一a级毛片在线观看| 无遮挡黄片免费观看| 欧美日本亚洲视频在线播放| 97碰自拍视频| 日日啪夜夜撸| 欧美一区二区精品小视频在线| 国产视频一区二区在线看| 国产高清不卡午夜福利| 国产视频一区二区在线看| 国产极品精品免费视频能看的| 国产探花极品一区二区| 日韩精品中文字幕看吧| 黄色配什么色好看| 亚洲性久久影院| 天堂网av新在线| 国产探花在线观看一区二区| 人妻丰满熟妇av一区二区三区| 欧美国产日韩亚洲一区| 亚洲国产精品久久男人天堂| 如何舔出高潮| 狂野欧美白嫩少妇大欣赏| 午夜精品在线福利| 国产成人影院久久av| 97热精品久久久久久| 欧美在线一区亚洲| 69人妻影院| 校园人妻丝袜中文字幕| 亚洲欧美日韩卡通动漫| 岛国在线免费视频观看| 一个人观看的视频www高清免费观看| 中国国产av一级| 九九热线精品视视频播放| 在线观看美女被高潮喷水网站| 综合色av麻豆| 日韩欧美免费精品| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频 | a级一级毛片免费在线观看| 久久久a久久爽久久v久久| 欧美最黄视频在线播放免费| 中文字幕人妻熟人妻熟丝袜美| 欧美成人精品欧美一级黄| 99久国产av精品| 老司机午夜福利在线观看视频| 可以在线观看的亚洲视频| 最新在线观看一区二区三区| 成人二区视频| 欧美中文日本在线观看视频| 精品99又大又爽又粗少妇毛片| 乱系列少妇在线播放| 少妇熟女欧美另类| 国产精品久久久久久久久免| 91精品国产九色| 久久久久精品国产欧美久久久| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 最近最新中文字幕大全电影3| 蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 别揉我奶头 嗯啊视频| 国产大屁股一区二区在线视频| 国产 一区 欧美 日韩| av在线老鸭窝| 国产激情偷乱视频一区二区| 国产亚洲精品综合一区在线观看| 尤物成人国产欧美一区二区三区| 色尼玛亚洲综合影院| 久久久久久久亚洲中文字幕| 日韩大尺度精品在线看网址| 小蜜桃在线观看免费完整版高清| 亚洲人成网站在线播| 老师上课跳d突然被开到最大视频| 日本免费a在线| 久久久久久大精品| 嫩草影院精品99| 一区二区三区四区激情视频 | 一a级毛片在线观看| 精品国产三级普通话版| 色吧在线观看| 免费电影在线观看免费观看| 十八禁网站免费在线| 91久久精品国产一区二区三区| www.色视频.com| 丰满人妻一区二区三区视频av| 亚洲熟妇熟女久久| 成年女人永久免费观看视频| 精品免费久久久久久久清纯| 国产成人a∨麻豆精品| 日日干狠狠操夜夜爽| 两个人视频免费观看高清| 久久韩国三级中文字幕| 一边摸一边抽搐一进一小说| 精品人妻熟女av久视频| 啦啦啦啦在线视频资源| 一本精品99久久精品77| 丝袜喷水一区| 亚洲人成网站高清观看| 成人精品一区二区免费| 97超碰精品成人国产| 婷婷亚洲欧美| 免费看光身美女| 在线观看66精品国产| 成人av一区二区三区在线看| 国产真实伦视频高清在线观看| 我的老师免费观看完整版| 成人特级黄色片久久久久久久| 欧美激情久久久久久爽电影| 在线a可以看的网站| 日本黄色视频三级网站网址| 国内精品美女久久久久久| 在线观看av片永久免费下载| 1000部很黄的大片| 免费看a级黄色片| 久久精品国产亚洲av香蕉五月| www.色视频.com| 露出奶头的视频| 亚洲最大成人av| 国产精品日韩av在线免费观看| 国产精品国产三级国产av玫瑰| 色综合亚洲欧美另类图片| 亚洲自偷自拍三级| 狂野欧美激情性xxxx在线观看| 亚洲美女视频黄频| 亚洲第一区二区三区不卡| av福利片在线观看| 国产精品不卡视频一区二区| .国产精品久久| 波多野结衣高清无吗| 国产一区二区三区av在线 | 国语自产精品视频在线第100页| 老熟妇乱子伦视频在线观看| 成人亚洲欧美一区二区av| 波多野结衣高清无吗| 亚洲欧美日韩无卡精品| 国产高清激情床上av| 97在线视频观看| 少妇裸体淫交视频免费看高清| 精品久久久久久久久亚洲| www.色视频.com| 中文字幕熟女人妻在线| 亚洲av熟女| av女优亚洲男人天堂| 中出人妻视频一区二区| 国产aⅴ精品一区二区三区波| 极品教师在线视频| av在线老鸭窝| 18+在线观看网站| 伦精品一区二区三区| 婷婷亚洲欧美| 欧美+亚洲+日韩+国产| 国产精品免费一区二区三区在线| 国产蜜桃级精品一区二区三区| 久久99热这里只有精品18| 长腿黑丝高跟| 两个人视频免费观看高清| 熟女人妻精品中文字幕| 亚洲久久久久久中文字幕| 中文字幕久久专区| 欧美不卡视频在线免费观看| 色哟哟哟哟哟哟| 久久热精品热| 日韩精品有码人妻一区| 十八禁网站免费在线| 亚洲av一区综合| 六月丁香七月| 午夜激情福利司机影院| 亚洲天堂国产精品一区在线| 中文字幕av在线有码专区| 国产白丝娇喘喷水9色精品| 国产三级中文精品| 少妇丰满av| 最近视频中文字幕2019在线8| 精品久久久久久久久av| 卡戴珊不雅视频在线播放| 国产成人aa在线观看| 黄色欧美视频在线观看| 亚洲欧美日韩东京热| 亚洲专区国产一区二区| 国产精品综合久久久久久久免费| 国产高清视频在线播放一区| 日韩中字成人| 嫩草影院精品99| 国产精品女同一区二区软件| 国产欧美日韩精品亚洲av| 日韩欧美精品免费久久| 老司机福利观看| 国产伦精品一区二区三区四那| 淫妇啪啪啪对白视频| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 一区二区三区四区激情视频 | 午夜亚洲福利在线播放| 国产精品一区www在线观看| 精品久久久久久久久久免费视频| 欧美日本视频| 国产高清视频在线播放一区| 香蕉av资源在线| 综合色av麻豆| 最近手机中文字幕大全| 在线播放国产精品三级| 国产精品乱码一区二三区的特点| 久久久久国产精品人妻aⅴ院| 国产老妇女一区| 搡老岳熟女国产| 狂野欧美激情性xxxx在线观看| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 毛片女人毛片| 久久午夜亚洲精品久久| 午夜福利成人在线免费观看| 日韩在线高清观看一区二区三区| 黄色一级大片看看| 亚洲av五月六月丁香网| 两个人的视频大全免费| 最新中文字幕久久久久| 欧美性感艳星| 久久久国产成人免费| 内地一区二区视频在线| 小蜜桃在线观看免费完整版高清| 午夜视频国产福利| 国产精品亚洲一级av第二区| eeuss影院久久| 美女xxoo啪啪120秒动态图| 一边摸一边抽搐一进一小说| 国产单亲对白刺激| 精品久久久久久久久久免费视频| 男女那种视频在线观看| 久久亚洲国产成人精品v| 国产亚洲精品久久久久久毛片| 寂寞人妻少妇视频99o| 九九久久精品国产亚洲av麻豆| 国产男人的电影天堂91| 乱人视频在线观看| 久久久色成人| 免费黄网站久久成人精品| av在线亚洲专区| 国产极品精品免费视频能看的| 国产av在哪里看| 亚洲中文日韩欧美视频| 99视频精品全部免费 在线| www日本黄色视频网| a级毛片免费高清观看在线播放| 六月丁香七月| 老司机午夜福利在线观看视频| 青春草视频在线免费观看| 亚洲国产高清在线一区二区三| 搡老岳熟女国产| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影 | 精品人妻偷拍中文字幕| 亚洲av成人av| 国产精华一区二区三区| 99热这里只有精品一区| 亚洲无线观看免费| 亚洲成人久久性| eeuss影院久久| a级毛片免费高清观看在线播放| 狠狠狠狠99中文字幕| 91精品国产九色| 熟妇人妻久久中文字幕3abv| 99国产极品粉嫩在线观看| 男女边吃奶边做爰视频| 国产精品一区www在线观看| 国产色婷婷99| av在线蜜桃| 精品乱码久久久久久99久播| 天天躁日日操中文字幕| 国产亚洲欧美98| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 国产精品久久视频播放| 最新在线观看一区二区三区| 亚洲,欧美,日韩| 自拍偷自拍亚洲精品老妇| 淫秽高清视频在线观看| 亚洲欧美日韩高清专用| 99热这里只有是精品50| 两个人的视频大全免费| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 寂寞人妻少妇视频99o| 久久久久久久久久黄片| 亚洲成人久久爱视频| 亚洲精华国产精华液的使用体验 | 色哟哟哟哟哟哟| 床上黄色一级片| 亚洲人与动物交配视频| 久久久久久久久中文| 国产三级中文精品| 国产精品女同一区二区软件| 性欧美人与动物交配| 久久久久国产网址| www日本黄色视频网| 国模一区二区三区四区视频| 丝袜喷水一区| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 久久久久免费精品人妻一区二区| 国产极品精品免费视频能看的| 国产私拍福利视频在线观看| 午夜福利视频1000在线观看| 99热这里只有是精品50| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 国产中年淑女户外野战色| 国产伦一二天堂av在线观看| 久久精品国产自在天天线| 一级毛片我不卡| 青春草视频在线免费观看| 91午夜精品亚洲一区二区三区| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 国产精品1区2区在线观看.| 99久久九九国产精品国产免费| 毛片女人毛片| 少妇高潮的动态图| 99久久无色码亚洲精品果冻| 久久久久久九九精品二区国产| 人妻制服诱惑在线中文字幕| 国产乱人视频| 日韩欧美免费精品| 色av中文字幕| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 波多野结衣高清无吗| 亚洲无线在线观看| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点| 人人妻人人澡欧美一区二区| 免费大片18禁| 精品久久久久久成人av| .国产精品久久| 99热只有精品国产| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 永久网站在线| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 久久久久国产网址| 久久这里只有精品中国| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 国产精品亚洲一级av第二区| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 亚洲三级黄色毛片| 蜜臀久久99精品久久宅男| 亚洲aⅴ乱码一区二区在线播放| 一本久久中文字幕| 观看免费一级毛片| 国产精品综合久久久久久久免费| 亚洲精品在线观看二区| 长腿黑丝高跟| 国产精华一区二区三区| 亚洲人成网站在线播| 久久精品91蜜桃| 综合色av麻豆| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看 | 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 麻豆国产av国片精品| 午夜视频国产福利| 日韩中字成人| 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 22中文网久久字幕| 国产精品女同一区二区软件| 欧美高清性xxxxhd video| 一级黄色大片毛片| 日韩制服骚丝袜av| 最近在线观看免费完整版| 免费av观看视频| 久久这里只有精品中国| 久久午夜亚洲精品久久| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久a久久爽久久v久久| av中文乱码字幕在线| 亚洲五月天丁香| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放| 午夜精品在线福利| 亚洲精华国产精华液的使用体验 | av在线蜜桃| 国产黄色小视频在线观看| 天堂网av新在线| 国产午夜精品久久久久久一区二区三区 | 亚洲精品日韩av片在线观看| 夜夜爽天天搞| 亚洲精品乱码久久久v下载方式| 真人做人爱边吃奶动态| 村上凉子中文字幕在线| 午夜免费激情av| 搞女人的毛片| 久久久成人免费电影| 三级毛片av免费| 欧美不卡视频在线免费观看| 国产高清视频在线观看网站| 如何舔出高潮| 寂寞人妻少妇视频99o| 久久6这里有精品| 真实男女啪啪啪动态图| 最好的美女福利视频网| 欧美xxxx黑人xx丫x性爽| 亚洲精华国产精华液的使用体验 | 日日啪夜夜撸| 一个人观看的视频www高清免费观看| 麻豆乱淫一区二区| 欧美激情久久久久久爽电影| 国产av不卡久久| 国产69精品久久久久777片| 亚洲成人av在线免费| 欧美性感艳星| 久久人妻av系列| 最好的美女福利视频网| 禁无遮挡网站| 又黄又爽又免费观看的视频| 男女边吃奶边做爰视频| 成年女人毛片免费观看观看9| 日日啪夜夜撸| 综合色av麻豆| 国产 一区 欧美 日韩| 亚洲精品一区av在线观看| 欧美激情在线99| 日韩欧美在线乱码| 九九久久精品国产亚洲av麻豆| 日本一二三区视频观看| 中文资源天堂在线| 日韩三级伦理在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美区成人在线视频| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 久久精品久久久久久噜噜老黄 | 亚洲专区国产一区二区| 久久久久久大精品| 亚洲精品乱码久久久v下载方式| 亚洲中文字幕一区二区三区有码在线看| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看 | 久久6这里有精品| 免费一级毛片在线播放高清视频| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 在线天堂最新版资源| 一个人观看的视频www高清免费观看| 亚洲欧美日韩高清在线视频| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 日本黄大片高清| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 欧美日韩在线观看h| 国产麻豆成人av免费视频| 国产精品久久久久久久电影| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 久久久久久久久大av| 又爽又黄无遮挡网站| ponron亚洲| 久久国内精品自在自线图片| 午夜视频国产福利| 国产成年人精品一区二区| 欧美色视频一区免费| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 18禁在线无遮挡免费观看视频 | av中文乱码字幕在线| 1024手机看黄色片| 国产精品1区2区在线观看.| av在线播放精品| 亚洲人成网站在线观看播放| 99热只有精品国产| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 欧美色视频一区免费| 久久精品人妻少妇| 99国产精品一区二区蜜桃av| 免费av观看视频| АⅤ资源中文在线天堂| 丝袜喷水一区| 男女下面进入的视频免费午夜| 校园人妻丝袜中文字幕| 麻豆一二三区av精品| 九色成人免费人妻av| 丝袜喷水一区| 久久精品国产亚洲av香蕉五月| 亚洲成人久久爱视频| .国产精品久久| 观看美女的网站| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 国产亚洲精品综合一区在线观看| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 国产精品一及| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 欧美3d第一页| av中文乱码字幕在线| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 22中文网久久字幕| 久久天躁狠狠躁夜夜2o2o| 国产成人freesex在线 | 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 又爽又黄a免费视频| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 日本-黄色视频高清免费观看| 午夜亚洲福利在线播放| 欧美日韩国产亚洲二区| a级毛片a级免费在线| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区久久| 亚洲图色成人| av免费在线看不卡| 日本一本二区三区精品| 免费不卡的大黄色大毛片视频在线观看 | 九九热线精品视视频播放| 国产精品电影一区二区三区| 亚州av有码| 久久久a久久爽久久v久久| av免费在线看不卡| 丝袜喷水一区| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 午夜福利18| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 性色avwww在线观看| 国产精品1区2区在线观看.| 69人妻影院| 亚洲国产精品合色在线| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 赤兔流量卡办理| 丰满乱子伦码专区| 18+在线观看网站| 91久久精品国产一区二区三区| 又黄又爽又刺激的免费视频.| 黄片wwwwww| 中文字幕免费在线视频6| avwww免费| 国产精品永久免费网站| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩在线中文字幕 | 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 亚洲精品国产av成人精品 | 精品免费久久久久久久清纯| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 日本色播在线视频| 精品午夜福利视频在线观看一区| 亚洲av中文av极速乱| 久久人人爽人人片av| 国产一区二区三区av在线 | 国产精品一区www在线观看| 我的老师免费观看完整版| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 亚洲精品影视一区二区三区av| 国产精品国产高清国产av| 超碰av人人做人人爽久久| 国产精品人妻久久久久久| 成人特级黄色片久久久久久久| 日日撸夜夜添| 少妇人妻精品综合一区二区 | 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 女生性感内裤真人,穿戴方法视频| 精品人妻一区二区三区麻豆 | 国产高潮美女av|