• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control Synthesis and Bioconjugation of Core-Shell Structured Gold Nanoparticles

    2013-09-29 02:24:22ZHANGHaoRanMANShiQingXUMengZHUXinHaiDepartmentofElectronicEngineeringInstituteofNanoChemistryDepartmentofOncologyTheFirstAffiliatedHospitalJinanUniversityGuangzhou506
    無機化學(xué)學(xué)報 2013年12期
    關(guān)鍵詞:暨南大學(xué)恩度核殼

    ZHANG Hao-RanMAN Shi-Qing*,XU MengZHU Xin-Hai(Department of Electronic Engineering,Institute of Nano-Chemistry,Department of Oncology,The First Affiliated Hospital,Jinan University,Guangzhou 506)

    Control Synthesis and Bioconjugation of Core-Shell Structured Gold Nanoparticles

    ZHANG Hao-Ran1,2MAN Shi-Qing*,1,2XU Meng3ZHU Xin-Hai3
    (1Department of Electronic Engineering,2Institute of Nano-Chemistry,3Department of Oncology,The First Affiliated Hospital,Jinan University,Guangzhou 510632)

    A series of Au/SiO2nanoshells was synthesized and the process of their growth was studied in detail.Two competing reaction ways during the process of the Au nanoshell′s growth were found.Utilizing this rule,the plasmon absorption of these nanoshells was continuously tuned from 524 nm to 980 nm.Endostar,a commercial anti-tumor medicine was firstly tried to bioconjugate to the surface of Au/SiO2nanoshells whose absorption peak was at 808 nm.We obtained the new composition Au/SiO2-Endo,and the FTIR spectra proved this successful bioconjugation.By combining the specific function of the starving tumor and a certain target tropism to tumor of Endostar with the easy tunability and favorable photothermal effect of gold nanoshells,it is expected that a novel kind of composite medicine with stronger ablation for tumor can be obtained by the present method.

    gold nanoparticle;core-shell;bioconjugation;Endostar

    0 Introduction

    Recently,considerable efforts have been devoted to the design and constructing of nanometer-and micrometer-sized core-shell structured composite particles with special physical and chemical properties due to their great potential applications in photonic crystals,catalysis,diagnostics,pharmacology[1-5],and surface-enhanced Raman scattering(SERS)[6].Till now,different types of core-shell structured particles have been developed[1-11].Among these reported core-shell structured particles,silica is proven a frequently used agent in core-shell structured materials,either as a core or a shell because it is cheap and easy to tailor its size,morphology,component,and microstructure[6,12-17].

    In most recent years,core-shell structured silica coped with noble metal,especially gold,have been studied extensively due to their promising applications in biomedicine[6,16].It has been demonstrated that nanoshell optical resonances may be continuously tuned over a broad region from the ultraviolet to the infrared,including the NIR region where is the transparent window of biological tissues[16,18],just by varying the relative dimensions of the core radius and shell thickness.Gold nanoshells offer appealing properties for biomedical sensing and therapeutic applications including large optical cross-sections exceeding conventional NIR dyes by many orders of magnitude as well as significantly improved photostability resulting from the rigid metallic structure of the nanoshell[3,19].Furthermore,antibodies and other targeting moieties can be readily conjugated to the gold surface of nanoshells,which endows gold nanoshells with target tropism[20-21].Because of the ability to convert light to heat energy that results in a local rise in temperature,gold nanoshell also can be embedded within temperature-sensitive hydrogels to develop a photothermal modulated drug delivery system[22].All of these further broaden the application of Au nanoshell in biomedicine field.

    In our present work,NIR absorption-controllable core-shell structured gold nanoparticles,consisting of a silica core with a gold shell,were prepared by a combination of molecular self-assembly and the subsequent electroless plating of gold[23-26].This approach has some advantages that it is relative simple,inexpensive,and easier to control the core diameter and shell thickness of the nanoparticles.More importantly,the absorption of the functional core-shell structured gold nanoparticles can be easily tailored to satisfy the requirement of applying this kind of materials in photothermal therapy.We also tried to biomodify the surface of the gold nanoshells with a kind of commercial medicine,Endostar,which was an endogenous inhibitor of tumor angiogenesis and tumor growth.As we know that angiogenesis,sprouting new blood vessels from existing capillaries,is critical for tumor growth[27-28].Therefore,antiangiogenic molecules offer new promises as novel therapeutic modalities for “starving” the tumors[29].Combined the specific starving effect and its certain targeting tropism of Endostar to tumor with photothermal effect of gold nanoshells,it was expected to obtain a novel kind of compound medicine for tumor therapy.

    1 Experimental

    1.1 Chemical and procedures

    Synthesis of silica cores.Amorphous submicrometer spheres of silica in the size range of 120 nm were synthesized by base catalyzed hydrolysis of tetraethoxysilane(TEOS)via the well-known Stber process[30].This method yielded the colloidal solution of silica particles with a narrow size distribution in the nanosized range,and the particle size of silica depended on the relative concentration of the reactants.In a typical experiment the mixture containing 1.5 mL TEOS (99wt%,A.R.,Beijing Beihua Chemicals Co.,Ltd),10 mL H2O,5 mL NH4OH (25wt%,A.R.)and 25 mL anhydrous ethanol was stirred at room temperature for 8 h,resulting in formation of a white silica colloidal suspension.The surface of silica particles were terminated with amine groups by reaction with aminopropyltriethoxysilane(APTES,97%,Avocado research Chemical,Ltd).Products were centrifugally separated from the suspension and washed with ethanol four times,then dispersed in ethanol.

    Coating of SiO2cores with Au shells.Small size of gold colloid (1~2 nm)was synthesized according to Stuff[31].This colloid was aged for two weeks in fridge and then concentrated in low pressure and low temperature.The aminated silica particles were then added to the gold colloid suspension in order to attach the gold colloid to the dielectric nanoparticle surfaces via molecular linkages.The silica nanoparticle covered with islands of gold colloid which served as “seed”,for the final nanoshell would grow up based on those islands of gold colloid,eventually coalescing with neighboring colloid,to form a complete gold shell.The concentration of this seed we used here was 3.89×1012mL-1.Gold nanoshells were then grown by reacting HAuCl4(Signa-Aldrich)with the seeds(50 μL)in thepresence of formaldehyde.And two strategies were designed for controlling the growth of these nanoshells.Firstly the mole ratio of HAuCl4to formaldehyde was set at 1∶100,keep other condition invariable and only change the amount of HAuCl4solution(0.38 mmol·L-1).Secondly,keep the added quantity of HAuCl4solution and other condition constant but vary the amount of formaldehyde solution(37%).

    Bioconjugation of the Au/SiO2nanoshells.Endostar(5 g·L-1)waspurchased from Shandong Simcere-Medgenn Bio-pharmaceutical Co.,Ltd.Endostar is an endogenous inhibitor of tumor angiogenesis and tumor growth.It has two pairs of disulfide bonds in a unique nested pattern,which play a key role in its native conformation,stability,and activity[32].For one strategy we treat this protein medicine of Endostar by the conventionalway like antibody.The binding of antibodies to gold nanospheres was first reported in the 1950s since the antibodies are generally bound to negatively charged gold nanospheres by adjusting the pH of the colloidal solution to be just above the isoelectric point of the antibody such that the antibody has a small net negative charge.The antibodies are thus nonspecifically adsorbed onto gold nanoparticles while keeping the nanoparticles negatively changed,providing stability in solution[33-34].A proper amount of Au nanoshells was sufficiently mixed with the Endostar in PBS buffer solution (pH=7.0 ~7.4),and then this solution was kept overnight.The sample was washed by repeated cycles of centrifugation and redispersion in water 6 times to ensure that the residue Endostar was completely removed.Finally,the sample was dried in vacuum under 30 ℃ for the IR measurement.

    For another strategy the common protein linker of 2-iminothiolane was used,which could react with the amidogen of protein and release the SH group with the ability to chemically bond onto the metal surface,as shown in Scheme 1.Since thiol chemistry has been widely used for the modification on gold surfaces[35-36],thus the released thiol is used for the same purpose.The 2-iminothiolane was dissolved in the K2CO3solution(pH 8.5),then mixed with proper amount of Au nanoshells and Endostar,the molar ratio of Endostar to 2-iminothiolane was 1∶1.The sample reacted overnight then washed it by repeated cycles of centrifugation and redispersion 6 times in water,followed by drying in vacuum under 30℃to obtain the sample for IR measurement.

    Scheme 1 Reaction process of 2-iminothiolane with protein

    1.2 Characterization

    FTIR spectra were measured by BrukeEquinox-55 infrared spectrophotometer with the KBr pellet technique.

    The morphologies of the obtained samples were determined by a Tecnai-10,Philips (purchased from Holland)transmission electron microscope (TEM)at 100 kV acceleration voltage.SamplesforTEM measurement were prepared through ultrasonic dispersion in deionized water and then placing a drop of dispersed suspension on carbon coated copper grid and dried at room temperature.

    The UV-Vis absorption spectra range 400~900 nm were recorded on a Cary 5000(VARIAN),and those range 200~1 300 nm were recorded on a UV2550PC(SHIMADZU),all in 1 cm quartz.

    2 Results and discussion

    In order to systemically investigate the possible factors which affect the formation of the nanoshells and its absorption properties,a series of Au/SiO2samples were synthesized firstly by varying the amount of HAuCl4solution as described in the experimental section.Fig.1 showed the TEM images of aminated SiO2nanoparticles before and after reacting with different amount of HAuCl4solution.As shown in Fig.1(a),the as-prepared aminated SiO2particles were spheric shape with a relatively uniform size of 120 nm.Fig.1(b)was the SiO2particles absorbed with fine gold colloids serving as the “seed” for the further packing or growth of gold shell.Fig.1(c~g)showed the process of Au growth based on the seed by increasing the amount of HAuCl4solution.Inspection of these TEM images,it wasclearthatwhen theamountofHAuCl4isincreasing,firstly,the Au reduced based on those seeds,the Au colloids on the surface of silica became bigger and bigger(Fig.1c~d),when the nearby isolated Au nanoshells connected,the complete spherical Au nanoshells were formed.It was clear that the sample in Fig.1e had already formed a complete Au nanoshell with its absorption peak at 707 nm (Fig.2d)and its thickness was approximately 27 nm.Kept on increasing the added amount of HAuCl4solutions,the Au shells continuously grew,became more and more thick,tight and homogeneous(Fig.1f~g).The thickness of Au shells,df≈32 nm,dg≈35 nm.However,when the increasing amount of HAuCl4solution over a certain degree as reflected in Fig.1(h~i),the integrality of Au nanoshells was not supported,the silica core began to be naked and the Au colloids began to aggregate.

    fig.1 TEM images of aminated SIO2 nanoparticles(a);adsorbed with fine Au colloid and serving as te seed(b);and AUu-shelled sampes after reacting with different amount of HAuCL4(0.38 mmol·L-1):(c)3 mL;(d)18 mL;(e)26 mL;(f)32 mL;(g)47 mL;(h)60 mL;(i) mL

    The optical absorption spectra of different Au/SiO2nanoshells synthesized by varying the amount of HAuCl4solution were shown in Fig.2,it could be seen that the absorption peaks moved to the red region gradually and the shape of these peaks changed from narrow to broad when increasing HAuCl4amount.However,if 60 mL HAuCl4solution was added,the absorption spectrum presented double peaks located at 850 nm and 683 nm,respectively (Fig.2g).It seemed like that another kind of product was formed besides the desired Au nanoshells,and results in the additional absorption peak at 683 nm.Reviewed the TEM image in Fig.1(h)of the same sample,gold nanoshells began to be wrecked by Au colloids and their aggregation distributed around the silica cores.Reflected in the shape of absorption spectra,the peak located at 850 nm denoted the remnant gold nanoshells while peak located at 683 nm indicated the alien formation of huge goldcolloids or micells.kept on increasing HAuCl4solution to 70 mL the absorption peak changed back to a single peak,and blue shifted to 602 nm as shown in Fig.2h.It might suggest that Au colloids and aggregation had conquered and replaced the formation ofgold nanoshells ulteriorly.Fig.1i gave the visual evidence of such shift,the integral Au nanoshells had been destroyed and the fragment rapped off the silica core,while huge Au colloids or aggregations presented around the silica core.Thus corresponded to the absorption spectrum (Fig.2h),the NIR region peak which denoted the gold nanoshells disappeared while absorption spectrum at 602 nm denoted the gold colloid or aggregation came forth.Throughout the whole design process the only variety was the amount of HAuCl4solutions,which led to the evolution of Au nanoshells:came into being,grew,existed and dissolved.

    Fig.2 Optical absorption spectra of Au-shelled samples synthesized by reaction of seed with different amount of HAuCl4(0.38 mmol·L-1)solution:(a)0 mL;(b)3 mL;(c)18 mL;(d)26 mL;(e)32 mL;(f)47 mL;(g)60 mL;(h)70 mL

    Colligate these facts mentioned above,it is readily supposed that the nanoshells′growth we have tried to demonstrate actually comprises two competing reaction:(i)Au3+wrere reduced and deposited on the surface of the silica particle to form gold shells as anticipated;(ii)Au3+were reduced to form nucleation of additional gold colloid in the solution,then grew or aggregated.Which reaction would take leading role is mainly decided by the reaction rate,as shown in Scheme 2,the slow reaction rate is fit for the formation of gold nanoshells while the comparatively rapid reaction rate is inclined to form gold colloids and aggregations.Well,in our experiment,the few amount of the HAuCl4solution resulted in the slow reaction rate and led to the growth of the Au nanoshell based on the seeds little by little suchasFig.1(c~g).WhenHAuCl4solutionwasincreased to a certain degree such as 60 mL,it appeared to result in preferential deposition based on self-nucleation,then Au colloidswereproduced in thesolution and aggregated around the silica core accompanying the formation of gold shells as shown in Fig.1h,and the additional peak arised in short wavelength(Fig.2g).Futher increasing HAuCl4solution,like 70 mL,would speed up the kinetics of the gold reduction,the process(ii)conquered the process(i),thus a mass of Au colloids were ruduced in the solution and grew bigger or aggregated and scarcely any Au shells were formed(Fig.1i).Fig.2h also gave spectral evidence of such shift by the replacement of long wavelength with short wavelength.

    Scheme 2 Predicted competing reaction ways during the process of Au nanoshells formation that was expected

    To verify the hypothesis about the two competing reaction process,another series of samples were prepared,fixed the amount of the seed solution and HAuCl4solution,varied the amount of formaldehyde solution.In this strategy the amount of reductant formaldehyde was the controlling factor of the reaction kinetics,the more formaldehyde added the quicker reaction rate would be.And quick reaction rate preferred the competing process (ii),so Au colloids were produced preferentially in the solution.When the amount of formaldehyde and HAuCl4was consumed to a certain degree,the reaction rate decreased gradually and was insufficient to support the process(ii),then the reaction switched to process(i)and the residual Au3+was reduced based on the seeds(silica nanoparticles modified by nucleation site)to form thinner Au nanoshells.For small nanoparticles of Au colloids were formed in the solution,deposition of the nanoshell gold layer would continue at the expense of these particles.It could be predicted that the more formaldehyde solution was added the more Au colloids would be produced in the solution,then the less residual Au3+would be reduced based on the seeds to form Au shells,and the thinner Au nanoshells would be.According to Mie[37],for the same core dimension,the thinner the gold nanoshell is,the more red-shift of its absorption spectrum will be.Fig.3 exactly manifested such relationship, when increased the amount of formaldehyde the wide peak of these samples red shifted from 865 nm to 980 nm.The shoulder located around 600 nm (Fig.3a~e)indicateed the presence of Au colloids in solution[38],which further proved the validity of the competing reaction to form Au colloids besides Au nanoshells.

    Fig.3 Optical absorption spectra of Au-shell samples synthesized by 60 mL HAuCl4solution(0.38 mmol·L-1)reacting with different amount of formaldehyde solution(37%)

    In summary,the controlling method used in this experiment might be taken for an ordinary strategy for monitoring the core radius-shell thickness ratio,and this dimension ratio decided the optical property of the Au nanoshells.The main characteristic of this strategy included a preliminary process of undergoing some selfconsuming which might be called sacrificial reaction.Au nanoshells were formed at the expense of gold colloids(self-consuming),when the reaction kinetics self-adjusted to suit the process(i)then the expected production,Au nanoshells were formed.The density of Au nanoshells here wascontrolled bytheselfconsuming process inversely.

    Fig.3 showed spectral evidence of the larger gold colloid presenting in solution in the form of a shoulder located around 600 nm,also evident in TEM images of Fig.4.In addition to the gold nanoshellswere represented in the picture,some comparatively little gold particles were also found in the wings(similar images of other samples were not shown).The gold nanoshells exhibit the broad NIR absorption at 980 nm and the gold colloids exhibit the faintish shoulder peak at 680 nm as shown in Fig.3(e).

    Fig.4 TEM images of Au-shell samples synthesized by 60 mL HAuCl4solution(0.38 mmol·L-1)and formaldehyde solution(37%),their mole ratio is 1∶300

    For the metal layer of gold nanoshells was grown using the same chemical reaction as gold colloid synthesis,the surfaces of gold nanoshells were virtually chemically identical to those of gold colloids.Thus the methods used to bioconjugate gold colloid were also apt for gold nanoshells.

    Fig.5 (a)was the FTIR spectra of Au/SiO2nanoshells,the 1 093 cm-1absorption band could be attributed to the asymmetric stretching of Si-O.Fig.5(b,c)were the FTIR spectra of Au/SiO2nanoshellsbioconjugated with Endostar directly and through the protein linker of 2-iminothiolane respectively,it was clear that in addition to reserving the same patterns of SiO2,they also represented a series of peaks among 1 000~1 500 cm-1and 3 700~4 000 cm-1,which should be attributed to the presence of Endostar.Thus it proved that the protein medicine of Endostar had been bioconjugated to the surface of Au/SiO2nanoshells successfully through the two strategies.However,the asymmetric stretching of Si-O(1093 cm-1)in Fig.5c was weaker than that in Fig.5b,which might indicate the bioconjugation through protein linker provided the better bonding strength than electrostatic strategy,thus the asymmetric stretching of Si-O(1093 cm-1)in Fig.5c was shielded by the bioconjugated layer as shown.In the further study we would like to test the effect of these compound nano-medicines in ablation of cancer cells in vitro.

    Fig.5 FTIR spectra of Au nanoshells before(a)and after bioconjugated with Endostar directly(b),and through protein linker of 2-iminothiolane(c)

    3 Conclusion

    A series of Au/SiO2nanoshells were synthesized by the combination of molecular self-assembly and the subsequent electroless plating of gold.The growth of Au nanoshells was studied in detail,we found that the transitory process actually contained two competing reaction:Au3+was reduced and deposited onto silica surface to form Au nanoshells;high kinetics results in the self-nucleation of Au3+and Au colloids were formed in the solution.This rule facilitated us tuning the plasmon absorption of these nanoshells red shift to 980 nm continuously.We conjugated a commercial antitumor medicine,Endostar,to the surface of Au/SiO2nanoshells in two ways,one strategy was direct bioconjugation,another strategy was using the common protein linker of 2-iminothiolane which could connect Endostar to the surface of Au/SiO2nanoshells,and the two strategies were proven successful.The combination of the specific function for starving tumor and a certain target tropism to tumor of Endostar with the easy tunability and photothermal effect of gold nanoshells,mightprovide apromising candidateforcancer treatment.

    [1]Schartl W.Adv.Mater.,2000,12(24):1899-1908

    [2]Caruso F.Adv.Mater.,2001,13(1):11-22

    [3]Suryanarayanan V,Nair A S,Tom R T,et al.J.Mater.Chem.,2004,14(17):2661-2666

    [4]LinAWH,LewinskiNA,RakalinAA,etal.Opt.Eng.,2005:60100L1-60100L8

    [5]LizMarzan L M,Giersig M,Mulvaney P,et al.Langmuir,1996,12(18):4329-4335

    [6]Xiao G N,Man S Q.Chem.Phys.Lett.,2007,447(4/5/6/7):305-309

    [7]XIAO Gui-Na(肖桂娜),MAN Shi-Qing(滿石清),LIU Ying-Liang(劉應(yīng)亮),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(10):1738-1742

    [8]XIAO Gui-Na(肖 桂 娜),MAN Shi-Qing(滿 石 清).Chem.J.Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao),2009,30(5):849-854

    [9]PENG Hui(彭 卉),MAN Shi-Qing(滿石清).Chin.J.Anal.Chem.(Fenxi Huaxue),2010,38(5):611-616

    [10]Sertchook H,Avnir D.Chem.Mater.,2003,15(8):1690-1694

    [11]Giersig M,Ung T,Liz-Maran L M,et al.Adv.Mater.,1997,9(7):570-575

    [12]Salgueirino-Maceira V,Spasova M,Farle M.Adv.Funct.Mater.,2005,15(6):1036-1040

    [13]Liu S,Han M.Adv.Funct.Mater.,2005,15(2):961-967

    [14]Hardikar V V,Matijevi E.J.Colloid Interface Sci.,2000,221(1):133-136

    [15]Chan Y,Zimmer J P,Stroh M,et al.Adv.Mater.,2004,16:2092-2097

    [16]Liu Z,Song H,Yu L,et al.Appl.Phys.Lett.,2005,86(11):113109/1-113109/3

    [17]YAO Zu-Fu(姚祖福),HUANG Ke-Long(黃可龍),YU Jin-Gang(于金剛),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(12):2164-2168

    [18]Sun Y,Xia Y.Anal.Chem.,2002,74(20):5297-5305

    [19]YANG Jian-Hui(楊建輝),LU Le-Hui(逯樂慧),ZHANG Hong-Jie(張洪杰).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2008,24(8):1191-1199

    [20]Hirsch L R,Jackson J B,Lee A,et al.Anal.Chem.,2003,75(10):2377-2381

    [21]Fu K,Sun J,Bickford L R,et al.Nanotechnology,2008,19(4):045103-045108

    [22]Bikram M,Gobin A M,Whitmire R E,et al.J.Control.Release,2007,123(3):219-227

    [23]Loo C,Lin A,Hirsch L,et al.Cancer Res.Treat,2004,3(1):33-40

    [24]Hirsch L R,Stafford R J,Bankson J A,et al.Proc.Nati.Acad.Sci.U.S.A.,2003,100(23):13549-13554

    [25]Oldenburg S J,Averitt R D,Westcott S L,et al.Chem.Phys.Lett.,1998,288(2/3/4):243-247

    [26]HU Yong-Hong(胡永紅),RONG Jian-Hua(容建華),LIU Ying-Liang(劉應(yīng)亮),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2005,21(11):1672-1676

    [27]Folkman J.N.Engl.J.Med.,1971,285(21):1182-1186

    [28]Folkman J.J.Natl.Cancer Inst.,1990,82(1):4-6

    [29]Shi H,Huang Y,Zhou H,et al.Blood,2007,110(8):2899-2906

    [30]St?ber W,Fink A,Bohn E.J.Colloid Interf.Sci.,1968,26(1):62-69

    [31]Duff D G,Baiker A,Edwards P P.Langmuir,1993,9(9):2301-2309

    [32]He Y,Zhou H,Tang H,et al.J.Biol.Chem.,2006,281(2):1048-1057

    [33]Sokolov K,Follen M,Aaron J,et al.Cancer Res.,2003,63(9):1999-2004

    [34]Sokolov K,Aaron J,Hsu B,et al.Tech.Cancer Res.Treat.,2003,2(6):491-504

    [35]Loo C,Lowery A,Halas N J,et al.Nano Lett.,2005,5(4):709-711

    [36]Lu H B,Campbell C T,Castner D G.Langmuir,2000,16(4):1711-1718

    [37]Bohren C F,Huffman D R.Absorption and Scattering of Light by Small Particles.New York:Wiley,1983.

    [38]Link S,El-Sayed M A.J.Phys.Chem.B,1999,103(21):4212-4217

    金核殼納米粒子的控制合成及其生物復(fù)合

    張浩然1,2滿石清*,1,2徐 萌3朱新海3

    (1暨南大學(xué)電子工程系,2暨南大學(xué)納米化學(xué)研究所,3暨南大學(xué)第一附屬醫(yī)院腫瘤科,廣州 510632)

    合成了一系列Au/SiO2核殼納米粒子,并詳細研究了Au納米殼層的生長過程。發(fā)現(xiàn)在金納米殼層形成的過程中存在著2個競爭反應(yīng)。利用這一發(fā)現(xiàn),可將金納米殼層的吸收峰從524 nm連續(xù)調(diào)諧至980 nm處。恩度是一種臨床抗癌藥物,我們首次將其生物復(fù)合于吸收峰位于808 nm的Au/SiO2殼層表面,得到Au/SiO2-Endo,通過FTIR測試證明該生物復(fù)合成功。將恩度特殊的餓殺腫瘤特性以及對腫瘤具有特異識別能力,與Au/SiO2納米殼層結(jié)構(gòu)的光學(xué)可調(diào)諧特性以及良好的光熱轉(zhuǎn)換能力復(fù)合于一體,我們期望得到一種治療腫瘤效果更強的新型藥物。

    金納米粒子;核殼結(jié)構(gòu);生物復(fù)合;恩度

    O614.123

    :A

    :1001-4861(2010)10-1768-08

    2010-04-06。收修改稿日期:2010-06-07。

    張浩然,女,29歲,博士研究生;研究方向:納米材料的合成及應(yīng)用。

    國家自然科學(xué)基金(No.60477015),廣東省自然科學(xué)基金(No.9151063201000018)和廣東省自然科學(xué)基金團隊項目(No.05200555)資助。

    *通訊聯(lián)系人。 E-mail:tsqman@jnu.edu.cn,Tel:020-85220658

    猜你喜歡
    暨南大學(xué)恩度核殼
    恩度聯(lián)合化療對晚期非小細胞肺癌的有效性和安全性分析
    健康之家(2021年19期)2021-05-23 09:10:44
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    重組人血管內(nèi)皮抑制素聯(lián)合化療對晚期結(jié)直腸癌的療效
    化療聯(lián)合恩度胸腔灌注治療非小細胞肺癌惡性胸腔積液的療效觀察
    “派系撕裂校園”:暨南大學(xué)驅(qū)長風(fēng)潮研究(1933—1934)
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    2016年中國新聞史學(xué)會學(xué)術(shù)年會在暨南大學(xué)成功舉辦
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    核殼結(jié)構(gòu)Cu@CoW的合成和對硼氨配合物水解的催化性能
    暨南大學(xué) 實施外招生教學(xué)模式 大膽探索實踐創(chuàng)新
    日韩欧美三级三区| 91精品三级在线观看| av电影中文网址| 午夜日韩欧美国产| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 国产精品99久久99久久久不卡| 国产视频一区二区在线看| 黄色视频在线播放观看不卡| 久久亚洲精品不卡| 国产精品 国内视频| 日本wwww免费看| 最新美女视频免费是黄的| 美女国产高潮福利片在线看| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| av有码第一页| 国产成人av教育| 50天的宝宝边吃奶边哭怎么回事| 热re99久久精品国产66热6| 两个人免费观看高清视频| 国产免费福利视频在线观看| 国产成人精品无人区| 国产精品二区激情视频| 精品久久久久久电影网| 国产91精品成人一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 侵犯人妻中文字幕一二三四区| 黑人猛操日本美女一级片| 欧美日韩福利视频一区二区| 18禁美女被吸乳视频| 成年动漫av网址| 欧美日韩亚洲高清精品| 757午夜福利合集在线观看| 久久久久久久久免费视频了| 老司机午夜十八禁免费视频| 交换朋友夫妻互换小说| 亚洲男人天堂网一区| 极品少妇高潮喷水抽搐| 精品一品国产午夜福利视频| 99精品欧美一区二区三区四区| 亚洲av日韩精品久久久久久密| 免费女性裸体啪啪无遮挡网站| 一夜夜www| 高清毛片免费观看视频网站 | 亚洲精品自拍成人| 女警被强在线播放| 大片电影免费在线观看免费| 精品卡一卡二卡四卡免费| 欧美精品啪啪一区二区三区| 自线自在国产av| av在线播放免费不卡| 91麻豆精品激情在线观看国产 | 亚洲人成电影免费在线| 国产黄色免费在线视频| 女人精品久久久久毛片| 国产片内射在线| 国产在视频线精品| 悠悠久久av| 日本欧美视频一区| av视频免费观看在线观看| 成人免费观看视频高清| 青草久久国产| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜添小说| 757午夜福利合集在线观看| 亚洲三区欧美一区| 日本欧美视频一区| 精品国产一区二区三区久久久樱花| 久久精品91无色码中文字幕| 色综合欧美亚洲国产小说| 国产99久久九九免费精品| 欧美国产精品va在线观看不卡| 亚洲国产欧美日韩在线播放| 亚洲国产看品久久| 免费观看av网站的网址| 99久久国产精品久久久| 青青草视频在线视频观看| 亚洲自偷自拍图片 自拍| 999精品在线视频| 日韩视频在线欧美| 国产成人精品在线电影| 男人操女人黄网站| 黑人猛操日本美女一级片| 欧美乱码精品一区二区三区| 三上悠亚av全集在线观看| 国产主播在线观看一区二区| 国产伦人伦偷精品视频| 最近最新中文字幕大全免费视频| 国产成人一区二区三区免费视频网站| 桃花免费在线播放| 男男h啪啪无遮挡| 又紧又爽又黄一区二区| 日韩视频在线欧美| 亚洲av第一区精品v没综合| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 一级毛片女人18水好多| 日韩一区二区三区影片| 99re在线观看精品视频| 黑丝袜美女国产一区| 欧美日韩视频精品一区| 欧美大码av| 日日爽夜夜爽网站| 妹子高潮喷水视频| 亚洲美女黄片视频| 亚洲中文av在线| 纵有疾风起免费观看全集完整版| 少妇的丰满在线观看| 黄色毛片三级朝国网站| 动漫黄色视频在线观看| 欧美黑人精品巨大| 亚洲av日韩在线播放| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 天天躁日日躁夜夜躁夜夜| 欧美在线黄色| 久久久精品94久久精品| 三上悠亚av全集在线观看| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| av一本久久久久| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 国产成人欧美在线观看 | 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 91麻豆av在线| 老司机靠b影院| 成人免费观看视频高清| 人妻 亚洲 视频| 欧美日韩成人在线一区二区| 免费一级毛片在线播放高清视频 | 我要看黄色一级片免费的| 色婷婷久久久亚洲欧美| 十八禁高潮呻吟视频| 精品人妻在线不人妻| 国产午夜精品久久久久久| 午夜福利在线免费观看网站| 电影成人av| 女人精品久久久久毛片| 啦啦啦在线免费观看视频4| 一级a爱视频在线免费观看| av天堂在线播放| 欧美日韩精品网址| 97在线人人人人妻| 国产欧美日韩精品亚洲av| 国产精品久久久久久人妻精品电影 | 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 精品人妻1区二区| 亚洲黑人精品在线| 黄色a级毛片大全视频| 亚洲全国av大片| 日韩欧美免费精品| 亚洲欧洲日产国产| 亚洲 国产 在线| 91av网站免费观看| 国产精品一区二区免费欧美| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 热re99久久国产66热| 欧美精品高潮呻吟av久久| 男女午夜视频在线观看| 青草久久国产| 亚洲一区中文字幕在线| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 成年版毛片免费区| 精品久久久久久久毛片微露脸| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 一夜夜www| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 两个人看的免费小视频| 韩国精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 久热这里只有精品99| 最黄视频免费看| 中文字幕精品免费在线观看视频| 99在线人妻在线中文字幕 | 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 亚洲五月婷婷丁香| 超碰成人久久| 国产欧美亚洲国产| www.精华液| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 亚洲情色 制服丝袜| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 午夜日韩欧美国产| 高清视频免费观看一区二区| 777米奇影视久久| 精品国产亚洲在线| 交换朋友夫妻互换小说| 午夜91福利影院| 国产免费av片在线观看野外av| 69精品国产乱码久久久| 成年人午夜在线观看视频| 深夜精品福利| 熟女少妇亚洲综合色aaa.| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 国产91精品成人一区二区三区 | 国产精品国产av在线观看| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 国产成人精品在线电影| 黄色怎么调成土黄色| 国产又爽黄色视频| 美女主播在线视频| 色婷婷久久久亚洲欧美| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 亚洲伊人色综图| 午夜福利在线观看吧| 日日夜夜操网爽| 成年动漫av网址| 99久久国产精品久久久| 蜜桃国产av成人99| 人成视频在线观看免费观看| 午夜91福利影院| 国产伦理片在线播放av一区| 老司机福利观看| 久久久久久久国产电影| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 国产男女内射视频| 精品人妻1区二区| 91国产中文字幕| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 亚洲成a人片在线一区二区| 久热爱精品视频在线9| 午夜福利免费观看在线| 亚洲精品久久午夜乱码| 精品一区二区三卡| 国产精品成人在线| 淫妇啪啪啪对白视频| 黄色视频在线播放观看不卡| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 成人永久免费在线观看视频 | 日韩成人在线观看一区二区三区| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 亚洲色图综合在线观看| www.自偷自拍.com| 久久精品熟女亚洲av麻豆精品| 性色av乱码一区二区三区2| 欧美日韩福利视频一区二区| 久久精品亚洲精品国产色婷小说| 国产野战对白在线观看| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色 | 黄色视频,在线免费观看| e午夜精品久久久久久久| 丰满少妇做爰视频| 少妇精品久久久久久久| 国产有黄有色有爽视频| 91麻豆av在线| 变态另类成人亚洲欧美熟女 | 亚洲国产欧美一区二区综合| 夫妻午夜视频| 变态另类成人亚洲欧美熟女 | 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 久久ye,这里只有精品| 国产在视频线精品| 国产欧美日韩一区二区三区在线| 一本一本久久a久久精品综合妖精| 黄片大片在线免费观看| 欧美国产精品一级二级三级| 国产亚洲精品一区二区www | 久久精品亚洲熟妇少妇任你| 一区福利在线观看| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 久久久精品94久久精品| 亚洲三区欧美一区| 亚洲av日韩精品久久久久久密| 亚洲免费av在线视频| 一边摸一边抽搐一进一出视频| 亚洲第一青青草原| 国产国语露脸激情在线看| av不卡在线播放| 久久精品aⅴ一区二区三区四区| 亚洲伊人久久精品综合| 欧美日韩黄片免| 久久久久久久久久久久大奶| 成年版毛片免费区| 亚洲黑人精品在线| 超碰成人久久| 51午夜福利影视在线观看| 成人精品一区二区免费| 久久久久精品人妻al黑| 看免费av毛片| 欧美日本中文国产一区发布| 人人妻人人添人人爽欧美一区卜| 99re6热这里在线精品视频| 国产高清videossex| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色 | 十八禁网站网址无遮挡| 精品国产乱子伦一区二区三区| 精品人妻在线不人妻| 老司机午夜福利在线观看视频 | 国产欧美日韩一区二区精品| 婷婷成人精品国产| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 啪啪无遮挡十八禁网站| 曰老女人黄片| 亚洲七黄色美女视频| 亚洲午夜理论影院| 国产av精品麻豆| 一级毛片精品| 岛国毛片在线播放| 成人精品一区二区免费| 久久国产精品大桥未久av| 美女福利国产在线| 亚洲中文av在线| 亚洲 欧美一区二区三区| 99精品欧美一区二区三区四区| 国产高清国产精品国产三级| 在线永久观看黄色视频| 久久久精品94久久精品| 久久天堂一区二区三区四区| 国产人伦9x9x在线观看| 午夜福利,免费看| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 国产区一区二久久| 在线观看人妻少妇| 在线av久久热| 啦啦啦免费观看视频1| 久久久久久亚洲精品国产蜜桃av| 老熟女久久久| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 黄色视频,在线免费观看| 国产成人精品久久二区二区免费| 色94色欧美一区二区| 日日夜夜操网爽| 黄色视频不卡| 国产1区2区3区精品| 国产精品九九99| 一级毛片精品| 久久国产精品大桥未久av| 王馨瑶露胸无遮挡在线观看| 天天添夜夜摸| 91九色精品人成在线观看| 午夜福利在线免费观看网站| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 757午夜福利合集在线观看| 久久精品国产亚洲av高清一级| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区大全| 日日爽夜夜爽网站| 国产xxxxx性猛交| 18禁黄网站禁片午夜丰满| 咕卡用的链子| 亚洲,欧美精品.| 久久久久久亚洲精品国产蜜桃av| 建设人人有责人人尽责人人享有的| 亚洲熟妇熟女久久| 三级毛片av免费| 免费在线观看视频国产中文字幕亚洲| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 国产一区二区激情短视频| 多毛熟女@视频| 精品人妻1区二区| 如日韩欧美国产精品一区二区三区| 超碰成人久久| 日本黄色日本黄色录像| 少妇的丰满在线观看| 老司机靠b影院| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 成人18禁在线播放| 国产主播在线观看一区二区| 亚洲国产av新网站| 国产亚洲av高清不卡| 99国产综合亚洲精品| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| 成年版毛片免费区| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 精品一品国产午夜福利视频| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 夜夜爽天天搞| 成人永久免费在线观看视频 | 黄片播放在线免费| 日韩视频在线欧美| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| cao死你这个sao货| 777久久人妻少妇嫩草av网站| 久久久久国内视频| 每晚都被弄得嗷嗷叫到高潮| 精品国产一区二区久久| 日本欧美视频一区| 搡老乐熟女国产| 一二三四社区在线视频社区8| 久久青草综合色| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 日韩人妻精品一区2区三区| 亚洲中文字幕日韩| 无人区码免费观看不卡 | av天堂久久9| 老汉色av国产亚洲站长工具| 亚洲av成人一区二区三| 69av精品久久久久久 | 国产极品粉嫩免费观看在线| 免费黄频网站在线观看国产| 2018国产大陆天天弄谢| 深夜精品福利| 99九九在线精品视频| 久久精品国产亚洲av高清一级| 天天影视国产精品| 中文字幕人妻熟女乱码| 亚洲成人免费av在线播放| 国产亚洲欧美精品永久| 一本一本久久a久久精品综合妖精| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 色老头精品视频在线观看| 麻豆av在线久日| 亚洲三区欧美一区| 亚洲国产av新网站| avwww免费| 黑人欧美特级aaaaaa片| 一个人免费在线观看的高清视频| a级毛片黄视频| 免费看十八禁软件| 悠悠久久av| 女人精品久久久久毛片| 在线永久观看黄色视频| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| 手机成人av网站| 亚洲人成电影观看| 99久久人妻综合| av网站在线播放免费| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| cao死你这个sao货| 丝袜在线中文字幕| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 日日爽夜夜爽网站| 久久99一区二区三区| 女同久久另类99精品国产91| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 久久影院123| 视频区欧美日本亚洲| 中文字幕精品免费在线观看视频| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| 又大又爽又粗| av线在线观看网站| 美女扒开内裤让男人捅视频| 日本精品一区二区三区蜜桃| 一本久久精品| 免费人妻精品一区二区三区视频| 999精品在线视频| 成人国产av品久久久| 五月开心婷婷网| 91九色精品人成在线观看| 大型av网站在线播放| 久热爱精品视频在线9| 后天国语完整版免费观看| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 亚洲精品美女久久av网站| 一本大道久久a久久精品| 18在线观看网站| www.自偷自拍.com| svipshipincom国产片| 十八禁网站免费在线| 成人永久免费在线观看视频 | 老熟女久久久| 久久久精品94久久精品| 色94色欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| 亚洲午夜理论影院| kizo精华| 国产免费福利视频在线观看| 青青草视频在线视频观看| 国产精品.久久久| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| 欧美人与性动交α欧美软件| 免费观看av网站的网址| 欧美精品啪啪一区二区三区| 免费观看av网站的网址| 我要看黄色一级片免费的| 久久人妻福利社区极品人妻图片| 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 色播在线永久视频| 午夜福利在线免费观看网站| netflix在线观看网站| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区 | 日韩熟女老妇一区二区性免费视频| 精品高清国产在线一区| 俄罗斯特黄特色一大片| 国产在视频线精品| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 人成视频在线观看免费观看| 又紧又爽又黄一区二区| 高清毛片免费观看视频网站 | 大香蕉久久网| 黑人操中国人逼视频| 久久久久国内视频| 91成人精品电影| 国产在线精品亚洲第一网站| 18禁美女被吸乳视频| 老司机靠b影院| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 九色亚洲精品在线播放| 日韩一卡2卡3卡4卡2021年| a级片在线免费高清观看视频| 9191精品国产免费久久| 大香蕉久久成人网| 免费少妇av软件| 窝窝影院91人妻| 亚洲国产欧美一区二区综合| 亚洲精品在线观看二区| 9色porny在线观看| 久久99一区二区三区| 999久久久国产精品视频| 成人18禁在线播放| 欧美日韩亚洲综合一区二区三区_| 久久久久久免费高清国产稀缺| 老司机午夜福利在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区久久久樱花| 激情视频va一区二区三区| 十分钟在线观看高清视频www| 日韩视频在线欧美| 夜夜夜夜夜久久久久| 午夜免费鲁丝| 亚洲中文av在线| 无限看片的www在线观看| 国产精品 国内视频| 亚洲精品在线美女| 中文字幕人妻熟女乱码| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁日日躁夜夜躁夜夜| 久久人妻福利社区极品人妻图片| 搡老熟女国产l中国老女人| 成在线人永久免费视频| 女性被躁到高潮视频| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 激情视频va一区二区三区| 欧美日韩福利视频一区二区| 精品亚洲成a人片在线观看| 国产男女内射视频| 人人妻人人爽人人添夜夜欢视频| 真人做人爱边吃奶动态| 18禁美女被吸乳视频| 亚洲欧美日韩另类电影网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 国产 在线| 婷婷丁香在线五月| 热99久久久久精品小说推荐| 亚洲精品av麻豆狂野| 黄频高清免费视频| 女同久久另类99精品国产91| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| 国产高清国产精品国产三级| 亚洲精品国产精品久久久不卡| 美国免费a级毛片| 1024视频免费在线观看| 老司机靠b影院| 国产单亲对白刺激| 国产欧美日韩一区二区三| 热99国产精品久久久久久7| 免费在线观看黄色视频的| 亚洲第一青青草原| 亚洲色图av天堂|