• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    固定床反應器上擠條小晶粒TS-1催化丙烯環(huán)氧化反應

    2013-09-27 07:34:08宋萬倉王夢麗徐永海王祥生郭新聞
    物理化學學報 2013年1期
    關(guān)鍵詞:大連理工大學固定床化學

    左 軼 宋萬倉 王夢麗 徐永海 王祥生 郭新聞

    (大連理工大學化工與環(huán)境生命學部催化化學與工程系,精細化工國家重點實驗室,遼寧大連116024)

    1 Introduction

    Propylene oxide(PO)is an important derivative of propylene,only second to polypropylene and acrylonitrile,which is a chemical intermediate for producing polyether polyol polymers.The current processes for PO manufacture include the chlorohydrin route and the Halcon route.1The chlorohydrin route,using chloride as the reactant,leads to an environmental pollution,while the Halcon route is capital intensive and its economics depends on those of its co-products.2Therefore,researchers began to explore a new route which is environmentally friendly and would free PO from its co-products.

    Titanium silicalite-1(TS-1),which was first reported by Taramasso et al.in 1983,3showed an excellent catalytic performance of selective oxidation with hydrogen peroxide,such as oxidation of alkanes,epoxidation of alkenes,hydroxylation of aromatics,and oxidation of ammonia to hydroxyamine,attracting many researchers.4-10BASF and Dow Chemical established a hydrogen peroxide to propylene oxide(HPPO)process in Antwerp,Belgium,which had a PO capacity of 300000 tons per year.11However,the cost is always one of the most serious obstacles on the application of TS-1 in industry,mainly due to the expensive template tetrapropyl ammonium hydroxide(TPAOH).Therefore,a cheaper template tetrapropyl ammonium bromide(TPABr)was adopted to substitute for TPAOH.12,13However,using TPABr enlarged the crystal size of TS-1,due to the introduction of Br-and the weaker basicity.The larger crystals had longer channels,causing the diffusion limitation of substrates and exothermal,thus,the catalytic performances of TS-1 would be less than desired.14It was reported that the addition of crystallization seeds would decrease the period of nucleation,giving a smaller crystal size and a higher crystallinity.15,16The shaping method was the other obstacle for TS-1 using in industry.There are mainly two methods for shaping the powdered TS-1 in application.One is spraying or in-situ synthesizing TS-1 on inert supports,of which the active component loading is low,so that the output of PO is very low.The other shaping method is extruding the powdered TS-1 with supports,producing TS-1 extrudates.17The TS-1 extrudates have a much higher active component loading than that shaped with the first method,so that the output of PO is improved significantly.One of the disadvantages of TS-1 extrudate is that the diffusion path is too long for products and reaction heat,so that the PO may react with solvents and H2O2may decompose,lowering the selectivity of PO and the utilization of H2O2.Moreover,the supports may block the pores of TS-1,which will affect the diffusion of substrates.18Therefore,eliminating the diffusion limits was the key of this shaping method.One of the ways was to decrease the crystal size of TS-1.The smaller the crystal is,the shorter the channels are.Thus,the diffusion limit was improved.

    We have reported the synthesis of small-crystal TS-1 with a crystal size of 600 nm×400 nm×250 nm in a TPABr-ethylamine hydrothermal system by using the mother liquor of nanosized TS-1 as seeds.15The small-crystal TS-1 powder shows an excellent activity for the epoxidation of propylene in the batch reactor.Therefore,in the present work,the small-crystal TS-1 was extruded after mixing with silica gel and the obtained TS-1 extrudate was introduced into a fixed-bed reactor to test its catalytic performance.The reaction conditions,including temperature,pressure,molar ratio of propylene/H2O2(n(C3H6)/n(H2O2)),WHSVs of propylene,methanol and H2O2,and concentration of NH3·H2O,were systematically studied to identify the most suitable one for the application in industry.

    2 Experimental

    2.1 Preparation of small-crystal TS-1 extrudate

    Small-crystal TS-1 was hydrothermally synthesized as described previously,19using colloidal silica(30%,mass fraction,technical grade)and titanium tetrachloride(analytical reagent)as silicon and titanium sources,respectively.TPABr(technical grade,home-made)was template,aqueous ethylamine(65%,mass fraction,analytical reagent)was the base,and the mother liquor of nano-sized TS-1 was seeds.The mother liquor of nanosizedTS-1 was prepared according to the literature.20Molar composition of the gels was as follows:n(SiO2):n(TiO2):n(TPABr):n(C2H5NH2):n(H2O)=1:0.02:0.15:1.5:25.

    The crystallization of the catalyst was carried out in a Teflonlined autoclave at 170°C for 48 h.After crystallization,the solid product was washed with distilled water,dried at 100°C for12 h,and calcined at 540°C for 6 h.

    The TS-1 extrudate catalyst was prepared by mixing the powdered TS-1 with 30%of silica sol(m(TS-1)/m(SiO2)=4/1),followed by extruding the mixture.The resulting extrudate was dried at room temperature and calcined at 540°C for 6 h.The TS-1 extrudate was then cut into the cylindrical pieces of 1.5 mm×1.5 mm for use in a fixed-bed reactor.21

    2.2 Preparation of other TS-1

    Nano-sized TS-1 powder with a crystal size of~200 nm was synthesized according to literature,22while micro-sized TS-1 powder with a crystal size of ~1 μm to literature.21The extrusion method of the above powder was the same as that of small-crystal TS-1.

    2.3 Characterization of TS-1

    The X-ray powder diffraction(XRD)was performed on a Japan Rigaku D/MAX-2400 using Cu Kαradiation.The Fouriertranrform infrared(FTIR)spectrum was recorded on a German Bruker EQUINOX55 spectrometer,and KBr pellet technique was adopted;the wavenumber was from 4000 to 400 cm-1.The ultraviolet-visible(UV-Vis)diffuse reflectance spectrum was obtained on a Japan Jasco UV-550 spectrometer,and pure BaSO4was used as a reference.The wavelength was from 190 to 800 nm.The nitrogen physisorption isotherm was performed at liquid nitrogen temperature on a United States QuantachromeAUTOSORB-1 physical sorption apparatus.

    The initial and residual H2O2were measured by iodometric titration.The products of the reaction were analyzed on a 7890F gas chromatography with a flame ionization detector(FID)and a polyethylene glycol(PEG)-20M column(30 m×0.25 mm×0.4 μm).PO was the main product.Propylene glycol monomethyl ether(MME)and propylene glycol(PG)were the by-products.The conversion of H2O2(X(H2O2)),selectivity of PO(S(PO)),utilization of H2O2(U(H2O2)),and yield of PO(Y(PO))are given using the criteria as follows:

    where the n0(H2O2)and n(H2O2)represent the initial and final molar contents of H2O2,respectively.The n(PO),n(MME),and n(PG)stand for the molar contents of PO,MME,and PG,respectively.

    2.4 Epoxidation of propylene

    The epoxidation of propylene was carried out in a fixed-bed reactor,which had a catalyst loading of 7.0 g.The reaction conditions were:35-50°C;1.0-3.0 MPa;methanol as the solvent;the initial concentration of H2O2was in the range of 1.2-2.4 mol·L-1;the molar ratio of propylene to H2O2was 1-4;the WHSV of propylene was 0.4-0.75 h-1;and the concentration of NH3·H2O was 0.8-1.6 mmol·L-1.The details of the reaction conditions are shown in Table 1.

    3 Results and discussion

    3.1 Characterization of small-crystal TS-1 extrudate

    Fig.1 shows the results of characterization of small-crystal TS-1 extrudates.The five characteristic XRD peaks of MFI topology,which are sited at 7.8°,8.8°,23.0°,23.9°,and 24.4°,23are observed in the XRD pattern(Fig.1(a)).The crystallinity,which was calculated by comparing the total intensity of the five characteristic peaks with that of the standard samples,decreases slightly,due to the introduction of amorphous silica by extruding.

    The band at 550 cm-1in the FTIR spectrum(Fig.1(b))is considered as the double-frequency vibration band in the framework of TS-1,22while the bands at 790 and 1100 cm-1are assigned to symmetrical and asymmetrical stretching vibrations out of framework,respectively.23The band at 960 cm-1cannot be observed in pure silicalite-1 or ZSM-5,thus,it is considered as a proof of titanium insertion into the framework.However,some researchers believed that it belongs to the Si-OH on the external surface or the defect of TS-1.24In other words,the assignment of this band is still controversial,but it can be seen as a necessary condition of Ti existing in the framework.25

    UV-Vis spectroscopy is one of the earliest techniques for the detection of the coordination state of Ti.There are three major bands in the spectrum of small-crystal TS-1 extrudate(Fig.1(c)).The band at~210 nm may be attributed to the transition of the 2p electron from oxygen to the unoccupied 3d orbital of Ti4+,which is framework Ti.26The band at~270 nm is assigned to a charge transfer in isolated[TiO4]or[HOTiO3]units,27while that at~330 nm is the characteristic band of anatase TiO2.The appearance of the band at~330 nm may be due to the introduction of TPAOH by the seed.19

    The nitrogen sorption isotherm of small-crystal TS-1 is the typical type IV sorption isotherm(Fig.1(d)).A small hysteresis loop appears between the relative pressures of 0.4 and 0.8,which is likely caused by the inter-crystal mesopores,because there is no mesopore in the crystals of small-crystal TS-1.

    3.2 Effect of reaction temperature

    The results of propylene epoxidation at different temperatures are shown in Fig.2.The conversion of H2O2increases from 85%to 90%,corresponding to the temperature increasing from 35 to 50°C.However,the selectivity of PO decreases with the increase of temperature,because increasing temperature could accelerate both the main reaction and the side reactions.The reactions in the epoxidation of propylene are all exothermic(see Scheme 1),and the amount of heat released from the main reaction is higher than those from the side reactions,so increasing the temperature will be harmful for the balance ofall the reactions,especially for the main.Therefore,more by-products are formed at a higher temperature,leading to the decrease of PO selectivity.There is no apparent change in the utilization of H2O2with the variation of temperature.The yield of PO,which is a function of several parameters including X(H2O2),S(PO),and U(H2O2),remains constant at about 75%,regardless of the temperature change between 35 and 50°C.In other words,changing the temperature can improve some parameters of propylene epoxidation,but it has little effect on the yield of PO.Therefore,it is not feasible to increase the yield of PO by increasing the temperature.

    Table 1 Details of the reaction conditions for the epoxidation of propylene

    Fig.1 Characterization of small-crystal TS-1 extrudates

    3.3 Effect of reaction pressure

    Fig.3 shows the influence of pressure on propylene epoxidation.The initial pressure was pressurized with N2.When the pressure was 1.0 MPa,propylene was easy to gasify,and the solubility of propylene in methanol was low,which would lead to the reaction in three phases.Thus,the conversion of H2O2was very low(less than 30%).The epoxidation of propylene and the decomposition of H2O2over TS-1 are competitive reactions.If the amount of propylene is sufficient and the catalytic activity of TS-1 is high,the epoxidation will occur prior to the decomposition of H2O2,and vice versa.Therefore,H2O2which cannot react with propylene,decomposed seriously,when the pressure was low.The low pressure is also beneficial for the forward reaction of H2O2decomposition.These two reasons lead to a low utilization of H2O2.The obtained yield of PO,thus,is only 5%.When the pressure increased to more than 2.0 MPa,the gasification and insolubility of propylene were eliminated.Thus,the conversion of H2O2,selectivity of PO,and utilization of H2O2increased significantly,leading to a high yield of PO(80%).In summary,the reaction pressure limited by the property of propylene,cannot be too low,which should be at least 2.0 MPa.

    3.4 Effect of molar ratio of propylene to H2O2

    The effect of n(C3H6)/n(H2O2)is shown in Fig.4.When the ratio was 1,the conversion of H2O2was very low(less than 50%),although the stoichiometric ratio of the reaction was 1:1 for propylene:H2O2.Moreover,the decomposition of H2O2was more serious when the ratio was 1 compared to those with the corresponding ratios of 2-4,due to the insufficiency of propylene and the large amount of residual H2O2.When the n(C3H6)/n(H2O2)increased to 2,the conversion of H2O2increased,but the stability was poor.After 120 h reaction,the conversion of H2O2decreased from 90%to 85%.With further increase of the n(C3H6)/n(H2O2),both the activity and the stability of the small-crystal TS-1 were improved.The selectivity of PO decreased with the increase of n(C3H6)/n(H2O2)from 1 to 3,due to the increase of PO content in the products promoting the side reactions of PO.However,when the ratio was 4,the selectivity of PO increased slightly to 94%,because the acid centers,which were able to catalyze the alcoholysis of PO,were covered by excessive propylene.When the ratio was less than 3,the amount of propylene was insufficient to cover the acid centers,thus,the selectivity of PO decreased with the increase of PO content.Furthermore,a very high yield of PO(~82%)was obtained,when the n(C3H6)/n(H2O2)was 4.Nevertheless,adding more propylene beyond the stoichiometric ratio will increase the energy consumption of the separation process in industry.Thus,one needs to achieve a balance between the catalytic property and the cost.

    Scheme 1 Reactions in the epoxidation of propylene with H2O2

    Fig.3 Effect of pressure on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    Fig.4 Effect of molar ratio of propylene/H2O2on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    3.5 Effect of WHSV of propylene

    In the next three sections,we would discuss the influence of the WHSVs of the three major substrates which were propylene(this Section),methanol(Section 3.6),and H2O2(Section 3.7),on the performance of propylene epoxidation.

    When we changed the WHSV of propylene,we kept the n(C3H6)/n(H2O2)as 3,thus,the WHSV of H2O2was changed with that of propylene.Increasing the WHSV of propylene led to an apparent decrease of the conversion of H2O2,due to the limitation of the output of small-crystal TS-1 extrudate(Fig.5).The selectivity of PO and utilization of H2O2increased slightly with the increase of WHSV,until it was 0.6 h-1.When the WHSV of propylene was less than 0.6 h-1,the yield of PO maintained nearly constant,but when the WHSV increased to 0.75 h-1,the yield decreased obviously,because the residual time was too short and the substrates could not get sufficient contact with the active centers.In other words,the needed han-dling capacity was higher than the actual handling capacity of small-crystal TS-1.The more content of H2O2,the more acid centers were introduced in the substrate,which would lead to a lower selectivity of PO.The decomposition of residual H2O2(means not reacting with propylene)caused a lower utilization of H2O2.In summary,0.6 h-1is considered as a proper WHSV of propylene.

    Fig.5 Effect of WHSV of propylene on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    Scheme 2 Catalytic scheme of TS-1 in the TS-1-methanol-H2O2system

    3.6 Effect of WHSV of methanol

    Methanol is the solvent in the epoxidation of propylene,but it is important for the catalytic activity of the TS-1,according to the five-member-ring mechanism,7the route of which is shown in Scheme 2.Generally,the amount of solvent is expected to be as low as possible in industry,due to the high energy consumption for separation of products.Therefore,we studied the influence of WHSV of methanol on the catalytic properties(see Fig.6).

    The WHSVs of propylene and H2O2were invariant,so the concentration of H2O2decreased with the increase of the WHSV of methanol.When the WHSV of methanol decreased,the conversion of H2O2and yield of PO decreased obviously.Especially when the WHSV was lower than 2.0 h-1,the stability of the catalyst was poor.The conversion of H2O2and selectivity of PO changed but the trend was not well defined,when the WHSV of methanol was more than 2.0 h-1.The concentrations of PO in the product,which could be calculated by multiplying the concentration of H2O2by the yield of PO,were 0.92,1.15,1.14,and 0.84 mol·L-1,corresponding to the WHSVs of methanol of 3.5,2.5,2.0,and 1.5 h-1,respectively.Therefore,it is not feasible to increase the content of PO in the product by decreasing the amount of solvent.

    3.7 Effect of WHSV of H2O2

    Fig.6 Effect of WHSV of methanol on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    Fig.7 shows the effect of WHSV of H2O2on the propylene epoxidation.The WHSVs of methanol and n(C3H6)/n(H2O2)were kept constant,so the WHSV of propylene changed with that of H2O2.It is obvious that increasing the WHSV of H2O2led to the decrease of the conversion of H2O2and yield of PO.When the WHSV of H2O2was 0.33 h-1,the low conversion of H2O2caused a decomposition of H2O2and a low utilization of H2O2.The contents of PO in product were 0.98,1.15,1.32,and 0.84 mol·L-1,corresponding to the WHSVs of H2O2which were 0.15,0.20,0.25,and 0.33 h-1,respectively.Therefore,a proper WHSV of H2O2(0.25 h-1)may lead to a higher content of PO.

    3.8 Effect of concentration of NH3·H2O

    In the epoxidation of propylene,PO may react with methanol or water in the presence of acid centers to generate by-products.The basic additive can neutralize the acid centers in the substrate and on the TS-1,which will restrain the alcoholysis of PO and improve the selectivity of PO.28Thus,we expected to improve the yield of PO by increasing the selectivity of PO.The concentrations of NH3·H2O from 0.8 to 1.6 mmol·L-1were studied(Fig.8).When the concentration was low,the conversion of H2O2reached 97%,but the selectivity of PO was less than 90%,and the yield of PO was~77%.Increasing the concentration of NH3·H2O,the selectivity of PO increased significantly,but the conversion of H2O2decreased seriously,leading to a slight decrease of the yield of PO.The utilization of H2O2kept constant in the studied concentration scope of NH3·H2O.Thus,a low concentration of NH3·H2O was beneficial for a high PO yield.

    3.9 Long term test

    Fig.7 Effect of WHSV of H2O2on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    Fig.8 Effect of NH3·H2O concentration on the catalytic property of propylene epoxidation over small-crystal TS-1 extrudates

    A long term test of propylene epoxidation was conducted at an optimized set of conditions,which was 40°C,3.0 MPa,n(C3H6)/n(H2O2)of 3,the WHSVs of propylene,methanol and H2O2at 0.6,2.5 and 0.16 h-1,respectively,and the concentration of NH3·H2O of 1.2 mmol·L-1.The result of 1000 h run is shown in Fig.9.It is clear that the conversion of H2O2and selectivity of PO can both achieve 95%and are very stable.The utilization of H2O2and yield of PO decreased slightly(<5%)after the long term test.Therefore,the small-crystal TS-1 extrudate as catalyst exhibits a long lifetime in the optimized condition.

    3.10 Comparison of TS-1 with different crystal sizes

    The three TS-1 samples with different crystal sizes were studied under the optimized condition(cf.Section 3.9),including nano-sized TS-1(~200 nm),small-crystal TS-1 and microsized TS-1(~1 μm).The results,which are shown in Table 2,are the average data for more than 100 h on stream after the catalytic activity becomes stable.When there was no catalyst added in the reactor,the conversion of H2O2was less than 1%.The highest yield of PO was obtained over small-crystal TS-1.The proper crystal size was considered as the main reason for the high catalytic property.The larger crystal size of microsized TS-1 led to low conversion of H2O2and selectivity of PO.The low conversion of H2O2over nano-sized TS-1 was likely due to the low crystallinity.

    Fig.9 Long term test of propylene epoxidation under the optimized condition

    Table 2 Catalytic properties of propylene epoxidation over TS-1 with different crystal sizes

    4 Conclusions

    The epoxidation of propylene over small-crystal TS-1 extrudates was evaluated in a fixed-bed reactor under different reaction conditions.The temperature had little effect on the yield of PO.The pressure needed to be higher than 2.0 MPa,or the propylene was easy to gasify.The reaction conditions were favorable for PO production when the n(C3H6)/n(H2O2)was 4,the WHSVs of propylene,methanol,and H2O2were 0.93,2.5,and 0.25 h-1,respectively.A low concentration of NH3·H2O led to a high yield of PO.The small-crystal TS-1 extrudate showed a stable and high catalytic performance under the optimized condition.

    (1)Kirk,R.O.;Dempsey,T.J.Kirk-Othmer Encyclopedia of Chemical Technology;Wiley:New York,1982;p 246.

    (2) Wulff,H.P.;Wattimena,F(xiàn).Olefin Epoxidation.U.S.Pat.4021454,1977.

    (3) Taramasso,M.;Perego,G.;Notari,B.Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides.U.S.Pat.4410501,1983.

    (4)Fan,W.B.;Duan,R.G.;Yokoi,T.;Wu,P.;Kubota,Y.;Tatsumi,T.J.Am.Soc.Chem.2008,130,10150.doi:10.1021/ja7100399

    (5)Yube,K.;Furuta,M.;Mae,K.Catal.Today 2007,125,56.doi:10.1016/j.cattod.2007.03.017

    (6)Zhuang,J.Q.;Ma,D.;Yan,Z.M.;Liu,X.M.;Han,X.W.;Bao,X.H.;Zhang,Y.H.;Guo,X.W.;Wang,X.S.Appl.Catal.A 2004,258,1.doi:10.1016/j.apcata.2003.06.002

    (7) Lv,L.;Zhou,J.K.;Su,F(xiàn).;Zhao,X.S.J.Phys.Chem.C 2007,111,773.doi:10.1021/jp056107w

    (8) Laha,S.C.;Kumar,R.J.Catal.2001,204,64.doi:10.1006/jcat.2001.3352

    (9) Li,Y.G.;Lee,Y.M.;Porter,J.F.J.Mater.Sci.2002,37,1959.doi:10.1023/A:1015234812360

    (10) Barbera,D.;Cavani,F(xiàn).;D'Alessandro,T.;Fornasari,G.;Guiditti,S.;Aloise,A.;Giordano,G.;Piumetti,M.;Bonelli,B.;Zanzottera,C.J.Catal.2010,275,158.doi:10.1016/j.jcat.2010.07.030

    (11)Yu,J.K.;Li,Z.;Liu,Q.W.Chem.Propell.Poly.Mat.2011,9,8.[于劍昆,李 中,劉青煒.化學推進劑與高分子材料,2011,9,8.]

    (12) Müller,U.;Steck,W.Stud.Surf.Sci.Catal.1994,84,203.doi:10.1016/S0167-2991(08)64115-4

    (13) Shibata,M.;Gabelica,Z.Zeolites 1997,19,246.doi:10.1016/S0144-2449(97)00078-X

    (14) Zhang,H.J.;Liu,Y.M.;Jiao,Z.;He,M.Y.;Wu,P.Ind.Eng.Chem.Res.2009,48,4334.doi:10.1021/ie8016253

    (15)Xu,F(xiàn).;Dong,M.;Gou,W.Y.;Li,J.F.;Qin,Z.F.;Wang,J.G.;Fan,W.B.Microporous Mesoporous Mat.2012,163,192.doi:10.1016/j.micromeso.2012.07.030

    (16)Chen,Y.;Wu,Y.L.;Zhang,Y.R.;Long,L.;Tao,L.;Yang,M.D.;Tang,N.J.Mol.Catal.A-Chem.2012,352,102.doi:10.1016/j.molcata.2011.10.020

    (17) Bellussi,G.;Buonomo,F(xiàn).;Esposito,A.;Clerici,M.;Romano,U.;Notari,B.Catalyst of Silicon and Titanium Having High Mechanical Strength and a Process for Its Preparation.U.S.Pat.4701428,1987.

    (18)Zuo,Y.;Wang,M.L.;Song,W.C.;Wang,X.S.;Guo,X.W.Ind.Eng.Chem.Res.2012,51,10586.doi:10.1021/ie300581z(19)Zuo,Y.;Wang,X.S.;Guo,X.W.Microporous Mesoporous Mat.2012,162,105.doi:10.1016/j.micromeso.2012.06.016

    (20)Wang,L.Q.;Wang,X.S.;Guo,X.W.;Li,G.;Xiu,J.H.Chin.J.Catal.2001,22,513.[王麗琴,王祥生,郭新聞,李 鋼,修景海.催化學報,2001,22,513.]

    (21)Li,G.;Wang,X.S.;Yan,H.S.;Liu,Y.H.;Liu,X.W.Appl.Catal.A 2002,236,1.doi:10.1016/S0926-860X(02)00288-0

    (22) Thangaraj,A.;Kumar,R.;Mirajkar,S.P.;Ratnasamy,P.J.Catal.1991,130,1.doi:10.1016/0021-9517(91)90086-J

    (23) Zhang,X.J.;Wang,Y.;Xin,F(xiàn).Appl.Catal.A 2006,307,222.doi:10.1016/j.apcata.2006.03.050

    (24) Notestein,J.M.;Solovyov,A.;Andrini,L.R.;Requejo,F(xiàn).G.;Katz,A.;Iglesia,E.J.Am.Soc.Chem.2007,129,15585.doi:10.1021/ja074614g

    (25) Bordiga,S.;Damin,A.;Berlier,G.;Bonino,F(xiàn).;Ricchiadi,G.;Zecchina,A.;Lamberti,C.Int.J.Mol.Sci.2001,2,167.doi:10.3390/i2050167

    (26) Fraile,J.M.;Garcia,J.I.;Mayoral,J.A.;Vispe,E.J.Catal.2005,233,90.doi:10.1016/j.jcat.2005.04.018

    (27) Perego,C.;Carati,A.;Ingallina,P.;Mantegazza,M.A.;Bellussi,G.Appl.Catal.A 2001,221,63.doi:10.1016/S0926-860X(01)00797-9

    (28) Clerici,M.G.;Ingallina,P.J.Catal.1993,140,71.doi:10.1006/jcat.1993.1069

    猜你喜歡
    大連理工大學固定床化學
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    煤焦油固定床催化加氫工藝實驗
    山東冶金(2018年6期)2019-01-28 08:14:50
    奇妙的化學
    奇妙的化學
    奇妙的化學
    油茶果殼固定床低氧烘焙及產(chǎn)物理化性質(zhì)研究
    偽隨機碼掩蔽的擴頻信息隱藏
    奇妙的化學
    固定床反應器吊蓋設(shè)計及相關(guān)計算
    國內(nèi)首套固定床甲醇制丙烯裝置中試成功
    杭州化工(2014年1期)2014-08-15 00:42:48
    国精品久久久久久国模美| 久久 成人 亚洲| 欧美日韩av久久| 亚洲专区中文字幕在线| 十八禁网站免费在线| 狠狠狠狠99中文字幕| 日韩有码中文字幕| 久久 成人 亚洲| 老司机靠b影院| 91麻豆精品激情在线观看国产 | 欧美少妇被猛烈插入视频| av电影中文网址| 好男人电影高清在线观看| 欧美午夜高清在线| 两性夫妻黄色片| 搡老乐熟女国产| 我要看黄色一级片免费的| 亚洲av成人不卡在线观看播放网 | 中文字幕高清在线视频| 国产高清视频在线播放一区 | 一区二区三区乱码不卡18| 老熟妇仑乱视频hdxx| 精品人妻在线不人妻| 久久99一区二区三区| 成人国产av品久久久| av免费在线观看网站| 亚洲第一av免费看| 亚洲黑人精品在线| 成人三级做爰电影| 下体分泌物呈黄色| 欧美午夜高清在线| 麻豆国产av国片精品| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 国产欧美日韩一区二区三 | 国产成+人综合+亚洲专区| 嫩草影视91久久| 国产在线免费精品| 女警被强在线播放| 搡老熟女国产l中国老女人| 嫩草影视91久久| 亚洲中文av在线| 69精品国产乱码久久久| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三 | 老司机影院成人| 天天躁狠狠躁夜夜躁狠狠躁| 老鸭窝网址在线观看| 亚洲avbb在线观看| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| 亚洲熟女精品中文字幕| 99九九在线精品视频| 精品久久久久久电影网| 一级毛片女人18水好多| 悠悠久久av| 国产欧美日韩精品亚洲av| 国产一区二区三区av在线| 欧美大码av| 欧美成人午夜精品| 国产精品九九99| 亚洲人成电影免费在线| 搡老熟女国产l中国老女人| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 性少妇av在线| 男人爽女人下面视频在线观看| 亚洲国产看品久久| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 999精品在线视频| 十八禁网站网址无遮挡| 桃花免费在线播放| 日韩免费高清中文字幕av| 极品少妇高潮喷水抽搐| 久久中文字幕一级| 人妻久久中文字幕网| 五月天丁香电影| 国产淫语在线视频| 成人手机av| 精品少妇久久久久久888优播| 999精品在线视频| 一本一本久久a久久精品综合妖精| 在线观看免费日韩欧美大片| 多毛熟女@视频| 99久久99久久久精品蜜桃| 亚洲三区欧美一区| 久久精品熟女亚洲av麻豆精品| 亚洲七黄色美女视频| 成人三级做爰电影| 国产视频一区二区在线看| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 美女福利国产在线| 乱人伦中国视频| 国产精品二区激情视频| 纵有疾风起免费观看全集完整版| 制服诱惑二区| 搡老熟女国产l中国老女人| 一个人免费看片子| 人成视频在线观看免费观看| 日本av手机在线免费观看| 午夜视频精品福利| 大陆偷拍与自拍| 中文字幕色久视频| 国产免费视频播放在线视频| 亚洲熟女毛片儿| 极品少妇高潮喷水抽搐| 黄片小视频在线播放| 精品国产一区二区三区久久久樱花| 免费看十八禁软件| 女警被强在线播放| 两个人看的免费小视频| 亚洲专区字幕在线| 12—13女人毛片做爰片一| 日韩欧美一区视频在线观看| videosex国产| 日本av免费视频播放| 精品久久蜜臀av无| 啦啦啦在线免费观看视频4| 老熟妇乱子伦视频在线观看 | 亚洲av电影在线进入| 国产成人影院久久av| 久久久久久亚洲精品国产蜜桃av| 久久青草综合色| 妹子高潮喷水视频| 国内毛片毛片毛片毛片毛片| 国产高清国产精品国产三级| www.自偷自拍.com| 伊人亚洲综合成人网| 中文字幕最新亚洲高清| av线在线观看网站| 久久久久久久久久久久大奶| 欧美久久黑人一区二区| 亚洲 国产 在线| 肉色欧美久久久久久久蜜桃| 日本猛色少妇xxxxx猛交久久| 亚洲中文字幕日韩| 成人亚洲精品一区在线观看| 亚洲国产欧美在线一区| 蜜桃国产av成人99| 免费观看人在逋| 日本猛色少妇xxxxx猛交久久| 国产亚洲一区二区精品| 大香蕉久久网| 国产精品亚洲av一区麻豆| 国产精品久久久久久精品电影小说| 日韩欧美一区二区三区在线观看 | 亚洲精品国产精品久久久不卡| 日韩一卡2卡3卡4卡2021年| 在线十欧美十亚洲十日本专区| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 咕卡用的链子| 欧美老熟妇乱子伦牲交| 视频区图区小说| 老司机影院成人| 欧美黄色片欧美黄色片| 女警被强在线播放| 91精品国产国语对白视频| 欧美日韩黄片免| 精品乱码久久久久久99久播| cao死你这个sao货| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 香蕉丝袜av| 久久久久精品国产欧美久久久 | 免费看十八禁软件| 日韩免费高清中文字幕av| 他把我摸到了高潮在线观看 | 在线观看免费高清a一片| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 一本综合久久免费| 亚洲久久久国产精品| 极品人妻少妇av视频| 丝袜脚勾引网站| 99re6热这里在线精品视频| 成人国语在线视频| 免费在线观看影片大全网站| 永久免费av网站大全| 青春草亚洲视频在线观看| 国产在线一区二区三区精| 啪啪无遮挡十八禁网站| 亚洲精品久久午夜乱码| 一区福利在线观看| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 日韩三级视频一区二区三区| 伊人亚洲综合成人网| 久久综合国产亚洲精品| 天天影视国产精品| 日本wwww免费看| 国产精品1区2区在线观看. | 欧美av亚洲av综合av国产av| 99香蕉大伊视频| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 中文字幕色久视频| 黄色 视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 精品人妻一区二区三区麻豆| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美 | 久久国产精品人妻蜜桃| 亚洲第一av免费看| 免费观看a级毛片全部| 国产精品久久久久成人av| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码| 在线观看www视频免费| 久久人妻熟女aⅴ| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 中文字幕色久视频| 少妇粗大呻吟视频| 久久天躁狠狠躁夜夜2o2o| 美女福利国产在线| 精品少妇黑人巨大在线播放| 国产人伦9x9x在线观看| 久久精品熟女亚洲av麻豆精品| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 午夜成年电影在线免费观看| 午夜福利视频在线观看免费| 三级毛片av免费| 久久久久国产精品人妻一区二区| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 欧美97在线视频| 18禁黄网站禁片午夜丰满| 日韩 亚洲 欧美在线| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| videos熟女内射| 免费人妻精品一区二区三区视频| 手机成人av网站| 视频区欧美日本亚洲| www.熟女人妻精品国产| 欧美精品高潮呻吟av久久| 美女主播在线视频| 国产精品一二三区在线看| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 国产不卡av网站在线观看| 国产精品亚洲av一区麻豆| 12—13女人毛片做爰片一| 日韩人妻精品一区2区三区| 黑人操中国人逼视频| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 大片电影免费在线观看免费| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 午夜日韩欧美国产| 女性生殖器流出的白浆| 亚洲色图综合在线观看| 深夜精品福利| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 操出白浆在线播放| 亚洲精品国产区一区二| 久久免费观看电影| 精品福利观看| 在线看a的网站| 久久精品国产综合久久久| 一二三四社区在线视频社区8| svipshipincom国产片| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 9热在线视频观看99| 老司机影院毛片| 看免费av毛片| 久久久久精品人妻al黑| 正在播放国产对白刺激| 欧美av亚洲av综合av国产av| 在线av久久热| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 纯流量卡能插随身wifi吗| 在线观看免费日韩欧美大片| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影 | 精品熟女少妇八av免费久了| 不卡一级毛片| 中文欧美无线码| 久热爱精品视频在线9| 狠狠婷婷综合久久久久久88av| 窝窝影院91人妻| 18禁国产床啪视频网站| 国产片内射在线| 天天影视国产精品| 精品欧美一区二区三区在线| 免费少妇av软件| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 99热全是精品| 免费高清在线观看视频在线观看| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 9热在线视频观看99| 51午夜福利影视在线观看| 99九九在线精品视频| av有码第一页| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| 亚洲av片天天在线观看| 国产男女超爽视频在线观看| 欧美乱码精品一区二区三区| 国产精品自产拍在线观看55亚洲 | 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩综合在线一区二区| 成年av动漫网址| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情在线| 中文欧美无线码| 亚洲中文字幕日韩| 亚洲美女黄色视频免费看| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 免费人妻精品一区二区三区视频| 啦啦啦啦在线视频资源| 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 黄色视频在线播放观看不卡| 1024视频免费在线观看| 少妇 在线观看| 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 欧美激情高清一区二区三区| 久久99热这里只频精品6学生| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲熟妇少妇任你| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 欧美日韩国产mv在线观看视频| 成年动漫av网址| 麻豆国产av国片精品| 一本久久精品| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 亚洲伊人色综图| 国产成人精品无人区| 久久久久精品国产欧美久久久 | 大陆偷拍与自拍| 搡老乐熟女国产| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 人人澡人人妻人| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 欧美午夜高清在线| 午夜免费鲁丝| 精品乱码久久久久久99久播| 高清av免费在线| 老熟妇仑乱视频hdxx| 麻豆av在线久日| 看免费av毛片| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av | 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 男女边摸边吃奶| 亚洲色图综合在线观看| 精品一区二区三卡| 丝袜人妻中文字幕| av电影中文网址| 男女床上黄色一级片免费看| 中文字幕色久视频| 欧美 日韩 精品 国产| 精品福利永久在线观看| 少妇 在线观看| 欧美日韩成人在线一区二区| 成人av一区二区三区在线看 | 国产精品香港三级国产av潘金莲| 免费av中文字幕在线| 亚洲视频免费观看视频| 免费在线观看日本一区| 久久国产精品大桥未久av| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 老司机午夜十八禁免费视频| 天天影视国产精品| 欧美精品av麻豆av| 国产欧美亚洲国产| 亚洲av片天天在线观看| 亚洲精品中文字幕一二三四区 | 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| 亚洲中文av在线| 咕卡用的链子| 啪啪无遮挡十八禁网站| 动漫黄色视频在线观看| 精品国产一区二区久久| 搡老岳熟女国产| 国产亚洲午夜精品一区二区久久| 欧美黑人欧美精品刺激| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 女性被躁到高潮视频| 老鸭窝网址在线观看| 亚洲精品成人av观看孕妇| 一级片免费观看大全| 女性被躁到高潮视频| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕在线视频| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 一个人免费看片子| 欧美日韩成人在线一区二区| 日韩免费高清中文字幕av| www.999成人在线观看| 多毛熟女@视频| av在线老鸭窝| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 亚洲精品国产精品久久久不卡| 国产人伦9x9x在线观看| 美女午夜性视频免费| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品一区二区免费欧美 | 欧美日韩av久久| 免费人妻精品一区二区三区视频| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 在线永久观看黄色视频| 老司机福利观看| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 亚洲精品在线美女| 男女视频在线观看网站免费 | 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 日韩三级视频一区二区三区| 午夜精品一区二区三区免费看| 久久久久久大精品| www日本在线高清视频| 色播亚洲综合网| 妹子高潮喷水视频| 精品一区二区三区四区五区乱码| 国产精品久久久久久亚洲av鲁大| 国产成人一区二区三区免费视频网站| 男人舔女人的私密视频| 日韩有码中文字幕| 亚洲全国av大片| 好男人在线观看高清免费视频| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 国产精品国产高清国产av| 欧美日韩亚洲综合一区二区三区_| 在线国产一区二区在线| av有码第一页| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 日韩大尺度精品在线看网址| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 国产高清激情床上av| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 免费看日本二区| 欧美av亚洲av综合av国产av| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 亚洲片人在线观看| 日日夜夜操网爽| 我要搜黄色片| 国产乱人伦免费视频| 一级作爱视频免费观看| 中文字幕人成人乱码亚洲影| 一级毛片女人18水好多| а√天堂www在线а√下载| 一区二区三区激情视频| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 全区人妻精品视频| 亚洲黑人精品在线| 三级男女做爰猛烈吃奶摸视频| 这个男人来自地球电影免费观看| 91在线观看av| 久久久久久大精品| 黑人操中国人逼视频| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 我要搜黄色片| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 不卡av一区二区三区| 国产成人精品无人区| 亚洲色图av天堂| 免费搜索国产男女视频| 国产精品98久久久久久宅男小说| 一级片免费观看大全| av福利片在线观看| 中国美女看黄片| 国产精品久久久久久久电影 | 国产在线观看jvid| 精品欧美一区二区三区在线| 色噜噜av男人的天堂激情| 久久伊人香网站| 日韩欧美三级三区| 免费在线观看日本一区| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 在线国产一区二区在线| 久久久久久人人人人人| 国产区一区二久久| 男女午夜视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲男人天堂网一区| 精品高清国产在线一区| 男女之事视频高清在线观看| 国产精品1区2区在线观看.| 成人手机av| 日韩免费av在线播放| 国产区一区二久久| 美女午夜性视频免费| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 欧美大码av| 在线观看一区二区三区| 国产av一区在线观看免费| 亚洲熟妇中文字幕五十中出| 成人精品一区二区免费| 两个人视频免费观看高清| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 97人妻精品一区二区三区麻豆| 在线播放国产精品三级| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 极品教师在线免费播放| 久热爱精品视频在线9| 欧美色视频一区免费| 午夜免费成人在线视频| 人妻久久中文字幕网| 亚洲av美国av| 亚洲成av人片在线播放无| 99国产精品一区二区蜜桃av| 国产精品亚洲一级av第二区| 18禁黄网站禁片午夜丰满| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 丝袜美腿诱惑在线| 亚洲欧美精品综合一区二区三区| 午夜精品在线福利| 人人妻,人人澡人人爽秒播| 99热这里只有精品一区 | 日韩精品中文字幕看吧| 欧美zozozo另类| 黑人巨大精品欧美一区二区mp4| 男人的好看免费观看在线视频 | 黄色片一级片一级黄色片| 色噜噜av男人的天堂激情| 淫妇啪啪啪对白视频| 91成年电影在线观看| 天天一区二区日本电影三级| 国模一区二区三区四区视频 | 午夜福利高清视频| 又爽又黄无遮挡网站| 少妇被粗大的猛进出69影院| 亚洲在线自拍视频| 久久香蕉国产精品| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 久久婷婷成人综合色麻豆| 三级毛片av免费| 丁香欧美五月| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 18美女黄网站色大片免费观看| 每晚都被弄得嗷嗷叫到高潮| 桃色一区二区三区在线观看| 草草在线视频免费看| 国产99久久九九免费精品| 免费看美女性在线毛片视频| 黄色成人免费大全| 在线观看免费午夜福利视频| 国产一区在线观看成人免费|